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Despite their known importance in clinical medicine, differences based on sex and gender
are among the least studied factors affecting cancer susceptibility, progression, survival,
and therapeutic response. In particular, the molecular mechanisms driving sex differences
are poorly understood and so most approaches to precision medicine use mutational or
other genomic data to assign therapy without considering how the sex of the individual
might influence therapeutic efficacy. The mandate by the National Institutes of Health that
research studies include sex as a biological variable has begun to expand our
understanding on its importance. Sex differences in cancer may arise due to a
combination of environmental, genetic, and epigenetic factors, as well as differences in
gene regulation, and expression. Extensive sex differences occur genome-wide, and
ultimately influence cancer biology and outcomes. In this review, we summarize the
current state of knowledge about sex-specific genetic and genome-wide influences in
cancer, describe how differences in response to environmental exposures and genetic
and epigenetic alterations alter the trajectory of the disease, and provide insights into the
importance of integrative analyses in understanding the interplay of sex and genomics in
cancer. In particular, we will explore some of the emerging analytical approaches, such as
the use of network methods, that are providing a deeper understanding of the drivers of
differences based on sex and gender. Better understanding these complex factors and
their interactions will improve cancer prevention, treatment, and outcomes for
all individuals.
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INTRODUCTION

Sex disparities occur in cancer incidence and mortality (Figure 1). The mortality rate of all cancer
sites combined is 214 for males, and 149 for females per 100,000, age-adjusted 2000–2017 average
according to the Surveillance, Epidemiology, and End Results (SEER) program explorer. These sex
disparities are apparent across a range of non-reproductive cancers and vary by age and race. In
general, males have a higher incidence and a higher mortality rate than females for most cancer
sites, including bladder, kidney, colorectum, liver, esophagus, head and neck, brain, skin, and blood
(1). For cancer sites with higher incidence in males, the age-adjusted male-to-female incidence rate
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ratios range from 1.036 to 9.751, with a median of 1.588. Higher
cancer incidences in females are found for breast, thyroid, cranial
nerves, and a few of digestive system sites including gallbladder,
anus, anal canal, and anorectum. Despite females having higher
incidence for these cancers, they have better survival compared
to males (1).

There are significant sex differences in therapeutic response
and toxicity for many cancer types. Various chemotherapy
regimens show higher toxicity, higher response rates, and
longer post-treatment survival in women, including lymphoma
(2), sarcoma (3), glioblastoma (4), lung (5, 6), and colorectal (7)
cancers. There is also a growing literature showing cancer
immunotherapy efficacy varies by sex (8–13). Poorer response
rates are usually reported in females compared to males.
However, controversial findings have been reported as the sex-
based differences for immunotherapy response seems to depend
on the cohort and cancer type analyzed as well as the immune
checkpoint inhibitor agents used and whether they are used in
combination with chemotherapy. Despite these known sex
differences in therapeutic response, most treatment strategies,
as well as drug development and selection, do not account for
sex differences.

Studying both sex and gender is important to understanding
differences in clinical manifestation between males and females
and the molecular mechanisms involved; such considerations are
now mandated as part of all NIH-funded research studies (14).
Sex refers to a biological concept defined by the sex chromosome
complement (15). Gender refers to a multidimensional social
construct that may vary across societies and over time (16).
Gender includes gender identity (the individual's self-perception
and presentation), gender norms or roles (the individual's
behaviors influenced by social and culture expectations) (17).
The complex interplay between sex and gender is dynamic along
an individual's life, influences not only cancer susceptibility and
progression, but also how the individual perceives cancer, relates
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with health care, and adheres to treatments. Thus, it is essential
to consider sex and gender in every stage of research and clinical
care to improve prevention, diagnosis, and treatment for all
individuals, being inclusive of gender minorities (18–20).

Sex and gender differences may influence cancer in different
ways. Preventive behavior and exposure to risk factors were
largely attributed to higher cancer incidence in males. However,
gender-related occupational exposures (including heavy metals,
and pesticides) and behavioral risk factors (including diet,
tobacco, and alcohol consumption) can only partially explain
higher cancer risk in males (21–23). Sex hormones play an
important role in tumorigenesis and cancer susceptibility
through several mechanisms likely to affect cancer stem cell
self-renewal, the tumor microenvironment, the immune system,
and the metabolism (24). In general, androgens have been
associated with the higher cancer risk and mortality in males
while estrogens observed to be protective in females (25–28).
However, while sex differences in cancer may be modified by sex
hormones, it is not completely explained by hormonal
differences, and for most cancers over childhood and
adolescent periods males also show higher incidence rates (29).
Differential regulation of immune responses between males and
females can also contribute to cancer susceptibility and
outcomes. In general, females mount stronger immune
responses than males, and sex differences in innate and
adaptive immune responses occur throughout life (30).
Differences in immune response and infection burden may also
contribute to sex disparities of viral-related cancers. Human
papillomavirus (HPV) infection rate differs by anatomic site
and sex, and likely contribute to disparities in incidence of HPV-
related cancers, including oral and anal (31). Other factors that
might also contribute to sex differences in cancer include
anatomy, physiology, body composition (lean and fat body
mass), pharmacokinetics, and pharmacodynamics, which may
affect drug metabolism, drug response, and drug toxicity (32, 33).
FIGURE 1 | Cancers with sex disparity in incidence and mortality rates. Age-adjusted incidence and mortality rates per 100,000 individuals in the US were retrieved
from the Surveillance, Epidemiology, and End Results explorer. Bars show the average rate from 2000 to 2017 and 95% confidence interval. Cancer sites are
ordered according to the male-to-female incidence rate ratio; starting from cancer sites with higher incidence rates in males compared to females.
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Sex differences occur genome-wide, and are not restricted to sex
chromosomes, can be independent of sex hormones regulation, and
ultimately impact cancer biology and outcomes. More than half of
the genes targeted by FDA-approved cancer drugs show sex-biased
molecular signatures, including sex differences in somatic mutation,
copy number, methylation, gene expression, and protein abundance
(34) (Table 1). In this review, we discuss how genetics, epigenetics,
gene regulation and expression may contribute to sex differences in
cancer (Figure 2). We also describe how sex can be incorporated in
genomics research and investigated through model systems. We
finish with an example framework in colorectal cancer showing the
impact of sex- and gender-based research to help us understand sex
disparities in cancer and allow us to improve cancer prevention and
treatment for both sexes.
SEX DIFFERENCES IN GENETICS

Sex Chromosomes
Genetic sex differences exist in the inherent inequality of the sex
chromosomes, resulting in differences in the numbers of X
chromosome genes between males and females and the
presence of Y chromosome genes exclusively in males (35). A
large part of the Y chromosome was lost during evolution, and
only a small segment, the pseudoautosomal region (PAR), can
recombine with the X chromosome. The Y chromosome evolved
to retain genes with male-specific functions, as well as genes
widely expressed involved in regulation of transcription,
translation, and protein stability (36). Age-related loss of the Y
chromosome in peripheral blood cells is a common somatic
event in males and may be associated with higher risk of cancer,
including leukemia, breast, and head and neck (37–40).

To reduce transcriptional dosage imbalance of X chromosome
genes between the sexes, one of the X chromosomes in females is
Frontiers in Oncology | www.frontiersin.org 3
inactivated early in embryonic development and generally remains
so throughout an individual's lifetime. Abnormalities in this process
and reactivation of X-linked genes can occur in some tumors (41–
43). The X inactive specific transcript (XIST) is a long non-coding
RNA and major player during X chromosome inactivation, and loss
of Xist in mouse hematopoietic cells results in X reactivation and
genome-wide changes leading to leukemia (44).

X chromosome inactivation is incomplete, and some genes
are expressed from both alleles resulting in important sex bias.
Genes that escape X inactivation can have significant sex
differences related to mRNA expression levels (45), patterns of
transcription factor targeting (46), and frequency of somatic
mutations (47). Across 21 cancer types, a higher mutation rate in
males was identified for six "Escape from X-Inactivation Tumor
Suppressor" (EXITS) genes: ATRX, CNKSR2, DDX3X, KDM5C,
KDM6A, and MAGEC3 (47). This finding showed that females
might be protected for many cancers due to the biallelic
expression of the EXITS genes and the need of a second hit to
inactivate those. Functional experiments further support the
evidence that EXITS genes can contribute to higher risk of
many cancers in males, specifically for the X-linked lysine
demethylase 6A (KDM6A, also known as UTX). KDM6A loss
accelerates tumor initiation and progression of various in vitro
and in vivomodels for leukemia (48), lymphoma (49), pancreatic
(50), and bladder cancer (51). Likewise, cancer risk differs
between individuals with or without karyotype anomalies.
Compared to the general population without karyotype
anomalies, 1.34 increase in the risk of solid tumors was found
in women with Turner syndrome, which is characterized by X
chromosome monosomy (52). In men with Kleinfelter
syndrome, characterized by the presence of two or more X
chromosomes, the risk of solid tumors was reduced, but the
risk of hematological tumors was increased, standardized
incidence ratios of 0.66 and 2.72, respectively. This finding
TABLE 1 | Examples of cancer drugs and their related-actionable genes, harboring sex-biased genomic alteration.

Gene Molecular alteration Sex bias Cancer Drug Therapy type

TOP2B methylation female BLCA Valrubicin, Doxorubicin HCI liposome, Epirubicin Chemotherapy (anthracyclines)
mRNA female KIRP

PDCD1 methylation female BLCA Pembrolizumab, Nivolumab Immunotherapy
CNA male KIRC

AR protein male KIRC Flutamide, Enzalutamide Hormone therapy

CTNNB1 mutation male LIHC Idelalisib PI3K inhibitor
Erlotinib EGFR inhibitor

EGFR mRNA female LUAD Cetuximab, Erlotinib, Gefitinib, and Lapatinib EGFR inhibitor
methylation female BLCA

NF1 mRNA male LUSC Trametinib MEK inhibitor
mRNA female KIRP Vemurafenib RAF inhibitor

Idelalisib PI3K inhibitor
CDKN2A mRNA male HNSC Palbociclib CDK inhibitor

CNA male KIRC
TSC2 methylation female KIRP Everolimus, Temsirolimus mTOR inhibitors

methylation female KIRC
BRCA1 methylation female HNSC Olaparib PARP inhibitor

mRNA female KIRP
November 2020
Information obtained from Yuan et al. (34). CNA, copy number alteration; BLCA, bladder urothelial carcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell
carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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further supports the important role X chromosome plays in
cancer etiology.

Genetic Variants
The association of genetic variants and sex effects is an
understudied topic and challenging to reach power for sex-
stratified or interaction analyses (53). However, evaluating
genetic variants based on sex can reveal important sex
disparities. Sex-biased effects of variants related to cell cycle
and apoptosis have been described for many cancer types (54).
Germline mutations in TP53 are associated with increased cancer
risk and earlier age at first-cancer diagnosis for females
compared to males; female carriers have a 2.5- to 7-fold higher
odds of having cancer than male carriers (55, 56). A single
nucleotide polymorphism (SNP) found in the promoter region of
MDM2, a negative regulator of the p53, is associated with
increased risk of various cancer types in females but not in
males, which was shown in vivo to be modulated by the estrogen-
signaling pathway (57–59). Many genetic variants in immune-
related genes can confer cancer risk or protection exclusively in
one sex, including different types of variants such as SNP (60,
61), short tandem repeat (STR) (62), and copy number variant
(CNV) (63).

There are important sex differences in pharmacokinetics and
pharmacodynamics affecting drug metabolism and exposure,
drug sensitivity and toxicity (32, 33). In general, clearance of
various anticancer drugs is reduced by approximately 20% in
females compared to males (33). There are also many examples
of genetic variants in genes related to drug metabolism and
detoxification that are associated with cancer risk. In acute
Frontiers in Oncology | www.frontiersin.org 4
myeloblastic and lymphoblastic leukemia, the deletion of
GSTT1 and a SNP in the NQO1 gene confers higher risk to
males than females (64). A SNP in the detoxifying-enzyme
SULT1A1 reduces the risk of bladder cancer in females but not
in males (65). In lung cancer, genetic variants on MTHFR are
associated with both increased or decreased risk in females, but
not in males (66). Evidence also suggests interactions ofMTHFR
polymorphisms with both diet (vitamin B6, B12, and
methionine) and tobacco smoking. In pancreatic cancer,
interactions of SNPs in the drug metabolism genes CYP1A2
and NAT1 with tobacco and diet modify the risk of cancer
differently in males and females (67). Taken together, these
examples show that genetic variants might influence the sex
divergence in cancer, and future studies need to consider the role
of sex and gender in modifying both penetrance and expressivity
of genetic variants.

Somatic Mutation
Sex-bias occur in mutation burden and in frequency of specific
somatic mutations, which can include single nucleotide and copy
number alteration (CNA). These sex differences in somatic mutation
ultimately affect survival outcomes and therapeutic response.

Males have higher mutation burden (total number of mutations)
for many cancer types, including lung adenocarcinoma (68),
melanoma (69), urothelial cell, papillary renal cell, and
hepatocellular carcinomas; difference in means by sex range from
0.16 to 2.2 (70). Among patients with high mutation count in
melanoma (over 130 mutations), female patients have greater
overall survival than males (69). In some cancers, mutation
burden may be explained by sex differences in the efficiency of
FIGURE 2 | Sex differences in genomics, which can be modulated by host and environmental factors, influence cancer biology and outcomes.
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mismatch repair as suggested by the lower mRNA levels of DNA
mismatch repair genes associated with high mutation burden in
stomach and esophageal, kidney and liver cancers (70).

In a pan-cancer analysis using The Cancer Genome Atlas
(TCGA) data, 15% of autosomal genes had sex-biased CNA, the
majority of these were amplification and more prevalent in male
tumors (70). Looking at each specific cancer type, eight harbored
significant sex-biased frequency of CNAs: kidney clear cell,
kidney papillary, head and neck, stomach and esophageal,
liver, bladder, lung adenocarcinoma, and squamous cell
cancers (34, 70). Sex-biased CNAs can be focal or cover long
genomic segments, associated with differences in mRNA levels,
and demonstrate differences in survival outcome. The authors
identified 16 examples of sex-specific prognostic markers (70)
(Table 2). For example, loss of LATS1 was a marker of poor
prognosis in females but not in males, and UBAC1 loss was a
marker of good prognosis in females but not in males.

Specific cancer genes can also have sex-biased patterns of
somatic mutation, including the lower frequency of KRAS
mutation among males with colorectal cancer (75), higher
mutation frequency of PBRM1 and KDM5C in males and
BAP1 in females with renal carcinoma (72). Point mutations
can also have sex-biased prognostic effect. BRWD3 shows higher
mutation frequency in HPV-negative head and neck cancer of
females and associates with poorer overall survival (76). Overall,
a genome-wide analysis of somatic mutation found that 0.8% of
genes were prognostic in both sexes while 1.5% were prognostic
in patients of only one sex (70).

Somatic mutations in therapeutic targets can be differentially
present in males and females. b-catenin (CTNNB1) is more
frequently mutated in men with hepatocellular carcinoma, and
the activation of this proto-oncogene can affect sensitivity to
EGFR, PI3K, AKT, and WNT inhibitors (34, 70). In contrast, the
incidence of EGFR mutation is higher in females with non-small
cell lung cancers (34, 77). The tumor suppressor gene STK11 has
higher mutation frequency in men with lung adenocarcinoma,
whereas inactivating mutations in this gene may predict
sensitivity to mTOR and SRC inhibitors (34). These examples
highlight the need to carefully consider sex differences in cancer
genomics during drug development and when defining
treatment options.
Frontiers in Oncology | www.frontiersin.org 5
Gender-related behavior and exposures can also affect the
gene mutation spectrum observed in males and females. In non-
small cell lung cancer, both sex and smoking influence the
mutation spectrum of EGFR (78) and TP53 (79, 80). The
frequency of G to T transversion mutation on TP53 is higher
among females (40%) than among males (25%–28%) (79, 80),
which is a mutation signature of smoking-associated cancers
(81). Tobacco may be more carcinogenic in females than males.
Despite the lower levels of tobacco exposure, female lung tumor
tissue present higher TP53 mutation, higher level of DNA
adducts, higher expression level of the carcinogen-metabolizing
enzyme CYP1A1, and less efficient DNA repair (Figure 3) (79,
82–84). A combination of mechanisms can contribute to the sex
differences in genetics, such as carcinogen exposures, DNA
repair efficacy, and sex differential chromatin architecture
(described in the Sex Differences in Epigenetics section).
SEX DIFFERENCES IN EPIGENETICS

DNA Methylation
Sex-biased methylation patterns have been observed across
different human tissues, including blood (85–88), brain (89),
liver (90, 91), rectal mucosa (92), muscle (93), and pancreas (94).
Both the presence of the SRY gene and X chromosome dosage
may influence sex differences in methylation level (95). Sex
hormones may also influence methylation levels at specific
gene regulatory regions, and in a tissue-specific manner, as
observed in brain (96, 97) and liver (91). Furthermore, sex
hormones can induce a stable methylation profile, establishing
a sex-biased epigenetic memory maintained in the absence of
the hormone.

In whole blood, 1,184 CpG sites in autosomes were found
differentially methylated by sex, and further replicated in
independent cohorts (86). Differences in male and female
methylation patterns were enriched among imprinted genes
and in CpG island shores (important for gene expression
regulation), but not enriched in genes related with sex
hormone biosynthesis, transport or receptors. By comparing
sex-biased methylated genes in saliva and blood, an overlap of
81% was found for X chromosome genes and 8% for autosomes,
TABLE 2 | Examples of genomic alterations associated with survival outcome in a single sex or in both sexes with opposite effect.

Gene Type of alteration Prognostic value Cancer Reference

RPL37A expression only in females colon Li et al. (70)
SRGAP1 expression only in males colon Li et al. (70)
ACTL7B expression both sexes, but in opposite directions colon Li et al. (70)
TRRAP expression both sexes, but in opposite directions colon Li et al. (70)
LATS1 CNA and expression only in females kidney clear cell Li et al. (70)
UBAC1 CNA and expression only in females kidney clear cell Li et al. (70)
C16orf45 CNA and expression only in females kidney papillary cell Li et al. (70)
LCMT1 CNA and expression only in females kidney papillary cell Li et al. (70)
BRAF mutation only in males colorectal Wangefjord et al. (71)
BAP1 mutation only in females kidney clear cell Ricketts and Linehan (72)
TP53 mutation only in females colon Warren et al. (73)
miR-192, miR-206, miR-194, and miR-219 expression only in females colorectal Garufi et al. (74)
November 2020 | Vo
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confirming sex- and tissue-specific patterns of methylation (85).
Genes differentially methylated in males and females were also
associated with age, cigarette smoking, and alcohol consumption.
As expected by the X-inactivation process, most CpG sites on the
X chromosome had higher methylation levels in females
compared to males. However, there are also higher methylation
levels in males for some X chromosome sites. It is important to
note that few studies have included the X chromosome in their
analyses. A meta-analysis including 39 studies and several tissues,
identified 184 autosomal CpG sites differentially methylated by sex
(98). The sex-biased methylated CpG sites were located in the
promotor of genes overrepresented in pathways important during
cancer development, such as regulation of immune response, RNA
splicing, and DNA repair. The magnitude of percent methylation
differences between males and females found is usually small, with
mean CpG site specific differences in methylation between males
and females ranging from 3.7% to 17% (85, 98, 99).

Studies have identified sex-biased methylation patterns in
cancer, including lung (100, 101) and colorectum (102). In
leukemia, a genome-wide analysis identified 1,043 CpG sites
differentially methylated by sex, of which 56 were located on
autosomes and many known to play a role in tumor growth
(103). A genome-wide analysis across 13 cancer types also
reported sex-biased methylation patterns (34). On average, 236
Frontiers in Oncology | www.frontiersin.org 6
genes with a sex-biased DNAmethylation pattern were identified
in the group of cancers defined as having strong sex-effect based
on molecular signatures, and 10 genes in the weak sex-effect
group of cancers. Most of the genes with sex-biased methylation
also had sex-biased expression. The efficacy of methylation-based
biomarkers for diagnosis and cancer risk prediction may be
different for males and females with bladder cancer (104, 105).
Moreover, radiation induces methylation changes in a sex- and
tissue-specific manner (106, 107). Therefore, research focused on
sex differences in DNA methylation is essential to improve
treatment strategies and outcomes for all patients.

Chromatin Accessibility
Sex differences in chromatin accessibility have been found in
normal (108, 109) and tumor tissues (110). In whole blood, sex-
biased chromatin accessibility was enriched for genes with sex-
biased gene expression, and sex-biased regulatory genetic
variants (108). Sugathan et al. developed genome-wide
chromatin state maps for male and female mouse liver, and
observed that the patterns of chromatin accessibility and histone
marks differ by sex (109). The integration of these chromatin
state maps with data for five transcription factors binding sites
and gene expression showed that sex-biased gene regulation is
mediated by a complex interplay between sex-biased chromatin
marks in regulatory regions and differential transcription factor
binding by sex. Sex-biased chromatin accessibility is partly
established and maintained in response to sex-specific changes
in patterns of plasma growth hormones (111).

In tumor tissues, sex-bias mutation frequency is observed for
chromatin remodeling genes, such as KDM6A (47), KDM5C,
PBRM1, and BAP1 (72). Moreover, BAP1 mutation is associated
with changes in overall survival of clear cell renal cell carcinoma
only for females (72). In analyzing the TCGA ATAC-Seq dataset
across 23 cancer types, 2,534 peaks differed between males and
females, of which 1,035 peaks were higher in males and 1,499
peaks were higher in females (110). Sex differences in chromatin
accessibility were found in the promoter of genes located in both
the X chromosome and autosomes, and in promoters of sex
hormone receptors. Taken together, these studies show that both
genetic and epigenetic patterns influence sex-biased gene
regulation, and reinforce the need of integrative data
approaches to study sex differences in gene regulation.
SEX DIFFERENCES IN GENE
REGULATION

eQTL
Sex differences in genetic regulation can contribute to sex
differences in prevalence, progression, and severity of diseases
(112). Ober et al. suggests that sex can be used as a variable that
includes information on cellular, metabolic, physiological,
anatomical, and behavioral differences between males and
females, and can be modelled similar to a gene by environment
interaction (112). Some loci have a regulatory role in one sex but
not the other. For example, SNPs shared among sexes can be in
FIGURE 3 | The interplay between sex, gender, and genomics. Biological
sex and gender-influenced behavior, such as smoking, influence cancer
genomics. In smoking-associated lung cancer, female lung tissue present
higher level of DNA adducts, higher TP53 mutation, higher expression level of
the carcinogen-metabolizing enzyme CYP1A1, and less efficient DNA repair.
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regulatory regions that are sensitive to sex hormones. The impact
of sex on gene regulation can be investigated through expression
quantitative trait loci (eQTL) analysis. Sex-biased eQTL refers to
an association between genotype and gene expression differing
between males and females. Early studies have shown that sex-
biased eQTLs are widespread affecting 12%–15% of eQTLs (113).
An enrichment of sex-biased eQTL on the X chromosome
compared to the autosomes has been found (108). Furthermore,
sex-biased chromatin accessibility was enriched for sex-biased
gene expression and regulatory variants. In analyzing 11,672
complex disease-associated SNPs as a function of sex and age in
whole blood, 14 sex-biased eQTLs were identified (114). Most
recent studies have reported few significant sex-biased eQTLs, and
many not replicating across datasets (45, 115–117). These results
may reflect the underlying biology with most genes unlikely to be
influenced by sex or may indicate a combination of many small
effect size and low power for genotype-sex statistical interaction
tests (53).

A common and interesting finding is that most of the sex-
biased eQTLs do not show sex-biased mean gene expression (45,
108, 113–115, 117). Sex-biased eQTLs may also be explained by
sex differences in allelic direction or sex differences in gene
expression variance. Most studies have investigated whole
blood or lymphoblastoid cell lines (LCLs), and have not
elucidated how sex-biased eQTL are associated with cancer. In
hepatocellular carcinoma, 24% of the discovered eQTLs were
sex-biased (118). This set included 24 genes under genetic
regulation only in males and involved genes associated with
Notch and PI3K/AKT signaling. Further studies in cancer will
continue to elucidate the sex differential effect of genetic variants
on tumor gene regulation.

Gene Expression
Sex-biased gene expression is conserved for approximately 3,000
genes across mammals (119). Sex differential expression is found
for both autosomal and sex chromosome genes across most
human tissues (46, 117, 120–122), and cancer types (34). The
largest expression differences are found for genes on the sex
chromosomes, and the fold change of autosomal genes is
generally small. The median fold change of autosomal sex-
biased genes reported across 44 tissues was 1.04 (117). Despite
X inactivation in females to compensate chromosome dosage, a
number of X chromosome genes are differentially expressed by
sex. Several X chromosome genes that escape inactivation are
overexpressed in females in a tissue-specific manner (45). The
opposite trend is observed for X chromosome genes that escape
inactivation and are located in the pseudoautosomal region,
showing higher expression in males compared to females. This
pattern spans 29 normal human tissues, and it is also observed in
sex-biased transcription factor targeting (46). Therefore, sex-bias
mutation and expression of genes that escape from X-
inactivation may contribute to higher susceptibility to certain
cancers in males compared to females (47).

The number of differentially expressed genes varies by cancer
type, extending up to 14% of the genes in clear cell renal cell
carcinoma (34). Across cancer types, common pathways
enriched for sex-biased genes include: immune response,
Frontiers in Oncology | www.frontiersin.org 7
metabolism, apoptosis and cell cycle, DNA repair and p53
(34). In hepatocellular carcinoma, sex differences are also
found in several signaling pathways that are targets for anti-
cancer therapies: PPAR is enriched for genes overexpressed in
females, while PI3K, PI3K/AKT, EGFR, IL-2 are enriched for
genes overexpressed in males (118). Other studies confirm that
evaluating sex differential gene expression can help understand
sex differences in cancer etiology (118, 123), distribution of
molecular subtypes (124, 125), and outcomes (126–129). Sex
differences in gene expression was also used to predict drug
sensitivity in each sex (130).

New approaches to investigate sex effects in gene regulation
and expression can provide better understanding of cancer in
both sexes, which will be further exemplified by the significant
sex differences in gene targeting by transcription factors
discovered by gene regulatory network analysis (in the Gene
Networks section). In glioblastoma, although a few number of
genes are differentially expressed between males and females
(34), the variance in tumor gene expression is sex biased (4).
Using a join and individual variance explained (JIVE) analysis,
Yang et al. identified five sex-specific molecular subtypes
distinguished by gene expression and survival (4). The longest
survival was associated with down-regulation of genes involved
in cell cycle progression and in integrin signaling for males and
females, respectively. This sex-specific pattern in expression was
further associated with sex-biased chemotherapy sensitivity in a
panel of male and female patient-derived glioblastoma cell lines.
The authors also demonstrate the need to investigate sex-biased
effect of somatic mutations to best define prognostic markers.
Female patients with IDH1 mutation, known as a good
prognostic marker in glioblastoma, mostly clustered in a single
group with longest survival, whereas male patients with IDH1
mutation were distributed across all male clusters.

miRNA
miRNAs are small non-coding RNAs involved in post-
transcriptional regulation of gene expression and thereby
regulate most cellular processes (131). MiRNA dysregulation is
implicated in tumor development and progression. Similar to
protein-coding genes, sex hormone receptors can bind and
directly regulate miRNA transcription or indirectly through
intermediate hormone-responsive transcription factors. In
brain development, 162 miRNAs have sex-biased expression,
92 of which are estrogen-responsive, and relevant to differences
in brain organizational structure by sex (132).

The chromosome location can also indicate sex divergence
in miRNAs. A higher density of miRNAs is observed in the
X chromosome compared to the Y and autosomes. The X
chromosome contains 10% of the miRNAs, while the Y
chromosome contains only two miRNAs (133). Several X-
linked miRNAs are involved in immune regulation, and can
also be involved in tumorigenesis (134). For example, miR-221
and miR-222 promote cancer cell proliferation (135). The miR-
506-514 cluster is overexpressed in melanoma and involved in
melanocyte transformation, melanoma growth, and sensitivity to
BRAF inhibitors (136, 137). X-linked miRNAs directly target
PD-L1 or the transcription factors regulating PD-L1 (138).
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High expres s ion leve l s o f miR-424(322) reverses
chemoresistance by blocking the PD-L1 immune checkpoint
(139). These miRNAs might escape X-inactivation, and
therefore present higher expression levels in females. Further
investigation may show the role of X-linked miRNAs in sex
differences related to immunotherapy response.

Few studies have addressed the role of miRNAs in sex
differences observed in cancer. Increased expression of miR-17
and let-7a was linked with familial female breast cancer
compared to males (140). In metastatic colorectal cancer, the
higher expression of miRNAs that regulate clock genes (miR-
192, miR-206, miR-194, and miR-219) was associated with better
overall survival in females (74). miR-137, involved in cell cycle
control, is frequently methylated in squamous cell carcinoma of
the head and neck, and higher methylation frequency in females
was found compared to males (141). In performing genome-wide
miRNA differential expression, Yuan et al. reported sex-biased
expression of miRNAs and their potential role as regulators of
sex-biased protein expression levels (34). However, the number
of miRNAs differentially expressed by sex was small, and a
median of seven miRNAs was found in the group of cancer
types with strong-sex effect, such as thyroid, head and neck
squamous cell, lung, papillary renal cell, and clear cell renal cell
carcinomas. Future studies might still find miRNAs with sex
differential targeting patterns despite limited differences in the
miRNA expression levels between males and females.

Gene Networks
Although we have learned a great deal about sex differences
through the study of individual genes, we have come to recognize
that even the effects of single-gene mutations are moderated by
networks of interacting regulatory and other elements within the
cell. One distinct advantage of using network-based approaches
is that they allow one to go beyond a list of altered genes, and
map how the various cellular components interact with altered
genes and with each other (142). Analyzing the network topology
and changes in network structure of males and females can
provide insights into the mechanisms associated with sex
differences in cancer (Figure 4). The impact of a specific
genetic or epigenetic alteration is rarely restricted to the
activity of one gene product, and can propagate along complex
gene networks. The term "sexome" describe the combination of
sex-biased effects on gene networks, creating sex differences in
connectivity and activity of genes (143). Decoding the sexome
will help us better understand how sex interacts with gene
regulation in cancer manifestation (144). Haupt et al. described
sex-bias regulation of a p53 network across 12 non-reproductive
cancer types (145). TP53 mutation is not only more frequent in
males compared to females, but X-linked negative regulators of
p53 in wild-type TP53 cancers including UBE2A, MAGEA2, and
UTP14A show higher expression, and association with reduced
survival of male patients. This suggests that having two X
chromosomes might protect females from many cancers, a
hypothesis further supported by the high number of non-
expressed mutations among p53-associated X-linked genes,
including FLNA, MED12, HUWE1, and ATRX.
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Co-expression networks, in which genes are linked if their
expression patterns are correlated (above some threshold), have
been shown to differ in biologically meaning ways between the
sexes. Studies have shown sex-based patterns of gene co-
expression are recurrent across many non-reproductive tissues.
Several sex-specific modules are identified when using Weighted
Gene Co-Expression Network Analysis (WGCNA) to compare
gene co-expression networks from males and females (146).
Groups of genes with correlated expression are enriched for
biological processes, including spermatid differentiation and
development, epidermis and ectoderm development (120). Sex-
specific modules of co-expressed genes may be modulated by
gonadal hormones (147) and sex-biased eQTLs (148). Moreover,
co-expression networks of autosomal genes may be altered by X-
chromosome dosage (149).

Using gene regulatory networks to model the interactions
between transcription factors and their target genes can identify
distinct regulatory processes active in males and females, even
when these differences cannot be found by analysis of individual
gene expression. Using methods such as Passing Attributes
between Networks for Data Assimilation (PANDA) and Linear
Interpolation to Obtain Network Estimates for Single Samples
(LIONESS) to model gene regulatory networks, sex differences in
gene regulation was observed genome-wide and across all
twenty-nine normal tissues analyzed (46). Several genes are
differentially targeted by transcription factors between males
and females, including those that are not differentially
expressed. Transcription factor differential targeting can result
from differences in methylation, chromatin accessibility, post-
transcriptional modification of transcription factors, association
of transcription factor complexes and co-factors. The sex
hormone receptors were not the sole mediators of the sex-
biased regulatory processes. The tissues with most sex-biased
gene targeting are breast, thyroid, and brain, all of which have
strong sex biases in cancer incidence and presentation. This
resource of 8,279 regulatory networks across 29 normal tissues
can be further investigated on whether there are regulatory
processes in normal tissues that might explain sex differences
in cancer incidence and development. Another study showed
that gene regulatory networks can be used to identify sex-specific
modules (or communities) (150). In breast tissue, female-specific
modules include not only genes enriched for estrogen receptor
signaling pathway, but also processes dysregulated in cancer such
as regulation of cell-substrate adhesion, ERK 1/2 cascade, and
response to type I interferon.

In analyzing gene regulatory networks in colon cancer,
patterns of transcriptional regulation involving genes in the
drug metabolism pathway distinguished colon cancer in males
and females (151). These regulatory differences were found in
primary colon cancer tissues before chemotherapy, and revealed
that male and female patients are primed to respond differently
to therapy. Importantly, drug metabolism genes were not
differentially expressed by sex in the primary tumor, but higher
transcription factor targeting of the drug metabolism pathway
was associated with higher overall survival in females treated
with chemotherapy; this pattern was not observed in males.
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Taken together, these analyses of gene regulatory networks
indicate that a combination of sex-biased factors may be reflected
in the regulatory networks that control gene expression in each
sex. This is consistent with substantial sex differences observed in
methylation and chromatin accessibility. Males and females can
regulate gene expression in different ways, and will likely respond
differently to perturbations, such as environmental exposures,
aging, somatic mutations, and therapeutic treatment. Even in the
absence of strong sex differential expression, the study of
regulatory networks can uncover latent sex differences in gene
regulation, which might become important drivers of sex-biased
manifestations during cancer development and progression.
INCORPORATING SEX IN GENOMICS
RESEARCH

Many methods used in genomics research exclude sex
chromosomes, and are not well-powered for sex-stratified or
interaction analyses (53), largely because there are still many
technical challenges to incorporate sex in genomics research. A
framework to address sex differences in genomics analysis needs
to (1) ensure adequate male and female ratio and sample size for
powered analyses of each sex; (2) include the sex chromosomes
in downstream analyses; (3) account for sequencing data
mapping biases due to sequence similarity between the sex
chromosomes; (4) statistically test for sex interaction effects.
Sample size selection need to be carefully considered for powered
analyses of each sex. For example, to study incidence in a disease
with double incidence rate in males, the number of females
enrolled need to be double the number of males in order to
ensure similar statistical power for both sexes (152).

Sequence read mapping protocols do not account for the
imbalance of sex chromosomes and the high sequence similarity
Frontiers in Oncology | www.frontiersin.org 9
between regions of the X and the Y chromosomes. This results in
sequencing data that contains poor quality mapping of similar
regions between the sex chromosomes, and spurious reads
mapped to the Y chromosome in samples from XX genomes.
A recent study showed that accounting for these artifacts in
sequence mapping protocols can improve variant calling (153)
and detection of sex differential gene expression (154). The
XYalign is a sex-informed sequence alignment method that
first identifies whether the sequencing reads derives from an
XX or XY genome based on read balance, and then align the
sequencing reads to a sex-appropriate reference genome (153).
Sequencing reads from an XX genome are aligned against a
reference genome with the Y chromosome masked, and
sequencing reads from an XY genome are aligned against a
reference genome, masked for regions in the Y that are identical
to X (PAR1 and PAR2). It is worth noting that this is a new
framework and has not yet been applied to large sequencing data
efforts, such as the complete TCGA dataset. Another important
quality control check is using the genomic data to annotate
biological sex based on sex chromosome complement. This can
be done using DNA sequencing data to define the balance of
sequencing reads aligned to the X and Y chromosomes. Using
RNA-Seq and methylation data, one can perform a principal
component analysis using only the expression of Y chromosome
genes (151, 155) or the methylation of X chromosome genes
(98). A clear separation between male and female samples is
expected when visualizing the first two principal components
(Figure 5).

Statistical methods to detect differences between the sexes and
interaction by sex have been reviewed elsewhere (152, 156). Sex-
stratified analysis can be insufficient to appropriately estimate sex
differences and detect sex interactions. Statistical interaction
effects can be modeled to obtain the joint effect of two or more
exposure variables on a disease outcome, such as the detection of
interactions between sex and genetic variants to cause cancer.
FIGURE 4 | Using systems-based approach to study sex differences. Multi-omic data can be integrated to reconstruct gene networks that combine sex- and
gender-biased effects and map how the connectivity and activity of genes differ between males and females. Analyzing the network topology and changes in network
structure of males and females can provide insights into molecular mechanisms involved with sex differences in cancer. TF, transcription factor.
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INVESTIGATING SEX DIFFERENCES IN
MODEL SYSTEMS

Pre-clinical models are important tools to investigate how sex
differences in genomics influence cancer etiology and
manifestation. Several mouse models have been long used in
cancer research, including models of spontaneous cancer or
cancers induced by carcinogenic compounds, immunocompetent
and immunodeficient mice transplanted with patient-derived
xenografts. Additional models include transgenic mouse in which
oncogenes and tumor suppressor genes are constitutively or
conditionally manipulated using conventional approaches or
the clustered regularly interspaced short palindromic repeats
(CRISPR)-based genome editing (157). These mouse models can
be used to evaluate sex-biased effects of genomic variation (4, 158–
160). For example, Bahassi et al. evaluated the risk of spontaneous
cancer or cancers induced by the carcinogenic compound 7,12-
dimethylbenz[a]anthracene using mouse models with a genetic
variant on Chk2, a cell cycle checkpoint kinase activated in
response to DNA damage and involved in cell cycle arrest and
DNA damage repair (54). In wild typemice, the percentage of males
that develop spontaneous tumors is higher than females. However,
in mice harboring a variant on Chk2, females develop spontaneous
tumors with shorter latency and higher frequency.
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Mouse models that uncouple the effects from gonadal
secretions and sex chromosomes have been developed and can
help us better understand the mechanisms associated with sex
differences (161, 162). The four core genotypes mouse model is a
good example on how to achieve these goals (163). In this model,
the sex-determining region Y (SRY) gene is transferred from the
Y chromosome to an autosome, and four animals are produced:
XX and XY mice with ovaries, as well as XX and XY mice with
testes. In this model, the gonad of the animal (testes or ovaries)
and the genetic sex (XX or XY) are not related and allows to
disassociate phenotype influenced from the sex hormones and
sex chromosomes.

Using the four core genotypes mouse model, Kaneko and Li
showed that the sex chromosomes are an independent factor
associated with higher risk of bladder cancer in males, and the
sex hormones amplify the sex-bias effects observed (51). Loss of the
EXITS gene Kdm6a increases bladder cancer risk in female mice by
reducing the expression of Cdkn1a and Perp, which are targets of
p53 that induce cell cycle arrest and apoptosis. This was consistent
with the clinical observation that mutations or reduced expression
of KDM6A is associated with worse disease-free survival in female
patients with bladder cancer but not in male patients.

While cancer cell lines are an indispensable research model,
caution is needed when using cell lines to study sex effects.
A

B

C

FIGURE 5 | Methodological approach to study sex differences in genomics. (A) Perform sex-informed sequence alignment. The framework proposed in the XYalign
tool (153), first identifies whether the sequencing reads are derived from an XX or XY genome, considering the balance of reads aligned to X and Y chromosomes.
Next, sequencing reads from an XX genome are aligned against a reference genome with the Y chromosome masked, and sequencing reads from an XY genome
are aligned against a reference genome masked for regions in the Y that are identical to X, the pseudoautosomal regions (PAR). (B) Use the genomic data to
annotate biological sex based on sex chromosome complement. (C) Sex-based analysis may show how the effect of a genomic marker varies between males and
females. PCA, Principal component analysis.
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Several male-derived cancer cell lines have lost their Y
chromosome, including many commercial cell lines, and
therefore have eliminated the effect of sex chromosome
complement on the investigational model (164). Using primary
cancer cells can be a better alternative. For example, sex-biased
chemotherapy sensitivity were observed in a panel of male and
female patient-derived glioblastoma cell lines (4). Patient-
derived cancer organoids can also be a potential model for
studying sex differences. Three-dimensional organoids derived
from individual patient's tumor have a high success rate and
better recapitulate tumor complexity than two-dimensional
cultured cancer cells, showing genomic, transcriptomic, and
epigenomic concordance between organoids and their
corresponding patient tumors (165–167). Moreover, organoid
models have been used effectively for drug testing (168–170).
COLORECTAL CANCER AND THE
IMPACT OF CONDUCTING SEX-BASED
RESEARCH

Here, we will focus on colorectal cancer as an example to
emphasize the need to increase awareness of how sex influences
cancer, and the importance of conducting sex-based research to
better achieve the goals of precision medicine (Figure 6). Sex
differences exist in the incidence, clinical and pathological
presentations of colorectal cancer. However, these sex differences
are not considered during prevention and treatment.

Colorectal cancer is the third most common cancer, and the
third leading cause of cancer death among males and females
(171). Overall, males with colorectal cancer have worse survival
than females (age-adjusted male-to-female hazard ratio of 1.124)
(1). Across races and geographical regions, males have higher
incidence of colorectal cancer than females (172). In the United
States, the age-adjusted male-to-female incidence rate ratio (IRR)
is 1.287 (1). Incidence rates vary according to anatomic subsite
and age, with significant changes observed for distal colon
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cancers (1, 173). Specifically, for sigmoid colon male-to-female
IRR increases from 0.869 at 15-39 years, to 1.335 at 40-64 years,
and to 1.526 after 65 years (1). Compared to distal colon, patients
with proximal colon cancer are predominantly females (174).
Biological sex differences, and gender-related behavior can
contribute to observed differences in incidence by sex. Known
risk factors for colorectal cancer include smoking, alcohol
consumption, sedentarism, diet high in red and processed
meat, and obesity (175). For example, overall obesity, as
measured by high body mass index, is a known risk factor for
colorectal cancer with larger associations observed in males
compared to females. Studies have shown that not only obesity
but the pattern of weight gain throughout life influences the
cancer risk. Early life obesity is the primary risk factor for
colorectal cancer in females, and adult weight gain in males
(176). Sex hormones can also influence colorectal cancer
incidence. In general, estrogens are shown to be a protective
factor for colorectal cancer in females, whereas testosterone is
associated with increased risk in males (25, 28, 177, 178). A high
estrogen/testosterone ratio is associated with lower relative risk
of colorectal cancer in postmenopausal women, but higher risk
in men (179).

Sex differences are observed for many molecular features that
are associated with the presentation, progression, and treatment
response of colorectal cancer. In general, female sex is associated
with microsatellite instability (MSI), CpG island methylator
phenotype (CIMP)-high, and BRAF mutation (180). Male sex
is associated with chromosomal instability, and mutation on
TP53, and APC. MSI, observed in approximately 15% of
colorectal cancers, is characterized by a hypermutable
phenotype due to a deficient DNA mismatch repair system
(181). This molecular phenotype, more frequently observed in
females, is a marker of better prognosis and resistance to
chemotherapy (182, 183). MSI in sporadic cancer is generally
caused by hypermethylation of MLH1. MSI is also the main
molecular feature to identify the most frequent form of
hereditary colorectal cancer, Lynch syndrome, caused by
germline mutation in one or more DNA mismatch repair
FIGURE 6 | Sex differences in colorectal cancer. Males and females present differences in colorectal cancer incidence, mortality, anatomic site location, genetics,
epigenetics, and transcriptional regulatory processes characterized by gene regulatory networks. Incidence and mortality rates per 100,000 individuals in the US
were retrieved from the Surveillance, Epidemiology, and End Results explorer (2000–2017).
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genes. Germline mutation in these genes is associated with
greater lifetime colorectal cancer risk in males compared to
females (74% versus 30%) (184). Another example of sex-
biased genetic feature is observed for KRAS, a major driver of
colorectal tumorigenesis, and marker of resistance to EGFR-
targeted therapy (185). While 30%–40% of colorectal cancers
carry a KRAS mutation, a higher mutation frequency is found in
females compared to males, with pronounced differences for
tumors in the proximal colon (75, 186, 187). Moreover,
carcinogens may act in a sex-biased manner, supported by an
enrichment of a specific type of mutation (G to C transversion)
in rectal tumors from females (187).

When comparing large-scale genomic features between males
and females with colorectal cancer, including mutation, CNA,
methylation, protein, miRNA and gene expression, only a small
number of features show significantly sex differences (34, 70).
However, similar genomic backgrounds can have different effects
in males and females. There are many examples of prognostic
and predictive biomarkers that are sex-specific or of greater value
to one sex (71, 73, 160, 188). Therefore, the combination of
environmental exposures and small size-effect genomic factors
can work together on modifying the risk and disease presentation
in each sex, and consequently be reflected in the organization of
gene networks. In a study modeling gene regulatory networks for
each of 1,308 patients with colon cancer, although gene
expression only differed significantly in sex chromosome genes,
gene regulatory networks exhibited marked sex differences in
transcriptional regulatory processes (151). Genes more strongly
targeted by transcription factors in males were enriched for
pathways with key roles in colon cancer development,
including the Notch, mTOR, and WNT signaling pathways.
Moreover, genes in the drug metabolism pathway presented
differential transcriptional regulation by sex. These sex-linked
regulatory patterns were found in primary colon cancer tissues
before chemotherapy, and were associated with higher overall
survival in females treated with chemotherapy, but not in males.
The genes with the largest regulatory sex differences belong to the
glutathione S-transferase (GST) family involved in removing
xenobiotics. Indeed, females with colorectal cancer have better
survival benefit from adjuvant chemotherapy (7), but also higher
toxicity (189, 190). Sex differences in drug metabolism and
elimination, not only in renal and metabolic clearance (33) but
also in gene transcriptional targeting in the tumor (151), suggest
adjustment of drug doses by sex. Clinical trials are not designed
to identify different optimal doses for both males and females, but
dose modification by sex should be further evaluated for targeted
therapies and some checkpoint inhibitors that are administered at
fixed doses, and also for chemotherapy and antibodies that are
dosed according to body surface area and weight.
DISCUSSION

There is an extensive body of clinical and epidemiological
evidence for variability in cancer associated with sex and
gender and a growing body of multi-omic data that
demonstrate the presence of genome-wide sex differences in
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cancer beyond those affecting reproductive tissues. Males and
females respond differently to environmental exposures and
genetic and epigenetic alterations. Thus, genomic features
associated with cancer etiology, prognosis, and therapeutic
response may have differential effects in males and females. For
example, changes in gene expression or mutation can be
prognostic and predictive markers in only one sex or in
opposite directions between the sexes (Table 2). Differences
between male and female cancers are observed when analyzing
several omic data types, including mutation, copy number, DNA
methylation, chromatin accessibility, and expression of mRNA,
miRNA, and protein. Integrating multi-omic information can
better inform molecular mechanisms involved with sex
differences in cancer. For example, analysis of sex-specific gene
regulatory networks can identify biological processes
differentially regulated by sex, and how sex-biased patterns
associate with sex differences observed during tumorigenesis
and clinical outcomes.

Despite the overwhelming evidence that sex influences cancer
incidence, progression, and therapeutic response, the widely used
paradigm in precision medicine generally ignores the sex of the
individual. Further, there remain conceptual and methodological
gaps to incorporating sex in research and in clinical practice
(191, 192). Although the growing literature on sex differences in
cancer manifestation and in cancer genomics provide strong
arguments for implementation of sex-aware precision therapy,
additional data are needed to fill the gaps in our understanding.
This will require that sex be explicitly considered as a key variable
in the design and conduct of both preclinical and translational
research. Continuing to investigate sex and gender differences in
cancer will inform sex-specific strategies for cancer prevention
and early diagnosis and will lead to more refined precision
medicine therapeutic strategies that will improve treatment
and outcomes including survival.
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