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Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer
associated with poor prognosis, early recurrence, and the lack of durable
chemotherapy responses and specific targeted treatments. The recent FDA approval
for immune checkpoint inhibition in combination with nab-paclitaxel for the treatment of
metastatic TNBC created opportunity to advocate for immunotherapy in TNBC patients.
However, improving the current low response rates is vital. Most cancers, including TNBC
tumors, display metabolic plasticity and undergo reprogramming into highly glycolytic
tumors through the Warburg effect. Consequently, accumulation of the metabolic
byproduct lactate and extracellular acidification is often observed in several solid
tumors, thereby exacerbating tumor cell proliferation, metastasis, and angiogenesis. In
this review, we focus on the role of lactate acidosis in the microenvironment of glycolytic
breast tumors as a major driver for immune evasion with a special emphasis on TNBCs. In
particular, we will discuss the role of lactate regulators such as glucose transporters,
lactate dehydrogenases, and lactate transporters in modulating immune functionality and
checkpoint expression in numerous immune cell types. This review aims to spark
discussion on interventions targeting lactate acidosis in combination with
immunotherapy to provide an effective means of improving response to immune
checkpoint inhibitors in TNBC, in addition to highlighting challenges that may arise from
TNBC tumor heterogeneity.

Keywords: triple negative breast cancer, lactate acidosis, immunotherapy, tumor metabolism, Warburg effect,
metabolic reprogramming, anti-tumor immunity, immunosuppression
INTRODUCTION

Inter- and intra-tumor heterogeneity of breast tumors are a major causal factor for prognostic and
drug response disparities. Among the breast cancer molecular subtypes, triple negative breast cancer
(TNBC), accounting for 15–20% of all breast cancers, is defined by the absence of estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (Her-2)
expression (1). TNBCs are particularly characterized by poor prognosis, early recurrence, and
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increased risk of metastasis, cumulatively accounting for 25% of
all breast cancer-related deaths (2). In addition, the lack of
hormone receptor expression renders TNBC tumors refractory
to the targeted therapeutics currently being implemented for the
treatment of hormone receptor positive breast cancer subtypes,
essentially limiting treatment options to chemotherapy.
Al though TNBC tumors in i t ia l ly respond wel l to
chemotherapy, they develop resistance and display early
recurrence rates (3). In addition, the molecular heterogeneity
within TNBCs has led to its classification into several intrinsic
subtypes, further adding to the predicament of developing
personalized approaches to treat TNBCs (4, 5).

Immunotherapy has revolutionized the treatment of several
cancer types, particularly melanoma, lymphoma, renal cell cancer,
and non-small cell lung cancer (6). This treatment modality
involves activating the host immune system to recognize and
eliminate tumor cells. Numerous types of cancer immunotherapy
are being trialed and implemented, as reviewed in detail elsewhere
(7). Immune checkpoint blockade (ICB) has progressed most
prominently as an effective immunotherapy by targeting
inhibitory T cell regulatory molecules such as programmed cell
death-1 (PD-1), its ligands programmed cell death ligand 1/2 (PD-
L1/L2), and cytotoxic T-lymphocyte associated antigen-4 (CTLA-
4), thereby re-invigorating the anti-tumor immune response (8).
In 2019, the US Food and Drug Administration (FDA) approved
the use of Atezolizumab, a blocking antibody targeting PD-L1, in
combination with nab-paclitaxel chemotherapy for first-line
treatment of unresectable, PD-L1 positive, locally advanced, or
metastatic TNBC. Although this is the only immunotherapy
currently available to TNBCs, there are several clinical trials
evaluating the efficacy of ICB in TNBCs as monotherapy or in
combination with other treatment modalities (9).

Some key factors that influence the response to
immunotherapy in solid tumors include the extent of tumor
immune infiltration and the expression of immune checkpoint
molecules. Within the breast cancer subtypes, TNBCs are
considered to be the most immunogenic (10), in part due to
higher levels of tumor-infiltrating lymphocytes (TILs), and
higher tumor mutational burden and neoantigen load.
Concordantly, TNBCs are enriched in the expression of
immune checkpoint molecules, either on tumor cells or on
infiltrating immune cells (11, 12). These properties provide
rationale for the responsiveness of TNBCs to ICB compared to
other breast cancer subtypes. Nonetheless, considering the
heterogeneity of this subtype, only a small proportion of
TNBCs indicate an immunomodulatory phenotype amenable
to targeting with immunotherapy. Ali et al. reported that only
20% of TNBCs expressing core basal markers exhibit PD-L1
expression. Moreover, single-agent ICB response rates in
unselected metastatic TNBC patient cohorts still remain low
with limited durability (13).

Thus, improving the efficacy of immunotherapy in TNBCs
requires a better understanding of factors that influence tumor
immune infiltration and immune evasion. In this regard, tumor
metabolism is known to play a critical role in shaping the
tumor and immune microenvironment. Within the scope of
Frontiers in Oncology | www.frontiersin.org 2
this review, we will discuss the molecular factors driving the
glycolytic nature of TNBCs, and explore their role in lactate-
mediated modulation of the anti-tumor immune response.
Finally, we will assess the clinical benefit of combining
targeting of lactate metabolism with immune checkpoint
blockade to improve the efficacy of immunotherapy in TNBCs.
METABOLIC PLASTICITY IN TNBC

Under normal conditions, oxidative phosphorylation (OXPHOS)
is the preferred mode of energy generation in somatic cells,
including normal mammary epithelial cells. Particularly during
lactation, glucose uptake is significantly increased in the mammary
cells, the major proportion of which is metabolized to lactose in
the Golgi apparatus (14). Under circumstances of oxygen
deprivation, cells may switch from aerobic OXPHOS to
glycolytic metabolism to reduce the generation of reactive
oxygen species (ROS) and hence alleviate hypoxic stress (15).
Likewise, rapidly dividing tumor cells rewire cellular metabolism
to meet the high bioenergetic and anabolic demands of growing
tumors in a nutrient-deprived microenvironment. This tumor
characteristic or cancer hallmark is known as the ‘Warburg
effect’, whereby tumors shift their metabolic preference from
OXPHOS to aerobic glycolysis, even under oxygen-rich
conditions (16). The shift to aerobic metabolism is thought to
result from both intrinsic and extrinsic cues (17). Intrinsically,
oncogenic mutations, aberrant expression of microRNAs and
transcription factors, and cumulative mitochondrial defects in
tumor cells instigate metabolic reprogramming (18–20).
Extrinsic cues that promote metabolic reprogramming include
reduced oxygen and nutrient availability, decreased extracellular
pH, and microenvironment interactions with immune and
stromal cells and the extracellular matrix (ECM). TNBC tumors
often exhibit several of these features, rendering them more
sensitive to metabolic reprogramming. TNBC cells show
increased rates of glycolysis, as inferred from increased glucose
uptake, overexpression of glycolytic enzymes, and increased
oxygen consumption rate (OCR) and extracellular acidification
rate (ECAR), in comparison to other breast cancer subtypes (21–
23). Furthermore, TNBC cell lines display more glycolytic
dependence compared to luminal breast cancer cell lines
whereby treatment with the glycolysis inhibitor 2-deoxyglucose
(2-DG) markedly reduced cell proliferation in TNBC cells (24). To
gain insight into how the glycolytic nature of TNBCs may affect
anti-tumor immunity and how this can be exploited for
therapeutic purposes, it is important to identify the key
molecules involved in the metabolic adaptation. In this context,
we will explore any alterations in molecular determinants of
glucose uptake, lactate to pyruvate interconversion, and
lactate transport.

Aberrant Expression of Glucose
Transporters
The Warburg effect observed in tumors depends on the
availability of glucose as a substrate. Glucose uptake into the
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cell is mediated by GLUT transporters, a family of
transmembrane proteins, of which GLUT1 is the most widely
expressed isoform in cancers, particularly in basal-like TNBC
(25). In TNBC, GLUT1 overexpression correlates with higher
histological tumor grade (26). Interestingly, silencing of GLUT1
in TNBC models reduces both cell proliferation and invasive
potential, thus highlighting the role of GLUT1 and indirectly
glucose scavenging in supporting the aggressive tumor behavior
of TNBC (27). The expression of glucose transporters is
regulated by c-Myc, a basic region helix–loop–helix leucine
zipper (bHLHZip) transcription factor serving as a hub in
regulating a broad range of cancer-related signaling pathways
(28). Oncogenic mutations in c-Myc leading to overexpression
are often observed in TNBC tumors whereby c-Myc functions
antagonistically with MondoA, a nutrient-sensing transcription
factor allowing cells, to adapt to changes in glycolytic flux (18,
29). Mechanistically, c-Myc upregulation in TNBCs directly
suppresses the MondoA-dependent induction of thioredoxin-
interacting protein (TXNIP), an inhibitor of glucose uptake and
glycolysis, through competitive binding of the TXNIP promoter
region (29). As TXNIP regulates the mRNA expression and
protein stability of GLUT1, its suppression by c-Myc eventually
results in enhanced glucose metabolism (30). In concordance, a
Mychigh/TXNIPlow signature correlates with poor clinical
outcome in TNBC but not in non-TNBC subtypes (31).
Moreover, this correlation was more prominent in the
presence of p53 mutations which are frequently found in
TNBC tumors, suggesting an indirect association between
tumor mutation status and metabolism (19). Of interest, a
familial genetics study reported a homozygous point mutation
in the TXNIP gene that completely suppressed its expression,
leading to lactate acidosis in the affected individuals (32). The
presence of mutant TXNIP variants in breast cancer is yet
unknown. Expression of GLUT1 can also be regulated through
hypoxia response elements by hypoxia-inducible factor (HIF)-1a
whose expression is correlated with BRCA1 and basal
phenotypes in breast cancer such as those observed in TNBC
(33, 34). Another mechanism that supports GLUT1 stabilization,
specifically in basal-like TNBC cells, involves the suppression of
GLUT1 endocytosis and Akt-mediated degradation by the
GTPase-activating protein USP6NL (35). Thus, TNBC tumors
are intrinsically primed for enhanced glucose uptake to support
their glycolytic phenotype. Although several long non-coding
RNA, such as ANRIL and HOTAIR, have been shown to regulate
GLUT expression in various tumor types, no reports are available
yet for breast cancer (36).

Upregulation of Lactate Dehydrogenases
Lactate dehydrogenases (LDHs) are key enzymes in glycolysis,
regulating the interconversion of pyruvate to lactate. There are
five L-lactate dehydrogenase isoforms that are composed of
different combinations of LDH-M (M for muscle) and LDH-H
(H for heart) subunits: LDH-1 (H4), LDH-2 (H3M1), LDH-3
(H2M2), LDH-4 (H1M3), and LDH-5 (M4) (37). The LDH-M
and LDH-H subunits are encoded by the LDHA and LDHB
genes and are alternatively denoted as LDHA and LDHB, hence,
Frontiers in Oncology | www.frontiersin.org 3
LDH-5 (M4) and LDH-1 (H4) are often referred to as LDHA and
LDHB respectively. The LDH isoforms are associated with
different tissue specificity with LDH-1/LDHB predominantly
being expressed in the heart, LDH-5/LDHA in striated muscle,
LDH-2 in the reticuloendothelial system, LDH-3 in the lungs,
and LDH-4 in the kidneys. Additionally, there is a sixth isoform,
LDHC or LDHX, that is composed of four LDHC subunits and is
exclusively expressed in testis tissue (38). LDHA and LDHC
preferentially catalyze pyruvate to L-lactate conversion, while
LDHB has a higher affinity for lactate, thus collectively
determining the rate of glycolysis.

In addition to their widespread expression in normal tissues,
LDHA and LDHB are often overexpressed in tumor tissues,
including TNBC. Furthermore, elevated circulating total LDH
levels have been found to predict clinical outcome and treatment
response to chemotherapy in advanced TNBC patients (39).
LDHA expression is significantly upregulated in TNBC tumors
compared to non-TNBC tumors and is associated with shorter
overall- and disease-free survival (40). Increased tumoral and
serum LDHA levels have also been correlated with brain
metastasis and poor survival in patients with TNBC (41). In
line with this finding, knocking down LDHA expression in the
syngeneic 4TI TNBC mouse model decreased tumor-derived
lactate levels, tumor growth rate and metastases (42). LDHB is
also upregulated in TNBC (24) and PAM50 basal-like subtypes
(43). The function of LDHB in breast cancer or more specifically
TNBC remains ambiguous. The role of LDHB in promoting
lysosomal acidification required for autophagy-associated vesicle
maturation and protease activation has been reported as a
mechanism by which LDHB can promote tumor cell
proliferation and survival in some cancer types (44). High
LDHB expression in basal-like breast cancer has been
associated with better pathological complete response rates to
neoadjuvant chemotherapy (43). LDHB has been reported to
complement the role of LDHA in colon adenocarcinoma and
melanoma models with metabolic pressure (45). More
specifically, knockout of both LDHA and LDHB was required
to suppress glycolysis under hypoxic conditions and hence, curb
tumor growth, but under normoxic conditions the tumor cell
metabolism shifted to OXPHOS as an energy source. Although
the substrate preference of LDHA and LDHB differs, these
observations indicate that substrate affinity and the extent of
metabolic adaptation in tumors may vary depending on both
tumor-specific intrinsic and extrinsic cues. The LDHC
isoenzyme is an immunogenic germline-specific antigen that is
re-expressed in a wide variety of cancer types (46, 47).
Particularly, high levels of circulating LDHC in serum and
tumor-derived exosomes are negatively correlated with breast
cancer prognosis (48). Expression of LDHC has been reported to
play a role in propagating TNBC tumor cell invasion and
migration (49). To date, LDHC has been implicated in
glycolysis and energy metabolism of sperm only (50).

From the current literature, LDHA appears to be a key
enzyme in TNBC-associated lactate acidosis. Studies in
different cancer types have reported that LDHA overexpression
stems from mechanisms involving transcriptional, post-
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transcriptional, and post-translational regulation (37). For
instance, HIF-1a, c-Myc and the forkhead box M1 (FOXM1)
transcription factor have been shown to bind to the LDHA
promoter region to regulate its transcription (51). However, it
remains to be understood if these regulatory mechanisms are
ubiquitous across different cancers or alternative modes of
regulation exist in TNBC. Moreover, the metabolic role of
LDHB and LDHC in TNBC require thorough investigation.

Dysregulation of Lactate Transport and
Metabolic Symbiosis
The concentration of lactate in solid tumors has been reported to
be chronically high (up to 50 mM) in comparison to
physiological levels in the blood (up to 2 mM) (15).
Quantification of lactate concentration in freshly excised
tumors from a small cohort of 30 breast cancer patients using
double quantum filtered magnetic resonance spectroscopy
indicated that a higher tumor grade was associated with
increased lactate concentration (52). A trend of increased
mean lactate concentration (8.4 mM) was also reported in a
small group of six TNBC tumors compared to nine non-TNBC
tumors (7.2 mM) in the same study, however this observation
needs confirmation in a larger population. Lactate was initially
thought to be a mere waste metabolite from aerobic glycolysis.
However, we now know that lactate has an active tumorigenic
role as a biosynthetic precursor, signaling molecule and regulator
of extracellular acidosis, and has therefore been referred to as an
“oncometabolite” (53). Considering the excessive rate of
glycolysis in tumors, the intracellular concentration of lactate
can accumulate rapidly, serving as a rate-limiting step within the
glycolysis pathway and impairing enzymatic function and cell
proliferation. To avoid excessive pools of intracellular lactate,
lactate is transported across the plasma membrane by the
monocarboxylate family of transporters (MCTs) that are
encoded by solute carrier 16 (SLC16) genes. Among these
transporters, MCT1 (SLC16A1) and MCT4 (SLC16A3) have
been extensively characterized in multiple tumors (54). MCTs
are passive symporters transporting lactate anions in
conjunction with protons, implying their function in
equilibrating the lactate concentration and pH gradient across
the intra- and extra-cellular compartments. Generally, MCT1 is
involved in lactate import or export depending on the cell type
and context while MCT4 primarily functions in lactate efflux
from glycolytic cells into the microenvironment.

According to the Warburg effect, tumor cells undergo a
metabolic switch to aerobic glycolysis whereby glycolytic
tumor cells expressing MCT4 export lactate and oxidative
tumor cells or stromal cells with high MCT1 expression import
lactate to use as an energy source through OXPHOS. In contrast,
the reverse Warburg effect offers a state of metabolic symbiosis
with reciprocal interactions between tumor and stromal cells,
whereby glycolytic stromal cells provide lactate as a fuel to
oxidative tumor cells (55). The existence of the reverse
Warburg effect in TNBC tumors is under debate with some
studies advocating for the traditional Warburg effect or a mixed
model while others provide experimental evidence for the
Frontiers in Oncology | www.frontiersin.org 4
presence of the reverse Warburg phenotype (Figure 1). In
support of the former, an immunohistological study by Choi et
al. classified 740 breast cancer cases into different metabolic
subgroups based on the expression of metabolic markers such as
GLUT1 and MCT4 (56). Tumors were either considered to be of
the Warburg type (glycolytic tumor cells and non-glycolytic
stromal cells), reverse Warburg type (non-glycolytic tumor
cells and glycolytic stromal cells), mixed type (glycolytic tumor
cells and stromal cells), or null type (non-glycolytic tumor cells
and stromal cells). Based on this classification, the majority of
TNBC tumors displayed a Warburg or mixed metabolic
phenotype, both characterized by high MCT4 expression, while
luminal-type breast tumors mainly belong to the reverse
Warburg or null metabolic phenotype, consistent with their
metabolically inactive and less aggressive clinical presentation.
In accordance, MCT4 expression strongly correlates with worse
survival in TNBC as compared to luminal-type breast cancer (23,
56). TNBC tissue microarrays indicated that basal-like TNBC
tumors in particular expressed glycolysis markers such as
GLUT1 and MCT4, whereas non-basal-like TNBCs were
represented by a glutaminolysis or mitochondrial metabolism
phenotype (57). Furthermore, MCT4 ablation in the TNBC cell
line MDA-MB-468 reduced cell viability and lactate secretion,
enhanced OXPHOS, sensitized cells to mitochondrial respiration
inhibitors, and impeded orthotopic tumor growth (58).

In support of the reverse Warburg phenotype, Witkiewicz et
al. identified that MCT4 expression in stromal cells, but not
tumor cells, was associated with poor survival in TNBC (59). In
addition, loss of stromal caveolin-1, an indicator of hypoxia, has
been associated with selective MCT4 stromal and MCT1 tumor
expression and poor clinical outcome in TNBC (60). Combining
positive stromal MCT4 with negative stromal Caveolin-1
expression improved stratification of TNBC cases with a high
risk of recurrence and metastasis. Moreover, MCT1 expression
in tumor cells showed a strong positive correlation with LDHB
expression in TNBC tumors, corroborating the presence of the
reverse Warburg effect (24). More specifically, basal-like TNBC
tumors demonstrate increased MCT1 expression that is
associated with a high proliferative index and histological
grade (61). Of note, silencing of MCT1 in basal-like TNBC
models disrupted lactate export and tumor growth in vivo (62),
suggesting that MCT1 can adapt for bidirectional lactate
transport in tumors.

In addition to the classical Warburg, reverse Warburg and
mixed metabolic phenotype models, few studies have suggested
the existence of a hybrid metabolic state in TNBC tumors and
metastatic lesions (Figure 1) whereby tumor cells exhibit both
high glycolytic and OXPHOS activity, allowing these tumors to
switch between metabolic phenotypes for their bioenergetic
demands in response to microenvironmental cues (63, 64).
Targeting both glycolysis and OXPHOS in metastatic TNBC
cells was required to eliminate this metabolic plasticity and
hence, reduce their proliferation and survival.

Mechanistically, elevated MCT1 in TNBCs has been
attributed to low levels of its regulatory miRNA miR-342-3p
(65). In addition, the stability and localization of MCT1 and
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MCT4 are regulated by the chaperone glycoprotein CD147 that
is upregulated in TNBCs compared to other breast cancer
subtypes. CD147 expression is directly correlated with high
tumor grade, basal markers, shorter progression-free and
overall survival, and poor response to chemotherapy in TNBC
(66, 67). Furthermore, the lactate sensing G-protein-coupled
receptor 81 (GPR81), also known as hydrocarboxylic acid
receptor 1 (HCAR1) has been implicated in an autocrine
feedback loop that regulates MCT1 and/or MCT4 expression
and their chaperone CD147 (68–70). GPR81 is highly expressed
in many tumor types including breast cancer, in particular
hormone receptor positive breast cancers where it is associated
with improved overall survival and lower risk of distant
metastasis (69, 71, 72). Silencing of GPR81 in hormone
receptor positive breast tumor cells reduced the expression of
Frontiers in Oncology | www.frontiersin.org 5
specifically MCT1 but not of MCT2 or MCT4, resulting in
decreased lactate uptake, extracellular acidification, and
inhibition of tumor cell proliferation and survival (69). Hence,
GPR81 may support the OXPHOS phenotype in these breast
tumors by sensing and regulating influx of extracellular lactate.
However, the role of GPR81 in TNBC-associated lactate
signaling has not yet been reported and mandates future
investigation. It is plausible that the high levels of lactate in the
TNBC micromilieu constitutively activate GPR81, resulting in a
negative feedback loop yielding reduced levels of GPR81 in
glycolytic TNBC tumors. Alternatively, additional previously
unidentified lactate-sensing GPCRs may play a role in TNBCs.
Expression of GPR81 in tumor cells can be regulated through an
autocrine feedback loop of lactate by the induction of Signal
transducer and activator of transcription 3 (STAT3) that directly
FIGURE 1 | Metabolic phenotypes observed in triple negative breast cancer (TNBC). According to the classic Warburg theory, glycolytic TNBC cells expressing high
levels of the lactate transporter MCT4 export lactate, which is taken up by MCT1-expressing stromal cells to generate energy through oxidative phosphorylation
(OXPHOS). Alternatively, MCT4 expressing glycolytic stromal cells can export lactate that is used by oxidative tumor cells in a phenomenon called the reverse
Warburg effect. The mixed model represents metabolic symbiosis in heterogeneous tumors whereby glycolytic tumor and stromal cells generate lactate to feed
oxidative tumor cells. Lastly, the hybrid model depicts metabolic plasticity in TNBC tumor cells that can switch between a glycolytic and oxidative phenotype based
on extrinsic cues and glucose availability in the tumor microenvironment (TME).
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binds to the GPR81 promoter to induce its expression (73).
Interestingly, lactate-induced expression of GPR81 has been
shown to trigger the tumor expression of the immune
checkpoint ligand PD-L1, indicating an additional dimension
of lactate-mediated immune dysregulation in the tumor milieu to
dampen anti-tumor immunity (74), as will be discussed in the
following section.
LACTATE-RICH ENVIRONMENT
MEDIATES IMMUNOSUPPRESSION

Normal mammary gland architecture comprises of diverse cell
types, including immune cells, which are essential at various stages
of mammary organogenesis (75, 76). During malignant
transformation, the mammary gland undergoes considerable
reorganization of the tissue architecture as well as changes in
cellular composition and cellular properties (77). Likewise, the
tumor microenvironment of breast tumors is comprised of
numerous cell types, including tumor cells, cancer-associated
fibroblasts, various cell types forming vascular networks and
Frontiers in Oncology | www.frontiersin.org 6
immune cells. The composition and functionality of this complex
landscape is ultimately shaped by a network of interacting
extracellular cues such as lactic acid, subsequently influencing the
anti-tumor immune response (Table 1) (93). Here, we will
specifically discuss lactate-mediated changes in anti-tumor
immunity in TNBC, focusing on pro-inflammatory immune cell
subsets such as T lymphocytes, natural killer cells, dendritic cells, as
well as immune suppressive myeloid-derived suppressor cells, T
regulatory cells, and tumor-associated macrophages.

T Lymphocytes
The number of tumor infiltrating lymphocytes (TILs) has
consistently been identified as a prognostic and predictive
biomarker in early stage TNBC (94). However, as tumors
progressively grow larger, metabolic competition ensues and
impairs the activity of various immune cell subpopulations
(95). Cytotoxic CD8+ lymphocytes (CTLs) profoundly rely on
glycolysis for proliferation and activation of their effector
function (96). Thus, high rates of glycolysis in TNBCs offer a
competitive advantage for tumor cells by restricting cytotoxic T
cell metabolism and functionality. In addition, there is a
feedforward mechanism whereby the lactate-rich environment
TABLE 1 | Impact of lactate acidosis on immune cells in the tumor microenvironment.

Immune cell Effect of lactate acidosis References

T lymphocytes - Diminished lactate export
- Decreased glycolysis, proliferation, and cytotoxicity
- Inhibited expression of IFN-g and IL-2 cytokines
- Enhanced mitochondrial dysfunction and ROS production
- Increased apoptosis
- Polarization to iTregs

(78–80)

NK cells - Decreased tumor infiltration, proliferation, and cytotoxicity
- Inhibited expression of activation receptors NKG2D and NKp46
- Dampened expression of IFN-g, perforin, and granzyme
- Enhanced mitochondrial dysfunction and ROS production
- Impaired proliferation and differentiation of NKT cells

(81–83)

DCs - Lactate sensed by GPR81 and imported by MCTs
- Decreased glycolysis
- Hindered maturation, activation, and antigen presentation
- Impaired priming of T cells
- Inhibited expression of IFN-a, IL-6, and IL-12 cytokines
- Upregulated expression of IL-10
- Increased production of kynurenine that induces Tregs

(72, 84, 85)

MDSCs - Increased proliferation and immunosuppressive activity
- Induced development by tumor-derived G-CSF and GM-CSF

(81, 86)

Tregs - Metabolic adaptation to suppress glycolysis and increase OXPHOS
- Increased survival and proliferation

(87, 88)

Monocytes - Diminished lactate export
- Decreased glycolysis
- Inhibited expression of IFN-g and TNF-a cytokines
- Upregulated expression of IL-17 and IL-23 cytokines

(89, 90)

TAMs - Lactate sensed by GPR132 and imported by MCTs
- Polarization from M1 to anti-inflammatory/pro-tumorigenic M2
- Increased OXPHOS
- Upregulated expression of pro-tumorigenic ARG1, VEGF, and CCL5
- Enhanced secretion of immunosuppressive cytokines that subdue TIL
cytotoxicity and promote Treg induction

(91, 92)
November 2020 | Volume 10 | A
ARG1, arginase 1; CCL5, CC chemokine ligand 5; DCs, dendritic cells; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; GPR,
G-protein receptor; IFN-g, interferon gamma; IL, interleukin; MCT, monocarboxylate transporters; MDSC, myeloid-derived suppressor cells; NK, natural killer cells; NKG2D, natural killer
group 2 member D; NKT, natural killer T cells; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; TAMs, tumor-associated macrophages; TIL, tumor infiltrating
lymphocyte; TNF- a, tumor necrosis factor alpha; Treg, T regulatory cell; VEGF, vascular endothelial growth factor.
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of glycolytic tumors interferes with lactate export in cytotoxic T
cells, which depends on an active lactate gradient, therefore
resulting in increased intracellular lactate levels that inhibit
metabolism, proliferation, and production of interferon (IFN)-g
(78). In concordance, Lim et al. observed that epidermal growth
factor receptor (EGFR) signaling in TNBC cells and murine
models promoted aerobic glycolysis and lactate efflux,
subsequently dampening the activation of CTLs and the
production of IFN-g and interleukin (IL)-2 (79). Similar
observations have also been reported for highly glycolytic
melanomas, wherein LDHAhigh tumors dampen IFN-g-
producing CD8+ T cells due to lactate acidosis (80). Conversely,
reducing LDHA-mediated lactic acid production has been found
to enhance T cell-mediated tumor killing, improve IFN-g-
producing T cell infiltration, and reduce melanoma tumor size
(97–99). Furthermore, tumor-derived lactate enhances
mitochondrial dysfunction and excess ROS production in naïve
T cells, leading to apoptosis, by a mechanism involving the
inhibition of focal adhesion kinase (FAK) family-interacting
protein of 200 kDa (FIP200), a suppressor of the pro-apoptotic
Bcl-2 family of proteins (100).

Molecular mechanisms driving this phenomenon involve the
ability of lactic acid to inhibit IFN-g transcription by preventing
the upregulation of nuclear factor of activated T cells (NFAT),
which is required for T cell and natural killer (NK) cell activation
(80). Additionally, suppressed IFN-g production has been linked
to diminished mitogen-activated protein kinase (MAPK)/p38
and c-Jun N-terminal kinase (JNK) activity stemming from
impaired T-cell receptor (TCR) activation under conditions of
lactate acidosis in tumors (97). Finally, lactate acidosis, resulting
from increased release of protons during lactate transport, has
been shown to directly affect CTL cytolytic activity, cytokine
secretion, and TCR activation, by lowering the pH in the tumoral
niche (101).

Natural Killer Cells
NK cells are innate effector lymphoid cells with anti-tumor
cytolytic activity that is orchestrated by the secretion of pro-
inflammatory cytokines and cytotoxic granules. In TNBC, NK
cell infiltration has been associated with improved survival
(102, 103). The inhibitory effect of lactate on NK cell cytotoxic
activity has been reported for numerous cancers and involves
downregulation of the expression of IFN-g, perforin,
granzyme, and the activating receptor NKp46 (81, 104). In
line with this observation, glycolytic melanomas with high
LDHA expression and lactate secretion show reduced NK cell
activity and infiltration (80). In breast cancer specifically,
tumor-infiltrating NK cells display decreased expression of
the NKG2D activating receptor as compared to their
counterparts in normal tissue (82). Inhibition of the lactate
transporter MCT1 in the syngeneic 4T1 TNBC mouse model
reduced lactate efflux and tumor growth, accompanied by an
increased frequency of NKG2D/perforin/CD107a-expressing
NK cells with improved cytotoxicity. Lactate-rich colorectal
cancer liver metastasis exhibits a scarcity of NK cells with
mitochondrial dysfunction and excessive ROS production
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leading to apoptosis, which could be recapitulated by
treating healthy liver resident NK cells with lactic acid in
vitro (105).

Invariant NKT cells, with properties of both NK and T cells,
can also elicit an anti-tumor immune response by rapidly
producing pro-inflammatory and immunomodulatory
cytokines and cytotoxic perforin/granzyme B granules.
Activation of NKT cells entails glucose uptake via the GLUT1
transporter and a glycolytic switch in metabolism, which is
dependent on mTOR complex (mTORC) signaling (106).
Exposure to high lactate levels inhibits NKT survival and
proliferation. Mechanistically, acidosis induced by tumor-
derived lactic acid inhibits the mTOR pathway and nuclear
translocation of promyelocytic leukemia zinc-finger (PLZF), a
regulator of NKT expansion and functional differentiation,
resulting in impaired production of IFN-g and IL-4 (83). The
role, functional status, and prognostic value of NKT cells in
TNBC remain to be investigated.

Dendritic Cells
Dendritic cells (DCs) are a specialized class of antigen presenting
cells involved in antigen processing and cross-presentation to
CD8+ T cells. DC-mediated tumor rejection has been attributed
to their ability to sense tumor-derived nucleic acids and
activation of the type-I IFN system. Similar to CTLs, DCs rely
on a metabolic switch from OXPHOS to glycolysis for activation,
thus potentially ensuing metabolic competition within the tumor
microenvironment (107). Lactic acid was shown to impair DC
maturation, activation, cross-presentation, type-I IFN response,
and antigen degradation (84, 108). In a syngeneic 4T1 TNBC
mouse model, MCT-mediated lactate uptake by plasmacytoid
DCs (pDCs), natural type I interferon–producing cells with
antigen-presenting potential, inhibited their glycolysis capacity
and thus IFN-a production while inducing the production of
tryptophan-derived kynurenine and subsequent proliferation of
T regulatory cells (Tregs) (85). In addition, GPR81 expressed on
pDCs senses extracellular lactate and mobilizes intracellular
calcium, which further has an inhibitory effect on DC
activation and IFN-a expression. Lactate-dependent acidosis
also inhibits DC differentiation through the induction of IL-10
production with concomitant loss of IL-12 (109). Similarly,
lactate-mediated activation of GPR81 in DCs was found to
abrogate antigen presentation, secretion of pro-inflammatory
cytokines IL-6 and IL-12 and T cell function, and was
associated with increased tumor growth in murine breast
cancer models (72). In line with these findings, one study
reported a high frequency of tumor-derived DCs with
suppressed IFN-a production in aggressive, highly proliferative
TNBC tumors, enabling the sustenance and expansion of Tregs
and priming of anti-inflammatory IL-10-secreting CD4+ T
cells (110).

Thus, the lactate-induced tolerogenic phenotype of tumor-
infiltrating DCs indirectly impacts the priming of T
lymphocytes and promotes an immunosuppressive cytokine
profile and Treg expansion, collectively reinforcing tumor
immune escape.
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Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSC) are immunosuppressive
immune cells that restrict T cell function, proliferation, and TCR
signaling, and promote differentiation of Tregs (111). In TNBC
tumors, glycolytic gene expression profiles (including LDHA)
correlate with MDSC gene signatures and both associate with
reduced survival (86). Increased glycolysis and hence lactate
production was found to induce MDSC development and
immunosuppression in murine TNBC models through the
activation of the LDHA/AMP-activated protein kinase (AMPK)-
Unc-51 Like Autophagy Activating Kinase 1 (ULK1)/autophagy
axis, thereby promoting the expression of granulocyte colony-
stimulating factor (G-CSF) and granulocyte macrophage colony-
stimulating factor (GM-CSF) (86). Conversely, glycolytic restriction
enhanced T cell immunity, reduced tumor growth and metastasis,
and prolonged survival in the TNBCmurine model (86). Depletion
of LDHA to lower lactate production also decreased the frequency
and immunosuppressive activity of MDSCs in a highly glycolytic
murine pancreatic tumor model (81). This effect was directly
attributed to lactate-mediated induction of MDSC proliferation,
as observed by in vitro experiments supplementing lactate to
human peripheral blood mononuclear cell co-cultures.
Interestingly, as MDSCs rely on glycolysis for proliferation and
their immunosuppressive activity by evading ROS-mediated
apoptosis and enhancing mTOR pathway activation (112, 113), it
remains to be understood how MDSCs thrive with metabolic
competition in glycolytic tumor environments.

T Regulatory Cells
Immunosuppressive Tregs undergo metabolic adaptation in low-
glucose, lactate-rich tumor microenvironments. Specifically, an
upregulation of the Treg-specific transcription factor forkhead
box P3 (FOXP3) mediates induction of OXPHOS, alongside
suppression of c-Myc expression and glycolysis (87). This
metabolic reprogramming in Tregs, which are particularly
enriched in TNBC tumors (114), makes them less dependent
on glycolysis and enables the cells to efficiently turnover lactate
into pyruvate. In addition, an increased nicotinamide adenine
dinucleotide (NAD):NADH ratio in Tregs compensates for the
lack of glycolytic activity and hence, renders them resistant to the
inhibitory anti-glycolytic effects of lactate observed in T cells, and
can polarize conventional T cells into induced Tregs (iTregs) that
thrive on the metabolic symbiosis with glycolytic tumor
cells (88).

Tumor-Associated Macrophages
Tumor-associated macrophages (TAMs) are abundant in
tumors, wherein extracellular stimuli guide their polarization
between the pro-inflammatory “M1” subtype and anti-
inflammatory “M2” subtype (115). In comparison to the
glycolytic metabolism in M1 macrophages, M2 TAMs rely on
OXPHOS to meet their bioenergetic demands—a trait that may
additionally support the metabolic symbiosis between highly
glycolytic TNBC tumor cells and M2 TAMs (116). Indeed,
several studies have reported that M2 TAMs in TNBC tumor
stroma positively associate with higher grade, larger tumor size,
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and poor survival whereas an inverse correlation has been
observed in luminal A breast tumors that primarily depend on
OXPHOS (117, 118). Moreover, co-culturing monocytes
(precursors of macrophages and DCs) with the TNBC cell line
MDA-MB-231 induced an M2 macrophage phenotype (119).
Taken together, it can be envisaged that the lactate-rich
landscape in TNBC tumors drives re-education of TAMs to an
M2 phenotype. Indeed, tumor-derived lactate can induce TAM
polarization to the M2 immunosuppressive phenotype by
binding to the lactate-sensitive receptor GPR132 (91, 120). In
turn, the M2 TAMs promote breast tumor cell migration and
invasion in vitro and metastasis in vivo, thus supporting a
positive feedback loop between tumor cells and pro-
tumorigenic M2 TAMs. Concordantly, high GPR132
expression in breast cancer tumors correlated with the
expression of M2 macrophage markers and low metastasis-free
and relapse-free survival. Moreover, abrogating the lactate/
GPR132 axis impedes M2 polarization and breast cancer
metastasis in mice. In addition to lactate sensing by GPR132,
lactate uptake by MCTs in TAMs also mediates M2 polarization
(91). Lactate-induced TAM polarization and its pro-tumorigenic
effects in breast cancer has been attributed to TAM-specific
extracellular signal-regulated kinase (ERK)/STAT3 activation,
stimulated expression of vascular endothelial growth factor
(VEGF) and arginase-1 (ARG1), and stabilization of HIF-1a
(91, 121, 122). Another mode of lactate-associated paracrine
signaling between TAMs and breast tumor cells was reported by
Lin et al., who showed that tumor cell-derived lactate induced
the Notch pathway in TAMs to generate CC chemokine ligand
5 (CCL5) which then binds to its receptor CCR5 on breast
tumor cells to promote aerobic glycolysis, migration, and
epithelial-to-mesenchymal transition (EMT) (123). Besides
driving tumorigenesis, M2 macrophages also secrete
immunosuppressive cytokines that subdue the cytotoxicity of
TILs and promote the differentiation of Tregs (92).

Furthermore, elevated levels of extracellular lactate prevent
the expulsion of lactate generated in macrophage precursor
monocytes, prompting a negative feedback mechanism for
glycolysis and tumor necrosis factor (TNF) release (89). In toll-
like receptor (TLR)-activated monocytes, lactic acid was also
observed to induce the IL-23/IL-17 pathway, thus polarizing the
immune response towards a pro-tumorigenic Th17 profile while
suppressing the anti-tumor Th1 response (90, 124). Consistent
with this observation, Th17 cytokines are upregulated in TNBCs
compared to other breast cancer subtypes, especially in
“immune-cold” tumors that are devoid of TILs (125). Thus,
lactate imposes adverse effects on not only macrophage function
and polarization, but also on its precursor monocytes.
TARGETING LACTATE-MEDIATED
IMMUNE EVASION IN TNBC: POTENTIAL
STRATEGIES AND CHALLENGES

Metabolic reprogramming, lactate accumulation, and metabolic
competition promotes immunosuppression in the tumor
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microenvironment and is thus capable of modulating the efficacy
of immunotherapy. In line with this, elevated tumor glycolysis has
been reported as a negative prognostic indicator in
immunotherapy. For instance, melanoma tumors that are
refractory to adoptive T cell therapy (ACT) display high rates of
glycolysis and reduced TILs (98). Likewise, elevated baseline
serum LDH levels are associated with limited clinical benefit
from ICB treatment in several tumor types including TNBC
(126–128). Nevertheless, ICB therapy has shown promising
results in certain glycolytic cancers such as TNBC. The success
of ICB in these tumors might be in part the result of an anti-
metabolic effect on both tumor and immune cells. PD-L1
expression on tumor cells has been found to support tumor
glycolysis via the activation of mTOR/Akt pathway (95). Hence,
anti-PD-L1 ICB may not only release T cell inhibition but also
impair tumor glycolysis, lactate production, and metabolic
competition between immune and tumor cells. In addition, ICB
therapy may induce a shift in the metabolic needs of cytotoxic
immune cells. While activation of T cell effector function relies on
glycolysis, ligation or inhibition of PD-1 on T cells inhibits
glycolysis and instead switches to fatty acid oxidation, which is
crucial for maintaining T cell memory function and long-term
Frontiers in Oncology | www.frontiersin.org 9
anti-tumor activity (129). This phenomenon further allows T
memory cells to thrive by reducing their dependence on glucose
and hence avoiding metabolic competition within the tumor
microenvironment. In addition to harnessing the anti-metabolic
potential of ICBs, there is also evidence supporting exploiting
tumor acidity to improve treatment response to ICB. In a
preclinical study, Johnston et al. show that activation of the
checkpoint molecule V-domain immunoglobulin suppressor of
T cell activation (VISTA) was more prominent under acidic
conditions such as those found in highly glycolytic tumors with
lactate acidosis (130). Blocking VISTA with a monoclonal
antibody could reverse the immunosuppressive activity,
particularly in combination with anti-PD-1, leading to enhanced
T cell infiltration, dampened expression of checkpoint receptors
on T cells (PD-1, LAG-2, and TIM-3), and subsequent increased
anti-tumor activity in MC38 colorectal carcinoma-bearing mice.
Further investigation in mice and cynomolgus macaque models
showed that acidic pH-selective anti-VISTA antibodies
preferentially accumulated in tumor tissue, suggesting minimal
risk of off-target effects even though VISTA is expressed by
leukocytes. Therefore, combining immunotherapy with strategies
to either mitigate tumor glycolysis and lactate levels or specifically
FIGURE 2 | Strategies to target lactate biogenesis and acidosis to enhance immunotherapy response in triple negative breast cancer (TNBC). TNBC tumor cells
display enhanced rates of glycolysis. This metabolic phenotype is supported by the increased expression of glucose transporters (GLUTs) that import glucose into
the cell, and of lactate dehydrogenase A (LDHA) that converts the glycolytic intermediate pyruvate into lactate. The augmented production of lactate in TNBC tumors
is also associated with higher expression of monocarboxylate transporters (MCTs), which shuttle lactate coupled to protons (H+) out of the tumor cell resulting in
excessive levels of lactic acid in the tumor microenvironment (TME) and reduced pH. Lactate acidosis in the TME creates an immunosuppressive milieu, which can
antagonize the efficacy of immunotherapy. Thus, anti-metabolic strategies could alleviate lactic acid-induced immunosuppression and potentiate immunotherapy
such as Adoptive T cell therapy (ACT), Chimeric Antigen Receptor T cell (CAR-T) therapy, and Immune Checkpoint Blockade (ICB), thereby synergistically inhibiting
tumorigenesis. Potential strategies to abrogate lactate biogenesis and acidosis include specific targeting of GLUTs, LDHA, MCTs, and the lactate-receptor GPR81
with small molecule inhibitors, inhibition of glucose-pyruvate conversion, systemically lowering the availability of glucose by treatment with biguanides, and buffering
the intra-tumoral pH with bicarbonate therapy or proton pump inhibitors (PPIs).
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render immune cells resistant to the hostile tumor
microenvironment may prove advantageous in improving
therapeutic response in TNBCs (Figure 2). Here, we speculate
on the potential of anti-metabolic strategies to enhance the efficacy
of immunotherapy and their associated challenges.

Targeting Molecular Mediators of the
Warburg Phenotype
Inhibiting tumor glucose uptake, glycolysis and lactate transport
have been proposed to reduce both tumor growth and
immunosuppression, thus rendering these strategies compelling
candidates for combination therapy. Specific and potent
inhibitors of the GLUT transporters have been identified and
investigated for their anti-tumor activity in pre-clinical studies
(131). For instance, BAY-876 and WZB117 GLUT-1 inhibitors
have shown anti-proliferative effects in breast tumor cells (132).
In particular, a subset of TNBC tumors expressing the
retinoblastoma (Rb) tumor suppressor with high glycolytic
activity and low OXPHOS are sensitive to GLUT1 inhibition
with BAY-876 (133). Since GLUTs are ubiquitously expressed,
the impact of their inhibition at peripheral organs still needs to
be well documented. Treatment with 2-DG, a non-metabolizable
glucose analog and inhibitor of hexokinase, restricts tumor
glycolysis and growth. Furthermore, combining 2-DG with
mitochondria-targeting agents synergistically eradicates
metabolic plasticity and enhances tumor regression in a TNBC
xenograft model (134). Inhibition of glycolysis by 2-DG also
dampens tumor cell production of G-CSF and GM-CSF in
TNBC models, thus restricting MDSC development (86).
Similarly, Dichloroacetate (DCA), an agent that shifts
metabolic flux from glycolysis to OXPHOS, has shown efficacy
in restricting tumor growth, specifically in tumor types with
dysfunctional mitochondrial function such as TNBC (135).
However, glycolysis inhibition beyond tumor cells could
adversely affect T cell activation and trigger the induction of
immunosuppressive Tregs and M2 TAMs (136). Notably, it has
been argued that inhibiting glycolysis could drive T cells to a
memory phenotype, a silver lining for long-term anti-tumor
response (137, 138). Another approach to reduce glucose uptake
in tumor cells and improve ICB response involves limiting
glucose availability using anti-hyperglycemic biguanide drugs
such as metformin and phenformin and glucose-limiting dietary
interventions (139, 140). In murine B16 and MC38 melanoma
models, combining anti-PD-1 treatment with metformin
significantly reduced tumor growth by metabolic remodeling,
reduced tumor hypoxia and improved T cell infiltration and
function, as compared to either treatment alone (141). This
combination treatment is currently under investigation in
human clinical trials for advanced melanoma and non-small
cell lung cancer (NSCLC) (NCT04114136) (142). Further,
metformin can induce PD-L1 glycosylation and degradation
thereby enhancing CTL activity and improving the efficacy of
immunotherapy (143). While these studies appear promising, it
should be noted that the effects of systemic interventions are
pleiotropic and require careful investigation for off-target effects
in combination with immunotherapy.
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Targeting lactate dehydrogenases, in particular LDHA, offers
another lucrative approach to alter the balance in tumor
metabolic needs and to shape the composition and orientation
of the immune microenvironment. Treatment with LDHA
inhibitors such as oxamic acid, FX11, galloflavin, and 1-
(phenylseleno)-4-(trifluoromethyl) benzene (PSTMB)
demonstrate anti-proliferative effects in TNBC and other
cancer models (144–146). Furthermore, treatment with oxamic
acid enhanced CTL IFN-g production, promoted DC
differentiation, improved TNF secretion in monocytes, and
abrogated M2 macrophage polarization in in vitro co-culture
models (78, 89, 109, 120). Similarly, LDHA knockdown
enhanced T cell infiltration and reduced the number of TAMs,
leading to improved survival in the murine 4T1 TNBC model
(147). LDHA depletion was also found to decrease MDSC
development, improve NK cell cytotoxicity and hence, enhance
anti-tumor immune response in multiple murine tumor models
(81, 86). Interestingly, LDHA and PD-L1 are both negatively
regulated by miR-34a and correlate with poor prognosis in
TNBC, providing rationale for combining ICB therapy with
LDHA inhibition (148). In accordance, lactate-mediated
upregulation of PD-L1 has been observed in lung cancer and
melanoma (74, 149). LDHA abrogation in the murine B16F10
melanoma model improved response to anti-PD-1 treatment,
accompanied by an increase in tumor infiltration of CD8+ T cells
and NK cells, increase in production of IFN-g and granzyme B,
and decrease in Treg infiltration (149). Moreover, combining the
LDHA inhibitor GSK2837808A with ACT in a syngeneic murine
melanoma model profoundly improved the anti-tumor response
and survival compared to either LDHA inhibition or ACT alone
(98). However, LDHA inhibitors have not yet successfully
transitioned into clinical trials due to limited membrane
permeability and on-/off-target toxicity (150). Moreover, the
impact of LDHA inhibition on the viability and cytotoxicity of
TILs needs to be explored extensively considering their need of
glycolysis for activation.

As lactate transporters also play a key role in metabolic
adaptation, their inhibition may provide another way to induce a
metabolically favorable TME for immune cells. Indeed, MCT1/4
inhibition improved CD8+ T cell functionality in vitro, and the
MCT4 inhibitor 7acc1 enhanced NK cell cytotoxicity and
attenuated tumor growth in the murine 4T1 TNBC model (147).
Although the MCT1/2 inhibitor AR-C155858 did not show any
effect on tumor growth in the murine 4T1 TNBC model (151), its
analogue AZD3965 is currently being assessed in a phase I clinical
trial in solid tumors, diffuse large B cell lymphoma, and Burkitt’s
lymphoma (NCT01791595). Interestingly, the non-steroidal anti-
inflammatory drug (NSAID) diclofenac was found to be a potent
inhibitor of MCT1/4 and to reduce intra-tumoral lactate levels,
concomitant with inhibition of tumor growth and Treg infiltration
in a glioma model (152). A more recent study explored the
molecular mechanisms of diclofenac-mediated tumor inhibition
using various co-culture and murine tumor models (153). Of
note, the authors found that diclofenac alone or in combination
with theMCT1/2 inhibitor AZD3965 didn’t negatively impact T cell
viability and effector functions despite reducing the glycolytic
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activity of the cells due to their metabolic adaptability and shift to
OXPHOS. Treatment of 4T1 cells with diclofenac reduced the
expression of MCT1 and LDHA, while increasing major
histocompatibility complex (MHC)-I and MHC-II surface
expression. Furthermore, diclofenac increased tumor infiltration
of activated T cells and IFN-g+ NK cells and delayed tumor
growth in the 4T1 TNBC mouse model. Combining diclofenac
treatment with single anti-PD-1 or dual checkpoint blockade (anti-
PD-1 plus anti-CTLA-4) inhibited tumor growth and increased
treatment response in two murine models, 4T1 TNBC and B16F10
melanoma. Although encouraging, the efficacy and safety profile of
this combination treatment remains to be confirmed. Recent pre-
clinical reports have also hypothesized that pharmacological
blockade of GPR81 may prove advantageous in improving
response to immunotherapy by enhancing DC antigen
presentation and dampening PD-L1 expression in lactate-rich
environments (72). Blocking GPR81-mediated lactate signaling by
gallein decreased the frequency of intra-tumoral Tregs and delayed
tumor growth in the murine 4T1 model (85). Of importance,
Gpr81-null mice did not exhibit any detrimental phenotypes,
indicating that off-target effects of targeting GPR81 may be
minimal. Nevertheless, high affinity GPR81 inhibitors are yet to
be identified.

Collectively, the promising findings of the aforementioned
studies suggest that inhibition of glycolysis through LDH and/or
MCT inhibition may improve treatment response to ICB.
However, it is paramount to minimize the risk of off-target
effects since it has become evident that immune cells and tumor
cells exploit common metabolic mechanisms and display an
overlap in expression of the major players in lactate biogenesis
and export. Moreover, ubiquitous expression of candidate targets
such as LDHA and MCT1/4 in normal tissues necessitates
extensive risk assessment of small-molecule inhibitors before
considering combination with immunotherapy.

Targeting of Metabolic Lactate Acidosis
One important aspect of lactic acid-mediated immunosuppression
within solid tumors is the detrimental effect of the accompanying
acidosis. Thus, repurposing drugs that modulate systemic
metabolism may represent an opportunity to improve the
response to immunotherapy. Oral bicarbonate therapy has been
extensively used to treat metabolic acidosis associated with chronic
kidney disease. Pre-clinical evidence for its utility in cancer therapy
was provided by a study that demonstrated its ability to buffer intra-
tumoral pH and inhibit tumor growth, concomitant with increased
CD8+ T cell infiltration in murine melanoma and pancreatic tumor
models (154). In addition, oral bicarbonate improved NK cell
infiltration and IFN-g production in a murine lymphoma model,
resulting in delayed tumor growth (104). Moreover, combining
bicarbonate therapy with anti-PD-1 or anti-CTLA-4 checkpoint
blockade or ACT improved tumor regression in comparison to
either treatment alone in murine cancer models. The efficiency of
bicarbonate therapy to improve cancer immunotherapy response in
humans remains to be confirmed.

Likewise, multiple proton pump inhibitors (PPIs), commonly
used as antacids, are being clinically investigated for their ability to
modulate intra-tumoral pH in solid tumors (155). PPIs can be
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administered as prodrugs that are activated in low pH
microenvironments to subsequently interact with and inhibit the
activity of H+/K+-ATPase, thus making them well-tolerated and
safe even at high doses. Treatment with the PPI Esomeprazole
showed an increase in tumor pH and improved effector function
of TILs in B16 melanoma xenografts without increasing activation
of T cell subsets isolated from peripheral organs (101). Combining
PPI treatment with ACT enhanced the anti-tumor effect and
overall survival. Surprisingly, several clinical studies assessing the
efficacy of PPIs in combination with anti-PD-1/PD-L1 therapy
have shown either no effect or an adverse effect on ICB response in
melanoma and NSCLC patients (156, 157). It is important to note
here that individual PPIs have different acid neutralizing abilities,
and therefore reduce the diversity of the gut microbiome at
varying degrees, which in turn is known to affect the response to
ICB. It may be prudent to assess gut microbiome diversity and
consider history of antibiotics use prior to treatment of cancer
patients with acidosis-reducing agents and ICB.

Targeting Immunometabolism
In addition to reducing the hostility of the TME, an alternative
strategy involves engineering autologous T cells to optimize
metabolic adaptation and confer more resistance to glucose-
limiting, lactate-rich conditions (158, 159). For example,
overexpression of phosphoenolpyruvate carboxykinase 1
(PCK1), a regulator of gluconeogenesis, could increase the
production of phosphoenolpyruvate (PEP) that is required for
sustained T cell effector function (160). Mechanistically, PEP
suppresses sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)
activity in glucose-deprived T cells and improves Ca2+ flux
and NFAT signaling required for T cell cytotoxicity.
Adoptive transfer of PCK1-overexpressing T cells into the
B16 murine melanoma model demonstrated improved
production of CD4+ T cell derived IFN-g and increased
expression of the M1 macrophage CD86 marker on TAMs,
collectively suppressing tumor growth and improving survival.
Similarly, overexpression of PPAR-gamma coactivator 1a
(PGC1a) restores mitochondrial dysfunction and biogenesis in
tumor-infiltrating T cells supporting enhanced anti-tumor
efficacy in B16 melanoma mice (161). Engineering chimeric
antigen receptor (CAR) T cells to include the 4-1BB/CD137
signaling domain promotes the development of CD8+memory T
cells with an OXPHOS phenotype that may be beneficial to
withstand metabolic competition within glycolytic TNBC
tumors, as opposed to inclusion of the CD28 domain that
induces a glycolytic phenotype in T cells (162). Thus,
metabolic preconditioning of immune cells by ACT can
enhance their persistence and effector function within the TME.
CONCLUSION

Anti-cancer therapy has proven most effective in combinatorial
settings, as tumors can quickly adapt to extrinsic cues. As such,
improving long-term response rates to immunotherapy requires
both direct and indirect modulation of anti-tumor immunity
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through a better understanding of the tumor-immune cell
interface. One of the many unanswered questions pertains to
the feasibility of targeting tumor cell metabolism without
negatively affecting immune cell metabolism in order to
enhance immunotherapy response. Ideally, metabolic
interventions should aim to target unique vulnerabilities of
tumor cells, without dampening anti-tumor immune function
and eliciting undesirable effects on peripheral organs—the
paradigm of “cellular selectivity based on demand” (136).
Although direct intra-tumoral injection of anti-metabolic
agents and immunotherapy in solid tumors such as breast
tumors is lucrative in principle (163), the effect of this mode of
delivery on normal mammary function requires investigation.
This is particularly relevant in the case of lactating breast cancer
patients since mammary epithelial cells considerably rely on
glucose uptake for lactose biosynthesis. In this regard, gaining
insight into the potential role of tumor-specific antigens, such as
LDHC, in cancer metabolism could aid the development of
specific inhibitors to circumvent the risk of adversely
impacting normal cells. Alternatively, small molecules
inhibiting lactate biogenesis or export could be delivered
specifically to tumor cells using polymeric nanocarriers that
are responsive to tumor-specific cues such as pH-sensitive
nanoparticles that could facilitate drug delivery to lactate-rich
tumor microenvironments (164).

The timing and sequence of the combinatorial approach also
requires optimization. For instance, targeting glycolysis or lactate
transport in tumor cells prior to ACT may reduce unfavorable
effects on immune function. As anti-metabolic therapies are
developed for cancer treatment, their efficacy and effects on anti-
tumor immune response requires close monitoring. Moreover, the
impact of metabolic heterogeneity as observed between TNBC
subtypes in addition to intra-tumoral heterogeneity, on the
response to immunotherapy and combinatorial approaches
requires in-depth investigation (165). Lastly, well-designed
interventional studies examining intra-tumoral or systemic
biomarkers to enable stratification of TNBC patients that may
benefit from combining immunotherapy with anti-metabolic
strategies are essential. Such biomarkers could include genetic
mutations or variants that have been associated with metabolic
reprogramming in TNBC (166) such as mutant p53 (19), BRCA1
mutations (167, 168), c-Myc amplification (169), and Rb
expression (133). Notably, investigation of congenital lactic
acidosis has identified distinct genetic variants that result in
defective mitochondrial function and drive the pathogenesis of
the disease (170) and hence, assessment of the effect of these
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genetic alterations on tumor metabolic phenotype would be of
interest in the search for prognostic biomarkers.

Although this review focuses on TNBC, it is important to note
that endocrine-resistant luminal breast cancer and trastuzumab-
resistant HER2+ breast cancer also exhibit metabolic
reprogramming, whereby the glycolysis rate and associated
lactate acidosis are increased (17, 171–173). Hence, in analogy
with the observed metabolic changes in TNBC, it is likely that the
glycolytic TME in treatment-resistant luminal and Her2+
tumors could disrupt immune surveillance and negatively
affect the response to immunotherapy. However, in
comparison to TNBC tumors, HER2+ and in particular
luminal or hormone receptor positive tumors display a
significantly lower infiltration of TILs (174), potentially
explaining the inferior efficacy of immunotherapy in these
tumors. Moreover, in contrast to TNBC, the presence of a
sparse TIL infiltration in hormone receptor positive tumors
has been associated with worse clinical outcome (175, 176).
These observations highlight the importance of considering the
immune landscape characteristics of each breast cancer subtype
as well as the auxiliary role of lactate acidosis in modulating anti-
tumor immunity in order to predict immunotherapy response.
Immunotherapy strategies such as ACT and CAR-T therapy
have shown great potential to improve the immune
permissiveness of luminal breast tumors (177), and could likely
be used in combination with anti-metabolic strategies in
endocrine-resistant tumors.

To conclude, identification and development of the next
generation of immune-based therapeutic approaches that can
improve the intra-tumoral metabolic landscape and hence
augment the anti-tumor response is gaining interest and
necessitates extensive research in this direction.
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