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To recognize the epidermal growth factor receptor (EGFR) gene mutation status in lung
adenocarcinoma (LADC) has become a prerequisite of deciding whether EGFR-tyrosine
kinase inhibitor (EGFR-TKI) medicine can be used. Polymerase chain reaction assay or
gene sequencing is for measuring EGFR status, however, the tissue samples by surgery
or biopsy are required. We propose to develop deep learning models to recognize EGFR
status by using radiomics features extracted from non-invasive CT images. Preoperative
CT images, EGFR mutation status and clinical data have been collected in a cohort of 709
patients (the primary cohort) and an independent cohort of 205 patients. After 1,037 CT-
based radiomics features are extracted from each lesion region, 784 discriminative
features are selected for analysis and construct a feature mapping. One Squeeze-and-
Excitation (SE) Convolutional Neural Network (SE-CNN) has been designed and trained to
recognize EGFR status from the radiomics feature mapping. SE-CNN model is trained and
validated by using 638 patients from the primary cohort, tested by using the rest 71
patients (the internal test cohort), and further tested by using the independent 205 patients
(the external test cohort). Furthermore, SE-CNN model is compared with machine learning
(ML) models using radiomics features, clinical features, and both features. EGFR(-)
patients show the smaller age, higher odds of female, larger lesion volumes, and lower
odds of subtype of acinar predominant adenocarcinoma (APA), compared with EGFR(+).
The most discriminative features are for texture (614, 78.3%) and the features of first order
of intensity (158, 20.1%) and the shape features (12, 1.5%) follow. SE-CNN model can
recognize EGFR mutation status with an AUC of 0.910 and 0.841 for the internal and
external test cohorts, respectively. It outperforms the CNN model without SE, the fine-
tuned VGG16 and VGG19, three ML models, and the state-of-art models. Utilizing
radiomics feature mapping extracted from non-invasive CT images, SE-CNN can
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precisely recognize EGFR mutation status of LADC patients. The proposed method
combining radiomics features and deep leaning is superior to ML methods and can be
expanded to other medical applications. The proposed SE-CNN model may help make
decision on usage of EGFR-TKI medicine.

Keywords: lung cancer, epidermal growth factor receptor mutation, deep learning, convolutional neural network,

feature mapping

INTRODUCTION

Lung adenocarcinoma (LADC) is a type of common lung cancer
(1). Epidermal growth factor receptor tyrosine kinase inhibitor
(EGFR-TKI) has become one significant target chemotherapy
medicine for the treatment of the advanced LADC (2). To know
the mutation status of EGFR gene in LADC patients is a
prerequisite of deciding whether EGFR-TKI can be used (3).
Polymerase chain reaction (PCR) assay or gene sequencing is the
clinical method of measuring EGFR status, however, the tissue
samples obtained by surgery or biopsy are required. The
extensive intratumor heterogeneity may reduce the accuracy of
EGFR gene measurement using the biopsy (4, 5). In addition,
some patients may have inoperable LADC or the biopsy is not
possible for the reason of patients’ endurance or willing or high
economic cost. Therefore, it is necessary to find a non-invasive
method to predict EGFR mutation status.

Computed tomography (CT) has been one non-invasive
imaging technology and routinely used in cancer diagnosis and
treatment (6, 7). Some studies have investigated the relationship
between CT imaging features and EGFR mutation and provided
the potential of using CT images to predict EGFR mutation
status (8-10).

Radiomics aims to apply advanced computational approaches
and artificial intelligence to convert medical images into
quantitative features (11, 12). It has been utilized to help do
the diagnosis and prediction of gene mutation, treatment
response, and prognosis of lung cancer (13-15).

Recently, CT-based radiomics features and the resulted
machine learning models have showed predictive value to
EGFR mutation status. Dai et al. have trained one Random
Forest (RF) model with 94 radiomics features, achieving an Area
Under Curve (AUC) of 0.802 in a set of 345 patients (16). Zhang
et al. have investigated 180 non-small cell lung cancer patients,
extracted 485 features, and reached an AUC of 0.862 and 0.873
for the train and validation cohorts, respectively (17). Yang et al.
have collected a total of 467 patients and created a predictive
model which can recognize mutation status of EGFR gene with
an AUC of 0.831 (18). More advanced methods of using
radiomics features are required to improve the performance of
EGFR mutation status prediction.

Deep Convolutional Neural Network (CNN) utilizes hierarchical
network to learn abstract features and build up the mapping
between input data and output labels. Deep learning has
demonstrated excellent performance in many medical
applications such as diagnosis of diabetic retinopathy (19),
diagnosis of prostate cancer (20), differentiation of benign and

malignant pulmonary nodules (21-23), classification of skin cancer
(24), pediatric pneumonia diagnosis (25), and prediction of liver
fibrosis (26). Moreover, deep learning models have been applied in
lung cancer analysis (27-30). In EGFR mutation status, Wang et al.
have constructed one deep learning model using 844 lung
adenocarcinoma patients, which can achieve an AUC of 0.85 and
0.81 for the train and validation cohorts, respectively (31). Although
some techniques such as deep dream and Grad-CAM (Gradient-
weighted Class Activation Mapping) have been developed, the
interpretation of the “black-box” of deep learning model still face
challenges (32, 33).

In this work, we have proposed one new way of constructing a
deep leaning model using CT radiomics feature mapping to
precisely recognize EGFR mutation of lung adenocarcinoma.
Specifically, for each LADC patient, after 1,037 CT-based
radiomics features are extracted, 784 discriminative features
are selected to be analyzed and construct a feature mapping.
One Squeeze-and-Excitation (SE) Convolutional Neural
Network (SE-CNN) is further designed and trained to
recognize EGFR status from the radiomics feature mapping.

In summary, the contributions can be three aspects. First, the
proposed method has utilized both the good interpretability of
radiomics features obtained by feature engineering and the
powerful capability of pattern recognition of deep learning.
Second, the resulted SE-CNN model can precisely recognize
EGFR mutation status from non-invasive CT images and the
AUC can reach 0.910 and 0.841 in the internal and external test
cohorts, respectively. It outperforms the CNN model without SE,
the machine learning models, and the state-of-art models. Third,
many discriminative features of imaging texture, intensity and
the shape of lesion have been identified, which may help
understanding the biological mechanism of EGFR mutation in
lung LADC from the viewpoint of computer vision.

MATERIALS AND METHODS
Study Design and Participants

This is one retrospective study and it has been approved by the
ethics committee of The First Affiliated Hospital of Guangzhou
Medical University and Shengjing Hospital of China Medical
University. Patients who meet the following inclusion criteria are
collected into this study: (a) the EGFR mutation status is
examined by a PCR-based assay and confirmed by direct
sequencing. The results of the EGFR test are clear; (b) All CT
examinations are performed by the same CT scanner and with
the same slice thickness and reconstruction algorithm; (c) Before
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receiving the CT examination, the patient has no extrathoracic
metastasis and not received any radiotherapy or chemotherapy.

The exclusion criteria are given as follows: (a) The patient has
received preoperative treatment or not been examined by the
EGFR mutation test; (d) The clinical data of gender, age, and
histopathological subtype is missing; (e) The radiomics features
cannot be extracted accurately.

Totally a cohort of 709 patients (320 male and 389 female; the
mean age of 59 years; the age range of 17-91 years) with LADC is
included from The First Affiliated Hospital of Guangzhou Medical
University. This cohort is named as the primary cohort in the
following manuscript. These patients have been enrolled from
January 2016 to July 2018. CT images and clinical data of all cases
are collected. Clinical data collected from medical records for
analysis includes EGFR mutation status, age, gender and
histopathological subtype. LADC patients are divided into 8
different subtypes: acinar predominant adenocarcinoma (APA),
micropapillary predominant adenocarcinoma (MPA), lepidic
predominant adenocarcinoma (LPA), papillary predominant
adenocarcinoma (PPA), solid predominant adenocarcinoma
(SPA), invasive mucinous adenocarcinoma (IMA), minimally
invasive adenocarcinoma (MIA), and adenocarcinoma in
situ (AIS).

A cohort of 205 patients (101 male and 105 female; the mean
age of 60.7 years; the age range of 32-88 years) with LADC is
included from Shengjing Hospital of China Medical University.
It is named as the external test cohort. It is noted that the data of
histopathological subtype is lack in this cohort.

Measurement of EGFR Mutation Status

After being fixed with formalin, the excised specimen is stained
with H&E. Experienced pathologists evaluate the paraffin
specimens of the LADC tissue and confirm that they contain
at least 50% tumor cells. According to strict protocol from
manufacturers, EGFR status is examined by a PCR-based assay
and confirmed by direct sequencing. The status of EGFR exons
18, 19, 20, and 21 is also examined by molecular analysis.

Acquisition of CT Images

For the primary cohort, a multi-detector CT system with 128
slices (Definition AS+, Siemens Healthcare, Germany) has been
applied for the chest scans. All images are stored and exported in
the format of DICOM. The parameters used in the CT
examination are given as follows: The tube current modulation
is 35-90 mAs; the tube voltage is 120 kVp; the spacing is 0.625
mmx0.625 mm; the reconstruction thickness is 2.00 mm; the
matrix is 512x512; the field of view is 180 mmx180 mm; the
reconstructed algorithm is B30 or 130; and the pitch is 0.9.

For the external test cohort, four CT scanner from different
manufacturers (GE Medical Systems, Philips, Siemens and
Toshiba) have been used for the chest scans. The pixel spacing
ranges from 0.625 to 0.976 mm, the slice thickness ranges from
2.50 to 5.0 0 mm, and the matrix is 512x512.

Overview of the Study Procedure
As given in Figure 1, for each LADC patient, after extracting
1,037 radiomics features from the segmented lesion region, 784
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highly informative features are selected to be analyzed and
construct a feature mapping. Convolutional Neural Network
with Squeeze-and-Excitation (SE-CNN) is designed and
trained to recognize EGFR status from the radiomics feature
mapping. For comparison, CNN model without Squeeze-and-
Excitation (SE), 1D-CNN, and the machine learning (ML)
models using radiomics features, clinical features, and both
features have also been implemented. Meanwhile, the highly
informative features are analyzed. All models are trained and
validated by using 638 patients from the primary cohort and
tested by using the rest 71 patients (the internal test cohort).
Furthermore, the models are evaluated by using the external test
cohort of 205 patients.

Extraction and Selection of Radiomics
Features

We have used a 3D U-Net model for the nodule segmentation,
which has been presented and used in our previous study (34,
35). After automatic segmentation, one radiologist with more
than 10 years of experience in interpretation of lung CT images
has checked the quality of each case and manually revised a few
cases with poor tumor contours. And then PyRadiomics software
(https://pyradiomics.readthedocs.io/) is utilized to extract
features (36). A total of 1,037 radiomics features are extracted
for each patient. The radiomics features can be divided into
six different groups: Shape Features, First Order Features, Gray
Level Co-occurrence Matrix (GLCM) Features, Gray Level
Dependence Matrix (GLDM) Features, Gray Level Run Length
Matrix (GLRLM) Features and Gray Level Size Zone Matrix
(GLSZM) Features. Those radiomics features are extracted from
three types of images: Original Image, Wavelet Image and
Laplacian of Gaussian (LoG) Image. Wavelet Image is obtained
from eight decompositions after wavelet filtering. Applying High

(H) or Low (L) pass filter in three dimensions gives eight kinds
of combinations: LHL, HHL, HLL, HHH, HLH, LHH, LLH,
and LLL. LoG Image is generated through applying a LoG filter
with a specified sigma value to the input image. It emphasizes
the area where the gray scale changes. In LoG images, a low
sigma emphasizes fine textures and a high sigma emphasizes
coarse textures. Sigma of 1, 2, and 3 has been used in our
study, respectively.

We have used the mean decrease impurity importance to
reduce redundant radiomics features, which derived from the
random forest (RF) method (37). Each radiomics feature is given
an importance score in mean decrease impurity importance
method. The purpose of feature selection is to identify highly
discriminative features and remove unimportant or irrelevant
radiomics features. It is noted that the feature selection is based
on the training and validation cohort (638 of 709 patients), not
the whole primary cohort.

SE-CNN Model Using Radiomics Feature
Mapping

We have built a SE-CNN classifier with radiomics feature
mapping as inputs. The structure of proposed SE-CNN model
is presented in Figure 2A. It consists of the convolution layer,
pooling layer, Squeeze-and-Excitation (SE) layer, dropout layer,
and full connection layer.

Squeeze-and-Excitation (SE) layer can be tread as a channel’s
self-attention function intrinsically. SE layer recalibrates channel-
wise feature responses and learns the global information through
suppressing less useful features and emphasizing informative
features. Meanwhile, the benefit of the feature recalibration can be
accumulated through SE layers. It has been proved that SE layer can
improve CNN’s performance (38). The structure of the SE layer is
shown in Figure 2B.
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FIGURE 2 | The structure of the deep learning model. (A) The structure of SE-CNN. (B) The structure of Squeeze-and-Excitation (SE) layer.
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Squeeze-and-Excitation layer is special calculation unit. Input
X has been transformed into feature U at first. Here * denotes
convolution. Every Squeeze-and-Excitation layer is special
calculation unit. Input X has been transformed into feature U
at first. Here * denotes convolution. Every v; is a single channel of
ve = [V, v2,..vY]. These spatial kernels are applied to the
relevant channel of X.

u, = vX = I v X* (1)

F,, generates statistics z by shrinking the spatial size of the
global spatial information U = [uy,u,,...,u.] through its spatial
dimensions H x W and squeezing it into the channel descriptor.

_ 1
THxW
The function of F., is to capture the channel dependencies. Its

purpose is to fully utilize the information summarized in the
squeeze operation. ¢ indicates the ReLU function.

Zc = qu(”a) z“z{ilz‘}i}luc(i’j) (2)

s =Fe(z, W) = 0(g(z W)) = 6(W,6(W12)) ®)

By activating the rescaling U, the output can be gotten as a
block X.

-"Ec = FscuZE(uo SC) = ScUc (4)

where X = [%;,%,,..., %] and F,, indicates that the feature map
u, is multiplied by the scalar s, at the channel-wise.

Since our study is a binary classification, the loss function of
binary cross-entropy is employed in deep learning models.

loss = ~XiL, y;logy; + (1 - y;)log(1 — y;) (5)
dloss .y yi 1=y
ox yi 1=y

In the formula, y; is the true label and y; is the label predicted
by the model.

(6)

The Training and Evaluation of the Deep
CNN Models

First, we rank the 784 radiomics features with high scores in
feature selection into a two-dimensional matrix. The arrangement
rule is that the feature with higher score is near the center and that
with lower score is near the edge. The arranged matrix of 28x28
pixels is treated as a feature mapping. After batch normalization,
each two-dimensional feature mapping is input into the SE-CNN
model as an image for training. By activating different SE,
convolution and pooling layers, the SE-CNN classifier gives an
EGFR-mutant probability for each patient.

In order to verify the function of SE layer, we have also
established a deep learning model (CNN) without a SE layer. The
CNN model has the architecture as same as that of SE-CNN model
removing two SE layers. Due to the limited number of cases, this
CNN model only has two convolutional layers. In our previous
study, we have found that this kind of agile CNN is very suitable for
a small dataset and images with a small size (39). Moreover, one 1D-
CNN model with 2 convolutional layer, 1 max pooling layer and 1

average pooling layer (Please refer to Supplementary Figure 1 to
know the detailed architecture and parameter settings) is
constructed and trained by the 1D vector of features.

To further confirm this point, we have done another three
comparative experiments. The first one is AlexNet with five
convolutional layers and it is trained from the scratch. The
second and third are the pre-trained VGG-16 and VGG-19
with fine tuning, respectively (40). Specifically, all parameters
in convolution layers except the final fully-connected layer are
initialized using VGG-16 and VGG-19 trained by ImageNet
dataset of 1.28 million natural images and fine-tuned by our
own images. The final fully-connected layer is trained only using
our own images. This kind of scheme has been proved to be one
powerful way of using deep CNNs in medical imaging
applications (31, 41).

For the training of SE-CNN, CNN, 1D-CNN, AlexNet, VGG16,
and VGG19, the batch size and learning rate are set as 50 and 0.001,
respectively. Binary cross-entropy loss function and adaptive
moment estimation optimizer are used in SE-CNN, CNN, 1D-
CNN, and AlexNet. Categorical cross-entropy loss function and
RMSprop optimizer are adopted in VGG16 and VGG19. In our
training, due to the small number of samples, to avoid over-fitting,
we have used an early stopping method. When the validation loss
does not drop for 5 consecutive epochs, the training stops. After
continuous debugging, the model performance is verified by the
ROC curve, AUC, accuracy, recall, and precision.

Machine Learning Models for Comparison
For comparison, we have trained five machine learning models with
different features and classifiers for EGFR mutation prediction.
Using radiomics features, we train three machine learning
classifiers, i.e., Random Forest (RF), Support Vector Machine
(SVM), and Multilayer Perceptron (MLP). These classifiers have
been shown to perform well in lung imaging analysis (21). Using the
clinical information of gender, histopathological subtype and age as
features, we have trained one machine learning model (SVM).
Finally we have built a combined model (SVM) which using
radiomics features and clinical information.

In SVM, C and gamma is set as 3 and 1, respectively. In RF
model, four estimators are included. In MLP, two hidden layers
with size of 10 and 5 are included and ReLu activation function
and ADAM optimizer have been used.

Software Tools and Experimental
Environments

All statistical analyses have been done by using Python 3.6. The
scikit-learn package is used to construct all machine learning
models using radiomics features, clinical features, and both
features. The implementation of the deep learning models (SE-
CNN and CNN) is done by the Keras toolkit. Meanwhile,
“matplotlib” package is employed to plot the ROC curves and
data distribution. The independent two-sample t-test is adopted
to evaluate the difference of age and classifier score between
EGFR-positive [EGFR(+)] and EGFR-negative [EGFR (<x></
x>-<x></x>)] groups. When a two-sided p-value is <0.05, it is
considered to be significant. All experiments have been
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performed using a HPZ840 workstation, where the CPU and
GPU are Intel Xenon E5-2640 v4 @ 2.40 GHz and Quadro
M4000, respectively.

RESULTS

Demographic and Clinical Characteristics
As shown in Table 1, for the primary cohort, EGFR(+) and
EGFR(-) groups have shown no significant difference in age (p =
0.034), but shown significant difference in tumor size, gender,
and subtype (p < 0.01). The mean age of EGFR(+) is 60.24 and
the mean of EGFR(-) is 58.57. EGFR(+) has significantly higher
proportion in men (64.7%) than in women (37.9%) (p < 0.01). In
different subtypes, the number of APA is the largest in both
EGFR(+) and EGFR(-), reaching 208 cases and 96 cases,
respectively. The smallest subtypes in EGFR(+) are AIS and
IMA, with only five cases. The least number among the EGFR(-)
is the 15 cases of LPA. There is significant difference of EGFR(+)
percentage between different subtypes of LADC.

For the external test cohort, EGFR(+) and EGFR(-) groups
have shown no significant difference in gender or CT scanner
(p = 0.18; p = 0.17), but shown significant difference in age and
tumor size (p < 0.01).

Analysis of Predictive Radiomics Features
Fifty highly informative features have been selected to build the
machine learning models (RF, SVM, MLP). The number of

TABLE 1 | Demographic and clinical characteristics of LADC patients.

Characteristics EGFR(-) EGFR(+) p value
The primary cohort
Number of patients 352 357
Age, mean 58.57 60.24 0.034
Gender Male 114 206 < 0.01
Female 238 151
Tumor size 19,116 12,143 < 0.01
(mean, mm?)
LADC subtype AIS 17 5 < 0.01
MIA 45 27
LPA 15 63
APA 96 208
PPA 66 51
MPA 21 15
SPA 49 8
IMA 18 5
The external test cohort
Number of patients 121 84
Age, mean 61.07 59.26 < 0.01
Gender Male 72 29 0.18
Female 49 55
Tumor size 26,598 17,926 < 0.01
(mean, mm®)

LADC, Lung Adenocarcinoma;, EGFR, Epidermal Growth Factor Receptor; AlS,
Adenocarcinoma In Situ; MIA, Minimally Invasive Adenocarcinoma; LPA, Lepidic
Predominant Adenocarcinoma, APA, Acinar Predominant Adenocarcinoma; PPA,
Papillary Predominant Adenocarcinoma; MPA, Micropapillary Predominant
Adenocarcinoma,; SPA, Solid Predominant Adenocarcinoma; IMA, Invasive Mucinous
Adenocarcinoma.

features is determined by the rule of thumb, i.e., each feature
corresponds to 10 samples (patients) in a binary classifier (7).
The 50 selected highly informative radiomics features are shown
in Figure 3A, and clinical features are listed in Table 1. Among
these 50 features, the features of First Order Features have the
largest number, reaching 17. Meanwhile, 15 radiomics features
are from Wavelet_ LHH images, and 8 radiomics features are
from Wavelet HLL images.

Using an independent two-sample t-test on the datasets, we
have compared the intensity of features between EGFR(+) and
EGFR(-) groups. Among 1,037 feature, all 12 features of Short
Run Emphasis in EGFR and 9 of 12 features of Sum Entropy are
higher (overrepresented) in EGFR(+), indicating higher
intratumor heterogeneity. For inverse variance quantifying
homogeneity, 7 of 12 features are lower in EGFR(+) group.
The mean value of the top 50 high-scoring features on EGFR(+)
and EGFR(-) groups is shown in Figure 3A. Among these 50
features, there are 32 features with significant difference between
EGFR(+) and EGFR(-) groups. For EGFR(+) group, the
Minimum and DifferenceAverage features are higher than
EGFR(-) group, but the radiomics features of Uniformity are
lower in the EGFR(+) group. The largest difference between
the mean values of EGFR (+) and EGFR (-) is wavelet-
HLL_glem_MaximumProbability feature (0.366 vs 0.458).
There are 34 radiomics features that EGFR(-) is greater than
EGFR(+), and only 16 EGFR(+) are numerically greater than
EGFR(-).

Since the input of a deep learning network is a feature
mapping of 28x28, we select 784 features with high score and
rearrange them. We use counterclockwise to arrange the features
into squares. The process is shown in Figure 3B. Meanwhile, the
example of an arranged matrix on EGFR(+) and EGFR(-) is
shown in Figure 3C. Figure 3D shows the distribution of the
selected 784 radiomics features.

In Figure 3D, we have found that the number of GLCM
features is the largest. Analyzed by proportion, 77.4% of the
shape features and 81.7% of the GLSZM features are selected
from 1,037 features and added to 784 features used by the deep
learning models. The most features are for texture (614, 78.3%)
and the features of the first order of intensity (158, 20.1%) and
the shape features (12, 1.5%) follow. It is noted that the analysis
in this section is based on the primary cohort.

Performance of Deep Learning Models
Using Radiomics Feature Mapping

Figure 4 shows the training process of deep learning models (SE-
CNN and CNN). In the loss curve on Figures 4A and C, we can
see that the curve of loss tends to be flat in SE-CNN and CNN
models as the epochs number increases, indicating that the
training model converges. In the accuracy curve on Figures 4B
and D, the value fluctuates greatly, which may be because the
number of training epoch is relatively small. SE-CNN model
stops training early when the epoch is 61, while the epochs in the
CNN model are 63. SE-CNN model reaches the convergence
faster than CNN model and the final accuracy is also
significantly higher.
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FIGURE 3 | The selected radiomics features. (A) The mean value of 50 highly informative features in EGFR(+) and EGFR(-). *represents p <0.05 between EGFR(+)
and EGFR(-), “represents p <0.001 between EGFR(+) and EGFR(-). (B) Clockwise sorting method for input matrix of deep learning model. (C) The example of the
input matrix. (D) Distribution of selected 784 features used in deep learning models.

For the internal test cohort of 71 patients, the performance of
deep learning models (SE-CNN and CNN) has been given in Table
2 and Figure 5. The AUC of proposed SE-CNN is higher than that
of CNN model (0.910 versus 0.894). 1D-CNN can achieve an AUC
of 0.875 lower than that of SE-CNN. Moreover, though the AlexNet
trained from the scratch has deeper architecture than our
specifically designed SE-CNN and CNN, its performance is
comparable to our models. Using fine tuning, the deeper VGG16
and VGGI9 obtain the better prediction performance than AlexNet.
Especially, the fine-tuned VGG19 achieve an AUC of 0.929.

As shown in Table 3 and Figure 6, all six deep learning
models have lower AUC in the external test cohort than in the
internal test cohort. The possible reason might be that the
radiomics features and the resulted machine learning models
have been influenced by the differences between different CT
scanners, protocols, and hospitals (6). SE-CNN has the highest
AUC of 0.841 among the six deep learning models. The AUC of
Fine-tuned VGG16 decreases dramatically from 0.929 (the
internal test cohort) to 0.642 and the AUC of Fine-tuned
VGG19 decreases from 0.909 (the internal test cohort) to 0.618.

Comparison with Machine Learning
Models

For the internal test cohort of 71 patients, the five machine
learning models” performance is listed in Table 2. The ROC
curves and AUC are depicted in Figure 5. The clinical model
using SVM does not have good prediction and its AUC is only
0.751. In the three machine learning models using radiomics
features, the SVM model has obtained the best performance and
the AUC reaches 0.836. Therefore, we use SVM to build the
combined model and it has an AUC of 0.823. F-score in SVM
models using radiomics features and combined features is 0.794
and 0.727, respectively.

As shown in Figure 5A, SE-CNN has better predictive
performance than the clinical model (AUC: 0.910 versus
0.751). For the three models using radiomics features, SVM
model is the best and RF and MLP models follow (AUC: 0.836,
0.794, and 0.793, respectively). Comparing Figures 5A and B,
one can find that deep learning models of SE-CNN, fine-tuned
VGG16 and VGG19, and CNN outperform the machine learning
models. Even the CNN with two layer convolutional layers
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FIGURE 4 | The training process of the deep learning model. (A) Loss curve of SE-CNN with epoch. (B) Accuracy curve of SE-CNN with epoch. (C) Loss curve of
CNN with epoch. (D) Accuracy curve of CNN with epoch.

TABLE 2 | Predictive performance of machine learning models using radiomics features (SVM, RF, MLP), clinical features, and combined features, and the deep
learning models (SE-CNN CNN, AlexNet, Fine-tuned VGG16, and Fine-tuned VGG19) for the internal test cohort of 71 patients.

Model Feature Classifier Accuracy AUC Recall Precision F-score
Machine learning Radiomics SVM 0.788 0.836 0.805 0.784 0.794
RF 0.732 0.794 0.611 0.814 0.698
MLP 0.746 0.793 0.888 0.695 0.780
Clinical SWM 0.690 0.751 0.666 0.705 0.685
Combined SVM 0.746 0.823 0.666 0.8 0.727
Deep learning Radiomics SE-CNN 0.803 0.910 0.916 0.75 0.825
CNN 0.816 0.894 0.833 0.812 0.821
1D-CNN 0.760 0.875 0.833 0.731 0.779
AlexNet 0.676 0.824 0.972 0.614 0.752
Fine-tuned VGG16 0.828 0.930 0.714 0.925 0.806
Fine-tuned VGG19 0.728 0.910 1 0.648 0.786

The meaning of the bold values is the model with the highest AUC.

trained from the scratch has the higher AUC of 0.894 than that of
the best machine learning model of SVM (0.836).

The confusion matrices of SE-CNN model and the three
machine learning models (Clinical, Combined, and Radiomics)
are shown in Figure 5C. We find that compared with three
machine learning models, SE-CNN model has an improvement
in the ability of predicting EGFR(+). Compared with the
machine learning model (Radiomics + SVM), SE-CNN model
has increased four correctly predicted cases in EGFR(+).

For the external test cohort, the comparison between SE-
CNN and machine learning models are given in Table 3 and
Figure 6. SE-CNN achives an AUC of 0.841, higher than that of
SVM, RF, and MLP models (AUC: 0.778, 0.671, 0.789). As

shown in Figure 6C, SE-CNN model has an improvement in
the ability of predicting both EGFR(+) and EGFR(-). Compared
with the machine learning model (Radiomics + SVM), SE-CNN
model has increased nine and five correctly predicted cases in
EGFR(+) and EGFR(-), respectively. Meanwhile, compared with
the deep learning model (ID-CNN), SE-CNN model has
increased 13 and 9 correctly predicted cases in EGFR(+) and
EGFR(-), respectively.

Comparison with Available State-of-Art
Models

Table 4 summarizes some recently conducted works on EGFR
mutation status. By using manually extracted image features and
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TABLE 3 | Predictive performance of machine learning models using radiomics features (SVM, RF, MLP), and the deep learning models (SE-CNN CNN, AlexNet, Fine-

tuned VGG16, and Fine-tuned VGG19) for the external test cohort of 205 patients.

Model Classifier Accuracy AUC Recall Precision F-score
Machine learning SVM 0.707 0.778 0.500 0.700 0.583
RF 0.619 0.671 0.261 0.579 0.361
MLP 0.702 0.789 0.571 0.657 0.611
Deep learning SE-CNN 0.775 0.841 0.607 0.796 0.689
CNN 0.726 0.815 0.595 0.694 0.641
1D-CNN 0.668 0.720 0.452 0.633 0.528
AlexNet 0.688 0.797 0.904 0.575 0.704
Fine-tuned VGG16 0.644 0.642 0.345 0.617 0.442
Fine-tuned VGG19 0.549 0.618 0.607 0.463 0.525

The meaning of the bold values is the model with the best performance for the external test cohort.

radiomics method, Velazquez et al. have obtained an AUC of
0.69 for a dataset of 353 patients (10). Gevaert et al. have
achieved an AUC of 0.89, but their dataset only includes 186
patients (42). In the study done by Liu et al. using a logistic
regression model, the AUC can reach 0.766 and 0.748 for the
train and validation cohorts, respectively (13). Yang et al. have
also achieved a good performance by RF model (18). By using
deep learning method, Wang et al. have gotten encouraging
predictive performance (AUC = 0.85) in a large dataset which
has 800 patients (31). Compared with these results, our SE-CNN
model has presented comparable prediction in EGFR
mutations status.

CT Images of Typical Examples of
Recognition Results

To demonstrate our results in one visible way, Figure 7 gives
some randomly chosen examples. The randomly selected images
are divided into four parts, the predicted label is the same as the
real label in EGFR(+) and EGFR(-), and the predicted label is
different from the real label in EGFR(+) and EGFR(-). For each
tumor lesion, one representative 2D patch with marked contour
and 3D visualization are shown in Figure 7. From the 3D
visualization, we have found that the nodule shape of EGFR(+)
is relatively irregular, the lesion margin has microlobulated,
angular and speculated. Meanwhile, the shape of the nodule
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TABLE 4 | Performance comparison between our EGFR predictive model and the state-of-art.

Experiments Years Method Number of Patient AUC
Gevaert et al. 2017 Decision tree 186 0.89
Liu et al. 2017 Logistic regression 170 0.766
Velazquez et al. 2018 Deep belief network (DBNs) 353 0.69
Wang et al. 2019 Deep Learning(CNN) 800 0.85
Yang et al. 2019 RF model 467 0.831
Our method 2020 SE-CNN + Radiomics mapping 71/709; 205 0.910; 0.841

AUC, Area Under Curve; RF, Random Forest; SE, Squeeze-and-Excitation layer; CNN, Convolutional Neural Network.

EGEFR(-) is relatively regular and the surface is relatively smooth.
The shape of the lesion is closer to a sphere or ellipsoid in EGFR
(-) cases. In 2D CT patch, if the contour of the lesion is relatively
smooth and the internal texture is uniform, it is likely to be
predicted as EGFR(-). Conversely, if the lesion contour is sharp
and angular and the texture is turbid and complex, it is easy to be

predicted as EGFR(+).

DISCUSSIONS

In this study, we have studied the relationship between the
radiomics phenotype and the genotype of EGFR mutation in
LADC. The clinical, imaging, and EGFR mutational profiling
data of 709 LADC has been analyzed. One new method of using
the deep CNNs and CT-based radiomics feature mapping has
been proposed to predict EGFR mutation status. It is found that
EGFR(-) patients show the smaller age, higher odds of female,

larger lesion volumes, and lower odds of subtype of APA. The
most discriminative features are intratumor heterogeneity in the
form of texture. The resulted SE-CNN model can recognize
EGFR mutation status with an AUC of 0.910 and 0.841 for the
internal and external test cohorts, outperforming the CNN
model without SE, three ML models and the state-of-art models.

Predictive Radiomics Features of EGFR
Mutation Status

In this study, the mean decrease impurity importance method
has been to select predictive features. This method has been
utilized in our previous study (18). Among the selected features,
the most features are for texture (614) and the features of the first
order of intensity (158) and the shape features (12) follow.
Texture features belong to the second order statistics and
quantify intratumor heterogeneity by measures like correlation,
dissimilarity, energy, entropy, homogeneity, and second-order.
We have found that texture features are discriminative for the
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FIGURE 7 | Region of interest (lesion) and 3D visualization for different EGFR status prediction in examples.

EGFR mutation status. This finding is in line with previous study
demonstrating that EGFR(+) tumors are more heterogeneous
than EGFR(-) (10).

Among the 50 highly informative features, the features of
First Order Feature have the largest number, reaching 17.
Meanwhile, 201 of the GLCM features are selected from
1,037 features and added to the 784 features used by the
deep learning model. It is known that GLCM can calculated
measures of higher order statistics including contrast and
coarseness (43).

To know the reproducibility of segmentation and resulted
features, we have conducted two experiments: 1) the test-retest
reproducibility of 3D U-Net segmentation; 2) the reproducibility
of segmentation using 3D U-Net and 3D V-Net. The intra-class
correlation coefficient (ICC) has been calculated between the
features obtained from two segmentations. The mean value of
ICCs for 205 patients is 0.947 for the test-retest reproducibility
and 0.811 for segmentations using 3D U-Net and 3D V-Net.

Machine Learning Models Using

Radiomics and Clinical Features

Machine learning models using radiomics features are the
mainstream of radiomics study including EGFR mutation
prediction from CT images. Our SVM model with 50
radiomics feature has presented good performance (AUC =
0.778). Velazquez et al. have achieved an AUC of 0.69 using
manually extracted CT features and radiomics method (10).
Gevaert et al. have also gotten good results through the
decision tree model in the cohort of 186 patients (42). Lu et al.
have even obtained one AUC of 0.90 for 104 patients (44). It
should be noted that our cohort includes 709 LADC patients and
is much higher than previous study, suggesting the higher
generalizability and lower over-fitting problem.

The advantage of machine learning models using radiomics
features are two aspects. First, the radiomics features are usually
well-defined according to expert domain knowledge, can be
understandable for observers and usually semantic. For
example, the features of CT image intensity reflects the
attenuation coefficient of tissues to X ray; the shape and size
features characterize the tumors’ elongation, sphericity, and
compactness; the texture features quantify the intratumor
heterogeneity and possible necrosis (10). Moreover, many
agnostic features of higher order and filtered metrics can also
be captured. Second, the cohort can be small if the rule of thumb
can be satisfied, i.e., each feature requires 10 patients in a binary
classifier (7).

Clinical features can be predictive for EGFR mutation status
by the aid of machine learning. We have used the clinical features
and SVM to build one model with an AUC of 0.751 for the
internal test cohort. About whether the relationship between
clinical and radiomics features are complementary, our results
are different with previous study. In our study, the combination
of clinical and radiomics features do not increase the prediction
performance. On the contrary, Velazquez et al. have presented
that the fusion of clinical and radiomics features can improve
prediction result (10). Li et al. have reported that the AUC
increases from 0.76 to 0.79 by inclusion of the clinical features
(45). The possible reason might lie on the fact that our radiomics
model and clinical model have reach the high AUC separately
and there is no margin for further improvement, even for
the combination.

Deep Learning Models Directly Using CT
Images

Regarding the prediction of EGFR mutation status through CT
images, deep learning can get better performance than machine
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learning of predefined engineered features. Using transfer
learning of DenseNet pre-trained with 1.2 million natural
images, Wang et al. have realized encouraging performance
(AUC 0.81) for an independent validation cohort of 241
patients (26). Recently a deep learning model fusing CNN and
long short-term memory (LSTM) has presented good prediction
performance (46). Deep learning model can automatically learn
multi-level features by using a neural network that are difficult to
be formulized but directly related to EGFR information.
However, there are some limitations for deep learning models
directly trained with CT images. Most deep learning models are
opaque or “black box”. Although some visualization methods
such as Grad-CAM have developed, the specific meaning of the
features is still difficult to be explained clearly (32). Moreover,
deep learning models directly using CT images are intensively
data-hungry and require a lot of calculation power and a long
calculation time in training.

Deep Learning Models Using Radiomics
Features

Deep learning models using radiomics features proposed in our
study have created a new strategy of building hybrid system. This
strategy can utilize both the powerful capability of pattern
recognition of deep learning and the good interpretability of
radiomics features obtained by feature engineering. Our resulted
model has exerted conformity advantage of “1+1 > 2” and
achieved the higher AUC than machine learning models (0.841
versus 0.778 for the external test cohort). This advantage relies on
two pillars. The first pillar is the specially designed SE-CNN. By
learning the global information captured, SE layer can suppress
less useful features and emphasize the informative feature. Hence,
SE layer can improve the prediction performance (38). SE layer
can also make the CNN model converge faster during training.
Moreover, our SE-CNN is rather “shallow” compared with other
traditional CNNs such as VGG, ResNet and Xception. For medical
imaging applications, this kind of “shallow” CNNs usually shows
better performance due to the limited training data (39).

The second pillar is the radiomics feature mapping. For machine
learning models, the feature number cannot be so many for the
limited patients or samples, or the over-fitting will be serious (47).
SE-CNN may overcome this limit since our SE-CNN model does
present serious over-fitting though the mappings with 784
discriminative features are used for the training dataset of less
than 700 patients. More important is that these radiomics features
are interpretable and their contributions can be ranked by classical
feature selection algorithm.

In parallel, another way of build hybrid system is to apply the
deep CNN as feature extractor and the machine leaning as the
classifier. For example, Tang et al. have used a CNN model and
SVM as feature extractor and classifier, respectively (48). Even
mixed features from deep learning and feature engineering and
multiple instance learning (MIL) have been used in this hybrid way
(49, 50). This strategy can naturally be applied to the prediction
EGFR mutation status from CT images in future research.

The CNN can learn the spatial pattern of pixels in a deeply
abstract way. Actually, the features are ranked according to

the importance for classification by RF method and then
arranged in a determined sequence for generate a mapping
in our study. We think the spatial pattern of features (or
pixels) should be different between EGFR(+) and EGFR(-)
and the SE-CNN can learn the pattern differences. Moreover,
we have tried the mapping with different arrangements,
but no significant difference is found for the predictive
performance. We have tried 1D-CNN and CNN without SE
and found that their performance is not as good as that of SE-
CNN model.

For our method of constructing the feature mapping, the
augmentation cannot be used during training the deep
learning models. To alleviate the overfitting, our SE-CNN only
has two convolutional layers. For VGG16 and VGG19 for
comparison, we have used the pre-trained CNN with fine
tuning (transfer learning). We have found that SE-CNN
model can recognize EGFR mutation status with an AUC of
0.910 and 0.841 for the internal and external test cohorts,
respectively. An AUC of 0.841 indicates that our SE-CNN has
a reasonable generalization capability and the overfitting is not
SO serious.

Besides the feature mapping of 28x28 that we have selected
currently, we have also tried the feature mappings of 24x24 and
32x32. While using the 24x24 mapping, AUC is 0.905 and 0.815
for the internal and external test cohorts, respectively. While
using the 32x32 mapping, it is 0.901 and 0.814, respectively. It
indicates that to select the feature mapping with a size of 28x28
might be reasonable.

Limitations and Future Directions

Despite the good performance of SE-CNN model in recognition
of EGFR mutation status, there are still a number of limitations
in our research. First, EGFR mutations may have different
results between different races, but all patients are recruited in
the two large tertiary referral centers in China in our research.
Therefore, the results may lack universality. Second, all patients
we analyzed are with lung adenocarcinoma but no patients
with other histological subtypes are involved. Third, feature
engineering-based radiomics methods require precise tumor
boundary annotation from image data; it takes a lot of time to
process the raw data.

In future research, the data can be collected from patients
with multiple races. An end-to-end pipeline including automatic
tumor identification, localization, and EGFR status prediction
can be developed. Integration of radiomics features, clinical
features and multi-level features in deep learning models may
improve the predictive performance.

CONCLUSION

Utilizing radiomics feature mapping extracted from non-
invasive CT images, the deep learning model of SE-CNN
can precisely recognize EGFR mutation status of LADC
patients. The proposed method integrates both the powerful
capability of pattern recognition of deep learning and the good
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interpretability of radiomics features. This new strategy of
building hybrid system has demonstrated superior prediction
performance than both the pure deep learning and machine
learning, hence can be expanded to other medical applications.
The radiographic phenotype of LADC is capable of reflecting
the genotype of EGFR mutation, via deep learning and
radiomics method. The resulted SE-CNN model may help
make decision on usage of EGFR-TKI for LADC patient in an
invasive, repeatable, and low-cost way.
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