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Twomechanisms are involved in the immune escape of cancer cells: the immunoediting of
tumor cells and the suppression of the immune system. Both processes have been
revealed in multiple myeloma (MM). Complex interactions between tumor plasma cells and
the bone marrow (BM) microenvironment contribute to generate an immunosuppressive
milieu characterized by high concentration of immunosuppressive factors, loss of effective
antigen presentation, effector cell dysfunction, and expansion of immunosuppressive cell
populations, such as myeloid-derived suppressor cells, regulatory T cells and T cells
expressing checkpoint molecules such as programmed cell death 1. Considering the
great immunosuppressive impact of BM myeloma microenvironment, many strategies to
overcome it and restore myeloma immunosurveillance have been elaborated. The most
successful ones are combined approaches such as checkpoint inhibitors in combination
with immunomodulatory drugs, anti-monoclonal antibodies, and proteasome inhibitors as
well as chimeric antigen receptor (CAR) T cell therapy. How best to combine anti-MM
therapies and what is the optimal timing to treat the patient are important questions to be
addressed in future trials. Moreover, intratumor MM heterogeneity suggests the crucial
importance of tailored therapies to identify patients who might benefit the most from
immunotherapy, reaching deeper and more durable responses.

Keywords: multiple myeloma, microenvironment, immune cells, immune checkpoints, immunotherapy
INTRODUCTION

Multiple myeloma (MM) is a malignant plasma cell disease mainly located in the bone marrow
(BM) in multiple ‘niches’. These provide a microenvironment that promotes tumor survival and
progression. Within BM niches, normal and tumor plasma cells can survive for years, even for
decades. Moreover, the observation that tumor plasma cells do not grow and expand when cultured
alone suggests the huge resilience of these cells within the BM microenvironment (1). The BM
milieu consists of a cluster of cells such as immune cells, stromal cells, endothelial cells (ECs), and
bone cells, soluble factors (cytokines, chemokines, and growth factors), and non-cellular matrix (2).
It is highly vascularized by blood vessels and is a part of the lymphocyte re-circulation network.
Cells re-circulating into and out of the BM have the potential to regulate tumor plasma cell growth
and progression through a composite array of indirect and direct interactions involving cytokines as
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well as surface (3) and soluble molecules (4). In this context, the
immune system plays a central and multifaceted role.

A multistep development model indicates that MM
progresses from a stable premalignant plasma cell clonal
expansion termed monoclonal gammopathy of undetermined
significance (MGUS). This asymptomatic preneoplastic
condition is characterized by a perfect equilibrium between
tumor and immune system which allows disease to remain
stable and does not develop to MM. Immune cells control, but
not eliminate MGUS plasma cells. These findings suggest that
malignant transformation depends not only on the features of
the tumor cells themselves but also on the surrounding
microenvironment and its effects on tumor cells. Complex
cancer–immune system interactions generate both pro- and
anti-tumor effects whose balance can be altered in favor of an
immunosuppressive environment which promote tumor
progression (5, 6). On one hand, innate and adaptive immune
cells are able to detect tumor plasma cells; tumor-specific
cytotoxic T cells can be found in the BM of MGUS and MM
patients (7, 8). On the other hand, tumor plasma cells have the
ability to promote a tolerant microenvironment and the
activation of immunosuppressive mechanisms to counteract
effective immune responses. These include impairment of
antigen processing and presentation, and T cell response, NK
and NKT cell dysfunctions, local recruitment, expansion and
activation of immune suppressor cells like T regulatory cells
(Tregs) and myeloid derived suppressor cells (MDSCs), and
differentiation of the protumoral tumor-associated macrophages
and Th17 cells (9–11) (Figure 1).

Here we describe interactions between BM tumor plasma cells
and different immune cells and provide an overview of the
current knowledge on immunotherapeutic strategies.
MYELOMA PLASMA CELL
IMMUNOGENICITY

The hallmark of MGUS and MM plasma cells is the production
and the surface expression of a monoclonal immunoglobulin (Ig)
carrying unique antigenic (idiotypic or Id) determinants in the
variable heavy (VH) (12). Thus, the Ig idiotypic structure is a
tumor-specific antigen of the myeloma cell clone, distinct from
normal cells or normal plasma cells that can be presented as
whole molecule on the cell surface or as peptides in the groove of
the of major histocompatibility complex (MHC) molecules
(13, 14).

Several studies have described idiotype-specific cytotoxic T
lymphocytes in MM patients with the capacity to lyse autologous
primary tumor plasma cells. Many potential T cell epitopes have
been identified within the tumor-derived Ig-VH region,
nonetheless, the majority of them didn’t trigger high affinity T
cell responses (15). Two peptide prediction algorithms, BIMAS
and SYFPEITHI, have also confirmed the poor immunogenicity
of human idiotypes with a low binding half-life (BIMAS) and a
low/intermediate score (SYFPEITHI) on most T cell interaction
human leukocyte antigen (HLA) modules (16, 17). Additionally,
Frontiers in Oncology | www.frontiersin.org 2
idiotypic vaccination in MM has been examined in clinical trials
where immunologic responses occurred in <50% of patients, and
clinical responses have been infrequent (18).

Within the universal tumor antigens, many myeloma-
associated antigens (e.g. human telomerase reverse transcriptase
(hTERT) (19), surviving (20), new york esophageal squamous cell
carcinoma 1 (NY-ESO1) (21) mucin-1 (MUC-1) (22), junctional
adhesion molecule-A (JAM-A) (23, 24) and the receptor for
hyaluronic acid-mediated motility (RHAMM) (25) have been
identified as targets recognized by T lymphocytes and used in
many vaccination strategies, but in most cases failed to produce
clinically meaningful responses. However, many obstacles need to
be overcome. The most important one is the myeloma plasma cell
escape of tumor-specific immune response. Our group
demonstrated that the binding of CD28 expressed on myeloma
plasma cells with its ligands CD80/CD86 expressed on BM
dendritic cells (DCs) results in downregulation of the expression
of proteasome subunits, alteration of the antigen repertoire
displayed on myeloma plasma cell surface, and reduced
recognition of tumor plasma cells by cytotoxic CD8+ T cells (10).
TUMOR-SPECIFIC CYTOTOXIC CD8+

T CELLS

The mechanisms underlying MGUS to MM progression are
incompletely understood. Tumor plasma cell specific CD8+ T
cells have been detected in both MGUS and MM patients (8, 26,
27), thereby establishing that there is no tolerance to plasma cell
tumors. Nonetheless, in MM, myeloma plasma cell proliferation
is not counteracted by CD8+ T cells. These observations have
rekindled interest in the immunosurveillance mechanisms of
tumor growth (28). Although MM plasma cells do not
significantly differ from their premalignant MGUS precursors
with respect to cytogenetic abnormalities (29, 30) and gene
expression profiles (31), CD8+ T cells have been uncovered to
fail to limit the clonal expansion of tumor plasma cells in MM.
Our studies have shown that malignant transformation of
plasma cells is associated with altered expression of HLA class
I antigen processing presenting machinery (APM) components.
These alterations are detectable ex vivo, occur at the
transcriptional level, and, in some cases, are enhanced by IL-6,
an essential MM cytokine. For some APM components, changes
correlate with the extent of the plasma cells’ lysis by CD8+ T cells
and with variations in the serum level of the M component
in MGUS patients (8). Downregulation of proteasome subunits,
in particular, is higher in plasma cells from MM patients than in
those from MGUS patients and MM plasma cells are less readily
lysed by autologous, in vitro-expanded cytotoxic CD8+ T cells
than are MGUS plasma cells. This difference in cytotoxicity is
evident at the epitope level and is not due to the intrinsic features
of CD8+ T cells, given that no difference is observed when CD8+

T cells are tested against HLA-matched target cells that are not
plasma cells (8). These findings support the hypothesis that
proteasome subunit downregulation decreases expression of
tumor antigen peptides on tumor plasma cells, enabling them
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to evade CD8+ T cell recognition and killing (10). Moreover,
these alterations in the expression of APM components are
specific of each premalignant and malignant plasma cell clone,
suggesting that the myeloma-specific T cell response can differ
from one patient to another. Indeed, CD8+ T cells isolated from
MGUS and MM patients can be activated ex vivo by DC loaded
with autologous but not allogeneic tumor lysates (7, 27, 32). The
finding that the impairment of T cell response is restricted to
myeloma antigens is supported also by the absence of a clinical T
cell immunodeficiency. Myeloma patients show an appropriate T
Frontiers in Oncology | www.frontiersin.org 3
cell immunity against external antigens and do not show an
increased incidence of mycobacterial infections or virus
associated second malignancies (33).

Some shared antigens have been identified as targets of a
spontaneous immune response in MGUS but not MM patients
suggesting the capacity of the immune system to recognize
premalignant lesions. For instance, the clonogenic CD138−

compartment in MGUS patients expresses SOX2, an embryonal
stem cell protein involved in the tumor-initiating potential and
self-renewal of tumor cells. The expression of this antigen
FIGURE 1 | The MM BM microenvironment. On one hand, innate and adaptive immune cells are able to recognize myeloma plasma cells (PC) and generate a weak
immune response against tumor. Mature dendritic cells (mDCs) activate tumor-specific T cells that along with natural killer (NK), NKT and gamma delta (gd) T cells
produce low amount of interferon (IFN)-g. On the other hand, myeloma PCs are able to promote an immunosuppressive microenvironment. They produce
immunosuppressive factors including transforming growth factor (TGF)-b, interleukin (IL)-10 and IL-6. PC–immature DC (iDC) interaction stimulates TGF-b production
by DC inducing T regulatory (Treg) proliferation with enhancement of levels of TGF-b and IL-10. Immature DCs produce also indoleamine 2,3-dioxygenase (IDO) that
causes anergy in activated T cells. The latter exhibits exhaustion markers such as programmed cell death-1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), T cell
immunoglobulin-3 (TIM-3), and lymphocyte-activation gene 3 (LAG3), and high levels of the senescence markers killer-cell lectin like receptor G1 (KLRG1) and
CD160. PD-1 is greatly expressed also by gd T cells and NK cells and interacts with its ligand, programmed death ligand 1 (PD-L1), expressed by myeloma PC, DC,
and myeloid derived suppressor cells (MDSCs) downregulating immune response. Myeloma PC–mature DC interaction, involving the CD28 receptor and the CD80/
CD86 ligands respectively, downregulates proteasome subunit expression in tumor PC and decreases the processing and presentation of tumor antigens thus
reducing myeloma PC recognition by cytotoxic CD8+ T cells. Myeloma PC-tumor-associated macrophage (TAM) interaction involving P-selectin glycoprotein ligand 1
(PSGL-1) and intercellular adhesion molecule-1 (ICAM-1) on myeloma PC and E/P selectins and CD18 on TAM confers multidrug resistance to MM PC. Within
myeloma niche, TAMs release great amount of IL-6 and IL-10 and contribute to MM-associated neovascularization by vasculogenic mimicry and indirectly by
secreting vascular endothelial growth factor (VEGF), IL-8, fibroblast growth factor-2 (FGF-2), metalloproteinases (MMPs), cycloxygenase-2 (COX-2), and colony-
stimulating factor-1 (CSF-1). Neutrophils release high amount of IFN-g that supports their promotion of pro-inflammatory and survival signals within the plasma cell
niche and produces arginase that inhibits T cell activation and proliferation. MDSCs also produce high amounts of arginase and reactive oxygen species (ROS) that
contribute to T cell suppression, induce anergy of NK cell through membrane-bound TGF-b1 and promote tumor angiogenesis by MMP secretion or direct
differentiation into endothelial cells (ECs). Furthermore, ECs can act as semi-professional antigen presenting cells (APCs) stimulating a regulatory tumor-specific T cell
population. Within BM, the elevated levels of IL-6, TGF-b, and IL-1b promote T helper IL-17-producing (Th17) cell polarization which release high levels of IL-17
favoring MM plasma cell growth and inhibiting immune system.
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identifies potential MM progenitors and detection of anti-SOX2 T
cells is associated with an improved clinical outcome in patients
with asymptomatic plasma cell disorders. SOX2 is also expressed
by CD138+ cells in patients with active MM, who do not develop
anti-SOX2 immunity (34).

Recent evidence also indicates that MM-specific cytotoxic
CD8+ T cells do not express CD28 and express low levels of
programmed cell death-1 (PD-1), cytotoxic T lymphocyte
antigen-4 (CTLA-4), lymphocyte-activation gene 3 (LAG3),
and T cell immunoglobulin-3 (TIM-3) (35). These
characteristics further strengthen the idea that MM-specific
CD8+ T cells are not anergic or exhausted. Instead, they seem
to be “senescent” given that they express high levels of CD57,
CD160, and killer-cell lectin like receptor G1 (KLRG1), do not
express CD27 and CD28, and display weak proliferation after
antigen stimulation (35). So basically, MM-specific CD8+ T cells
appear late-differentiated and suspended in a hypo-responsive,
non-proliferative state. Interestingly, this state would be
telomere-independent and potentially reversible (35) since
MM-specific CD8+ T cells have normal-for-age telomere
lengths and long-surviving MM patients retain cytotoxic T cell
clones with conserved proliferative capacity (36).
CD4+ T HELPER CELLS

The role of CD4+ T helper cells in MM is still unclear;
controversial data may be justified by differences between BM
and peripheral blood, or by different quantification method
(absolute count versus percentage), or by changes in Th1/Th2
polarization during the course of the disease. While some
authors reported an altered Th1/Th2 balance strongly
supported by IL-6, with increased production of Th2 cytokines,
such as IL-10 and IL-4 and decreased production of Th1
cytokines, such as IL-2 and IFN-g (37, 38), others described an
elevated Th1/Th2 ratio in MM patients at diagnosis and in
refractory phase, pointing towards a close relation to the
clinical features (39–41).

Furthermore, increased levels of PD-1 on CD4+ cells have
been observed in MM patients with persistent minimal residual
disease (MRD) and at relapse compared with T cells of first
diagnosed MGUS and MM patient (42). BM myeloma PD-1
expressing CD4+ T cells interact with plasma cells and DCs that
display on their surface programmed death ligand 1 (PD-L1)
promoting T cell suppression and MM progression (43).
T HELPER 17 CELLS

Elevated levels of interleukin (IL)-6, transforming growth factor
(TGF)-b, and IL-1b in myeloma BM microenvironment
promote T helper IL-17-producing (Th17) cell polarization
with consequent increased of IL-17 levels in BM and
peripheral blood of MM patients (36, 44–46). IL-17 induces
myeloma cell growth and colony formation via IL-17 receptor
and inhibits Th1 immune response (45). The amount of Th17
Frontiers in Oncology | www.frontiersin.org 4
cells in the BM positively correlates with clinicopathological
characteristics in MM, like clinical tumor stage, serum
lactate dehydrogenase concentration, and serum creatinine
concentration (46). In addition, IL-17 plays a role in
osteoclast-mediated lytic bone disease (44). Recently, the
existence of a direct immunological link between the gut and
the BM in MM involving Th17 cells has been proposed. Using a
Vk*MYC mouse model, it has been provided that the gut
microbiota induces the differentiation of Th17 cells in the gut
that are able to migrate to the BM, where they promote MM
progression (47). In the BM, IL-17 activates also eosinophils
involved in plasma cell homing to the BM and in their
accumulation in the BM niche (47, 48).
REGULATORY T CELLS

There is considerable controversy regarding regulatory T (Treg)
cell frequency and function in MM due to their source
(peripheral blood versus BM), differences in assays, purification
techniques, and markers used to identify these cells. Treg
population is described as reduced and/or dysfunctional (39,
49, 50) or increased and/or functional (36, 51–57) in MM
patients compared to MGUS patients or normal controls.
Moreover, the increased frequency of CD4+ and CD8+ Treg
cells in MM patients correlated with the active phase (54) and a
reduced survival (55, 58). MM plasma cells can directly induce
functional Treg in a contact dependent manner acting as
immature and tolerogenic antigen presenting cells (APCs) (54)
as well as in an APC independent manner by the expression of
the inducible T cell co-stimulator ligand (ICOSL) (59). It is
possible that the mutual and dynamic interactions among cells of
the BM microenvironment along with cytokine release modulate
the frequency and the suppressive activity of Treg cells. In
coculture experiments, cytokines such as IL-10 and TGF-b and
human myeloid immature DCs are the most efficacious for
induction and expansion of Treg population (60, 61). Tumor
cell–immature DC interaction stimulates TGF-b production by
DC inducing Treg proliferation (62). Our study demonstrated
that EC can act as semi-professional APC stimulating a
regulatory tumor-specific CD8+ T cell population with
suppressive function within BM of MM patients (11).
Moreover, human leukocyte antigen G (HLA-G)+ T cells with
an inhibitory activity comparable to natural Treg can be
generated in BM of MM patients after tumor plasma cell–T
cell interaction by trogocytosis of immunosuppressive molecules
such as HLA-G (63).
gd T CELLS

BM MM microenvironment is extremely immunosuppressive
and greatly influences gamma delta (gd) T cells. Indeed, BM
derived Vg9Vd2 T cells, the main subset of gd T cells, become
more dysfunctional than those isolated from the peripheral blood
of MM patients. The functional exhaustion of BM Vg9Vd2 T
October 2020 | Volume 10 | Article 599098
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cells occurs early during disease progression and does not
disappear in clinical remission. Upregulation of PD-1
expression on gd T cells is already found in MGUS patients
and persists in the remission phase and further increases in the
relapse (64). One possible explanation is the great concentration
of phosphoantigens in the tumor microenvironment and the
consequent prolonged TCR engagement. High amounts of
isopentenyl pyrophosphate, the prototypic phosphoantigen
recognized by Vg9Vd2 T cells via TCR, are produced by both
BM myeloma plasma cells and stromal cells leading to chronic
TCR engagement, upregulation of PD-1 expression, and
functional exhaustion of gd T cells (65). Moreover, many cell
subsets including MM plasma cells, myeloid-derived suppressor
cells (MDSCs), regulatory T cells (Tregs), and BM-derived
stromal cells are implicated in Vg9Vd2 T cell hampering
through the excessive expression of immune checkpoints
(ICP)/ICP-ligands (65).
DENDRITIC CELLS

The role of DC in MM progression is controversial. Some
investigators reported impaired functionality and phenotypic
profile, while others found that these cells are normal (9). We
have demonstrated that BM DCs are functional and play a dual,
but opposing role in MM. DCs are concentrated in the BM
during the MGUS-to-MM progression and interact with both T
cells and myeloma plasma cells. On one hand, DCs are able to
uptake apoptotic myeloma plasma cells, mature and process
myeloma antigens, cross-present them and successfully activate
myeloma-specific BM-infiltrating CD8+ T cells. On the other
hand, by using their surface CD80/86 molecules, DCs interact
with non-apoptotic tumor plasma cells by the CD28 receptor
that is upregulated on their surface, promoting a downregulation
of proteasome subunit expression and a consequent escape of
myeloma plasma cells from CD8+ T cell recognition and killing
(10). Moreover, plasmacytoid DCs promote tumor plasma cell
growth, survival, and drug resistance (66) and express high
surface levels of programmed death-ligand 1 (PD-L1)
conferring T cell and NK cell immune suppression by
engaging ICP via PD1-PD-L1 signaling axis (67, 68). Myeloid
CD141+ DCs also express PD-L1, and the proportion of these
cells correlate with the percentage of PD-L1+ plasma cells,
suggesting that both cell subsets support anti-tumor T cell
response inhibition in MM (68). DCs can also indirectly favor
the osteoclastogenesis process by inducing Th17 cell expansion
in BM myeloma microenvironment (69) followed by IL-17
accumulation, a potent pro-osteoclastogenic factor (70).
MACROPHAGES

Tumor-associated macrophages (TAMs) constitute an abundant
component of myeloma microenvironment that induce
myeloma plasma cell survival through both contact-dependent
and -independent mechanisms. For instance, a direct physical
Frontiers in Oncology | www.frontiersin.org 5
interaction involving E/P selectins and CD18 on macrophages
and P-selectin glycoprotein ligand 1 (PSGL-1) and intercellular
adhesion molecule-1 (ICAM-1) on myeloma cells protects
plasma cells from drug-induced apoptosis (71–73). Within
myeloma niche, after interaction with BM-derived
mesenchymal stromal cells, TAMs acquire a secretory profile
characterized by a great production of IL-6 and IL-10 and poor
production of IL-12 and TNF-a, providing a suitable milieu for
myeloma plasma cell growth (74). TAMs also contribute to MM-
associated neovascularization by vasculogenic mimicry and
indirectly by secreting a wide range of proangiogenic factors,
such as vascular endothelial growth factor (VEGF), IL-8, and
fibroblast growth factor-2 (FGF-2) as well as metalloproteinases
(MMPs), cycloxygenase-2 (COX-2), and colony-stimulating
factor-1 (CSF-1). Moreover, they resemble M2-like
macrophage population with a reduced cytotoxic capacity for
tumor cells and a decreased antigen-presenting capability (75).

A very recent single-cell RNA sequencing study revealed that
mature CD14+ monocytes/macrophages lose HLA class II
surface expression as early as in the MGUS phase resulting in
T cell suppression (76).
NK CELLS

Natural killer (NK) cell differentiation, activation, and cytotoxic
ability are strongly compromised during MM progression (77).
BM myeloma plasma cells from early-stage patients display low
levels of MHC class I molecules and high levels of MHC class I
related chain A (MICA) and are readily recognized by NK cells
(78). Nevertheless, elevated numbers of NK cells in the BM and
blood of MM patients were associated with worse prognoses
(79). Myeloma cell recognition and killing by NK cells involve a
broad array of activating receptors including the natural killer
group 2D (NKG2D), DNAX accessory molecule-1 (DNAM-1),
and the natural cytotoxicity receptors (NCR) NKp46, NKp30,
and NKp44 (78, 80). Changes in the expression of these NK
receptors and NK cell receptor ligands have been observed in BM
samples of MGUS and MM patients, suggesting a role of NK cell
dysfunction during MGUS-to-MM progression (81). In addition,
following an extensive interaction with cytotoxic T and NK cells,
myeloma plasma cells obtained from patients with active disease
exhibit the MHC class Ibr i ght/MICAdim/− /CD95dim/−

immunophenotype that compromises NK cell function (78, 82,
83). Likewise, the number of effector NK cells localized within
the BM progressively decreases during MM growth and
correlates with reduced BM NK cell degranulation in MM-
bearing mice (84). Moreover, MICA shedding from the surface
of myeloma plasma cells may promote downregulation of
NKG2D expression on the surface of NK cells weakening the
NK-mediated anti-tumor response (83, 85). Defective NK cell
functions can be also explained by PD-1 expression on NK cells
of MM patients that interact with its ligands PD-L1 on tumor
plasma cells downregulating NK cell function (86). Also, the
release of soluble factors in the BM microenvironment can
influence NK cell activity. For instance, an inflammatory
October 2020 | Volume 10 | Article 599098
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milieu rich in IFN-g secreted by immune cells strongly increases
PD-L1 expression (87). In addition, primary myeloma plasma
cells express high levels of HLA-E molecules which bind to the
inhibitory NK cell receptor NKG2A hampering NK cell effector
functions (80, 88–90).
NKT CELLS

NKT dysfunction has been recognized as potentially important in
disease predisposition and progression (91). A progressive
decrease of NKT cells and a loss of both peripheral blood and
BM NKT cell activity in MM patients have been described by
many groups, with disease progression correlating with a
reduction of IFN-g production by NKT cells (26, 92, 93).
Likewise, a loss of CD1d expression by myeloma plasma cells
has been demonstrated during disease progression with
consequent dysfunction of NKT cells (26, 92, 94, 95).

A recent study has demonstrated an enrichment of
inflammation-associated lysophosphatidylcholine molecules in
MM patient serum compared with healthy donors alongside with
an increase of frequency of lisophosphatidylcholine-recognizing
CD1d-restricted type II NKT cells. These cells release high
amounts of the IL-13, an immunosuppressive cytokine
involved in tumor-promoting inflammation and angiogenesis,
thus supporting their role in disease progression (96).
Furthermore, type II NKT cells may also promote plasma cell
differentiation and play a role in the initiation of MM (97, 98).
MYELOID-DERIVED SUPPRESSOR CELLS

In humans, two main subsets of myeloid derived suppressor cells
(MDSCs) with the same level of suppressive activity can be
identified based on CD14 positivity, granulocyte-MDSCs (G-
MDSCs) that are CD11b+CD14−CD33+CD15+HLA-DR−/low and
monocytic-MDSCs (M-MDSCs) that are CD11b+CD14+

CD33+HLA-DR−/low (99). The involvement of these subsets in
the pathogenesis of MM is still not clear. Several studies found a
significant increase in G-MDSCs in the peripheral blood and BM
of newly diagnosed, relapsed, and relapsed/refractory MM
patients compared with healthy donors (100–102), while others
described an increase of M-MDSCs in first diagnosed and
relapsed MM patients compared with those in remission and
healthy donors (103, 104). Moreover, the level of M-MDSC
correlates with disease progression (104).

Because of their capacity to suppress T cell-mediated
immunity, MDSCs play an important role in favoring tumor
escape from immunosurveillance (101, 102). MDSCs secrete
high amount of arginase which sequestrates L-arginine, an
essential amino acid for T cell activity (105). Moreover, MDSCs
can inhibit T cell receptor by nitrosylation and reactive oxygen
species release (106) and express on their surface high levels of
PD-L1 which can interact with PD-1 express on T cells (64).

In addition, MDSCs induce Treg differentiation through
TGF-b-dependent and -independent mechanisms involving
Frontiers in Oncology | www.frontiersin.org 6
CD40 or IL-10 and IFN-g, respectively (100, 106), induce NK
cell anergy through membrane-bound TGF-b1 (107, 108),
promote tumor angiogenesis by MMP-9 secretion or direct
differentiation into EC (109), and stimulate tumor growth
through the release of cytokines and growth factors (101).

Using immunocompetent mouse models, it has been
demonstrated that MDSC immunosuppression occurs early in
MM disease; MDSCs accumulated in the BM of mice as early as
one week after tumor inoculation and when these mice were
engineered to lose their ability to accumulate MDSC, growth of
MM plasma cells was significantly reduced confirming the
critical role of MDSC accumulation at early stages of MM
progression (102).
NEUTROPHILS

Neutrophils are essential for clearance of extracellular pathogens,
as they effectively fight them by releasing cytotoxic granules,
toxic enzymes, inflammatory mediators, and reactive oxygen
species (110, 111). Thanks to a large number of integrins and
molecules expressed on their surface, neutrophils can establish
interactions with other immune cells (e.g., T, B, and NK cells,
monocytes, macrophages, DCs), can act as weak antigen
presenting cells, promote angiogenesis and inflammation, and
regulate hematopoiesis (112). In MM, as a consequence of BM
infiltration by tumor plasma cells, functional defects of
neutrophils including reduced lysozyme activity and increased
secretion of the amino acid degrading enzyme, arginase, have
been described (113, 114). An involvement of neutrophils in
immune suppression via IFN-g signaling has been also revealed
since the early asymptomatic phase of MGUS (115). Specifically,
Romano et al. (115) have demonstrated that neutrophils from
MGUS and MM are chronically activated because of increased
signaling through IFN-g and Toll-like receptors that trigger a
chronic inflammatory response via STAT protein activation.
Compared with neutrophils from healthy patients, neutrophils
from MGUS and MM patients show immunosuppressive
features. They display an impairment in the FC-g-receptor I
(CD64) mediated phagocytosis under control of IFN-g and
increased secretion of arginase-1, target of STAT proteins
(116–118), resulting in inhibition of T cell activation and
proliferation (115). Furthermore, during MGUS-to-MM
progression, neutrophils progressively enhance the production
of IFN-g in response to MM soluble factors resulting in increased
autophagy flux and JAK-2/STAT3 pathway activation, which
support their promotion of pro-inflammatory and survival
signals within MM niches (119).

In addition, the neutrophil to lymphocyte ratio (NLR) at
diagnosis or after 100 days from autologous stem cell
transplantation (SCT) can predict outcome in newly diagnosed
MM patients treated upfront with novel agents (120–122).
Interestingly, NLR could be combined with international
staging system (ISS) to better evaluate the risk profile of non-
elderly (<65 years) MM patients, to identify patients with poor
outcome, and to personalize MM therapy (121).
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IMMUNE CHECKPOINTS IN MULTIPLE
MYELOMA

The main ICP pathways CTLA-4 and PD-1/PD-L1 have
emerged as major immune escape mechanisms in MM. These
pathways are crucial in the physiological setting for maintaining
the immune equilibrium after the initial T cell response and
preventing over-activation of the immune system and tissue
damage. Tumor cells upregulate these biologic mechanisms of
tolerance and exploit them to elude host immunity (123).
Regarding MM, contradictory results exist in this field, due
mainly to the different analyzed sources (peripheral blood
versus BM) suggesting a fundamental role of the local milieu in
the regulation of immune ICP cell expression.

Several studies have found an increased number of CTLA4+

Treg cells in the BM of MM patients compared with MGUS
patients and healthy donors (52, 56, 124), with a correlation
between the proportion of cells simultaneously positive for
CTLA4 and Foxp3 and the disease stage (54).

PD-1 expression is increased on NK and gd T cells isolated
from MM patients and correlates with loss of effector cell
function (64, 86). CD4+ and CD8+ T cells express low level of
PD-1 in MGUS and newly diagnosed MM patients, suggesting
that downregulation of their effector function is partly due to
senescence rather than PD-1 mediated exhaustion (35, 124, 125).
Paiva et al. have reported increased PD-1 expression levels on
CD4+ and CD8+ T cells only in relapsed or relapsed/refractory
MM and in patients with a minimal residual disease (42).

PD-L1 is greatly expressed on plasma cells obtained from
MM patients with active, relapsed, and refractory disease,
whereas low expression has been found on plasma cells from
MGUS patients or healthy donors, suggesting that PD-L1
expression is associated with MM progression and drug
resistance (42, 68, 126–128). Moreover, soluble factors such as
IFN-g, IL-6, and indoleamine 2,3-dioxygenase (IDO), detected at
high level in myeloma BM microenvironment, upregulate the
expression of PD-L1 on myeloma plasma cells (126, 127, 129).
PD-L1 is also expressed by other cells of myeloma BM
microenvironment, including plasmacytoid DC, NK cells, and
MDSCs, according to their immunoregulatory functions (67, 68,
86, 100, 127).
IMMUNOSUPPRESSIVE FACTORS

Along with the crosstalk between tumor plasma cells and BM
niche cells, a high concentration of immunosuppressive factors
including TGF-b, IL-10, IL-6, and prostaglandin E2 in the MM
BM microenvironment promotes tumor propagation and
survival and at the same time generates great immune
dysfunction (130). In addition, the cellular contact of myeloma
plasma cells with BM immature DCs, through CD47–
thrombospondin-1 interaction, leads to spontaneous DC fusion
and trans-differentiation into osteoclasts (131, 132), which,
beside their role in bone lesions, promote suppressive immune
Frontiers in Oncology | www.frontiersin.org 7
BM microenvironment inducing T cell apoptosis by the
overexpression of ICP molecules and the release of IDO and
APRIL (129). Moreover, IDO causes anergy in activated T cells,
induces them to become Treg, and generates a nutritionally
depleted niche favoring survival of myeloma cells which have a
low proliferative index and are less sensitive to tryptophan
depletion (133); APRIL enhances PD-L1 expression on MM
cells supplying immune suppression (129). Simultaneously, the
establishment of a chronic inflammatory status contributes also
to disease progression (134). Increased levels of inflammatory
cytokines, such as IL-1, IL-6, IL-12, IL-15, IL-17, IL-18, IL-22, IL-
23, TNF-a, and IFN-g have been revealed in BM serum of MM
patients (135), and an eight-gene signature (IL-8, IL-10, IL-17,
CCL3, CCL5, VEGFA, EBI3, and NOS2) involved in B-cell
inflammation has been described able to distinguish the
different phases of disease progression (MGUS/smoldering/
symptomatic-MM) with 84% accuracy (134). Moreover,
inflammation can lead to high levels of bioactive lipids, such as
several species of lysophosphatidylcholine, which can bind to
CD1d molecules resulting in dysregulation of lipid-reactive
immune cells, activation of CD1d-restricted type II NKT cells,
and production of high amount of the immunosuppressive
cytokine IL-13 (96).
TARGETING IMMUNE SYSTEM AS AN
EFFECTIVE APPROACH TO TREAT
MULTIPLE MYELOMA

Considering the great immunosuppressive impact of BM
myeloma microenvironment, many strategies to overcome it and
restore myeloma immunosurveillance have been elaborated
(Figure 2). Autologous SCT following myeloablative treatment
allows the introduction of a new immune system and has
significantly contributed to improve survival of MM patients in
the last 15 years (136). Unfortunately, the graft versus-myeloma
(GvM) response is usually weak and most patients relapse. An
alternative is the adoptive therapy with BM infiltrating
lymphocytes enriched in myeloma-specific T cells that enhances
the anti-tumor immunity, but has a poor durability of the clinical
response (137), or the allogeneic SCT which provides a new T cell
repertoire, triggers a potent GvM response, but it is limited by the
high transplant-related mortality (138).

The emergence of ICP blockade therapies over the last decade
raised great interest also in MM. Despite at first, in vitro and in
vivo studies showed that PD-1/PD-L1 blockade enhanced T and
NK cell mediated anti-myeloma immune responses (42, 64, 86,
139–141) suggesting that ICP inhibition may be a promising
therapeutic strategy against MM, clinical trials have provided
unsatisfactory results (125). A possible explanation is that
myeloma-specific T cells have an anergic or senescent
phenotype rather than an exhausted phenotype, a prerequisite
for the success of ICP blockade therapies.

Current lines of evidence indicate that the senescent
phenotype could be reversed by immunomodulatory drugs
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(IMiDs), thalidomide, and its analogs lenalidomide and
pomalidomide, or histone deacetylase inhibitors (35). Besides
their direct anti-tumor effects (142), IMiDs promote immune
activation including functional enhancement of T, NK, and NKT
cells, increase of Th1 cytokine production, reduction of Treg
activity, improvement of DC maturation and functions, and
enhancement of anti-MM antibody dependent cell-mediated
cytotoxicity (ADCC) (143–145). Therefore, IMiDs exert anti-
angiogenic and anti-inflammatory effects and can disrupt plasma
cell–BM microenvironment interactions (146). Interestingly,
in vitro studies have demonstrated that lenalidomide treatment
reduces PD-1 expression on T and NK cells and PD-L1
expression on tumor plasma cells and MDSCs (86) suggesting
that IMiDs could enhance the effect of the ICP inhibitor (139).
Indeed, combined therapeutic strategies with IMiDs and ICP
inhibitors achieved promising results with acceptable safety and
durable responses. A phase II study (NCT02289222) combining
the anti-PD-1 pembrolizumab with pomalidomide and low-dose
dexamethasone in 48 patients with relapsed/refractory MM
resulted in an objective response of 60% including stringent
complete response/complete response (8%), very good partial
response (19%), and partial response (33%), with a median
duration of response of 14.7 months (147). Next phase III
studies of pembrolizumab in combination with pomalidomide
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and dexamethasone (NCT02576977) or lenalidomide and
dexamethasone (NCT02579863) have been halted by the US
Food and Drug Administration because of unsatisfactory results
in terms of objective response and high mortality (148). A phase
I trial of the anti-PD-1 nivolumab in combination with IMiDs,
daratumumab, and proteasome inhibitors uncovered this
combined therapy to be effective with a low toxicity profile in
highly pretreated and refractory MM patients (149). Further
clinical studies are ongoing to investigate the efficacy and the
toxicity of nivolumab in combination with other anti-myeloma
drugs in earlier stages of disease and in low-risk MM patients. In
addition, clinical trials of anti-PD-L1 monoclonal antibodies
(mAbs) (atezolizumab and durvalumab) alone or in combination
with other anti-myeloma agents are highly expected (150).

The use of mAbs targeting CD38, daratumumab, and
isatuximab is also potentially useful for treatment of relapsed/
refractory MM who have received two or more prior lines of
therapy (151–153). The effect of drugs alone is enhanced by the
addition of IMiDs or proteasome inhibitors. Phase III trials
comparing the combination of daratumumab with bortezomib
and dexamethasone or lenalidomide and dexamethasone versus
the drugs alone showed improved progression-free survival and
overall response (154–157). The improvement of response and
progression-free survival with acceptable safety has been recently
FIGURE 2 | Targeting immune system to induce anti-MM responses. MM immunosuppressive microenvironment remains the major hurdle to achieve a long lasting
response along with low toxicity. Vaccination strategies have shown no clear clinical efficacy. Autologous and allogeneic stem cell transplantation (SCT) following
myeloablative treatment allows introduction of a new immune system, but generates a very weak anti-tumor immune response. Immune checkpoint inhibitors,
immunomodulatory drugs (IMiDs), and monoclonal antibodies (mAbs) used as single agents provided unsatisfactory results. Immunotherapy with adoptively
transferred chimeric antigen receptor (CAR) T cells and new bi-specific antibodies are currently being tested in clinical trials, and initial results have been encouraging.
Moreover, newer approaches based on the combination of immunotherapeutic strategies are achieving promising results with acceptable safety and durable
responses. DC, dendritic cells; gd, gamma delta T cells; MDSC, myeloid derived suppressor cells; MHC-I, major histocompatibility complex-class I; NK, natural killer
cells; NKT, natural killer T cells; PC, plasma cells; PD-1, programmed cell death-1; PD-L1, programmed death ligand 1; SLAMF7, family member 7 of the signaling
lymphocytic activation molecule; TCR, T cell receptor; Treg, regulatory T cells.
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achieved also in newly-diagnosed transplant-eligible patients by
using daratumumab in combination with bortezomib,
thalidomide, and dexamethasone (158).

The ICARIA-MM phase III study comparing the
combination of isatuximab, pomalidomide, and dexamethasone
versus pomalidomide and dexamethasone alone in relapsed/
refractory MM patients revealed that isatuximab in the
combination regimen increased the number of patients
achieving a response and significantly improved the strength of
response and the median progression-free survival (159).

Alternative strategies include the use of agents to disrupt BM-
myeloma cell interactions. One of these agents is elotuzumab, a
humanized mAb that binds to SLAMF7 (family member 7 of the
signaling lymphocytic activation molecule), an immunomodulatory
receptor expressed on several hematopoietic cells, including
myeloma cells and NK cells (160–162). A phase I, multicenter,
open-label, dose escalation study of elotuzumab showed a favorable
toxicity profile but no objective responses with stable disease
reported in 26% of patients (163). However, the combination of
elotuzumab with pomalidomide and dexamethasone revealed a
significant improvement over pomalidomide and dexamethasone
alone in treatment outcomes of relapsed/refractory MM patients.
Specifically, the overall response rate was higher in the elotuzumab
group (53%) than in the control group (26%) with a better
progressionfree survival mainly observed in patients pretreated
with at least four prior lines of therapy or patients who were
considered as having highrisk disease on the basis of International
Myeloma Working Group Criteria (164).

Immunotherapy with adoptively transferred chimeric antigen
receptor (CAR) T cells targeting myeloma-associated antigens is
currently being tested in clinical trials and initial results have
been encouraging. A new effective therapy for MM is the use of
anti-B cell maturation antigen (BCMA) CAR T cells. Treatment
of relapsed/refractory MM patients provided promising results
with a high overall response. However, the durability of this
response was limited and even patients with initial complete
response finally relapsed. Moreover, toxicities included cytokine
release syndrome, and neurotoxicity has been reported (165,
166). The main mechanism of resistance to CAR T cell therapy is
the evasion of fully differentiated tumor cells expressing lower
levels of BCMA. Recently, the SLAM receptor CD229/LY9 has
been used as potential target for chimeric antigen receptor (CAR)
T cell therapy in MM due to its strong and broader expression on
the surface of BM plasma cells from MM and MGUS patients
and on chemotherapy-resistant myeloma precursor cells (167–
169). CD229 CAR T cells displayed a strong and persistent
activity against MM in vitro and in vivo. They efficiently killed
not only terminally differentiated MM plasma cells, but also
memory B cells and MM propagating cells (170).

Other immunotherapies including new bi-specific antibodies,
which brings tumor cells into contact with immune effector cells,
e.g., T cells and NK cells, and vaccines in combination with mAbs
or checkpoint inhibitors are still in early-stage clinical trials
(150). To date, bi-specific antibodies have been evaluated in
relapsed/refractory MM patients with promising results (171).
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FUTURE DIRECTIONS

Our knowledge about mechanisms behind MM immuno-
suppression and sustenance of disease progression has advanced
considerably. Crosstalk between immune cells and tumor
endothelium regulates the entry and egress of immune cells
within BM contributing to tumor immune surveillance and, at
the same time, promoting angiogenesis, MM dissemination, and
tumor growth (3, 11, 172, 173). Therefore, combination of
canonical anti-angiogenesis treatments with immunomodulatory
drugs may enhance the success of cancer immunotherapy.
Moreover, it is clear that MM consists of several different
genetic subtypes, and it is important to account for this when
designing therapeutic regimens. A range of features including
patient’s immune profile, patient’s baseline risk stratification,
genetic mutations, disease biology, and imaging findings should
be taken into account and integrated with each other to design
tailored therapies targeting patients who might benefit the most
from immunotherapy (174). New technologies for multi-
dimensional measurement (for instance combination of single-
cell RNA sequencing, genomic, immunophenotyping) of immune
cells and proteins might help to build an “immunogram” to
evaluate immune status and cancer-immune interactions in
individual patients and thereby predict capacity to respond to
immunotherapeutic strategies (76, 175).

Actually, along with immune-based approaches, the gene
editing technology has emerged. Specifically, CRISPR-Cas9
technique can be used to detect necessary genes for MM
plasma cells and genes involved in drug resistance, to explore
the mechanism of drug action and to develop immunotherapy
and screening for new drug targets (176).

Current research reveals that CRISPR/Cas9 is an efficient
gene knockout platform to improve efficacy and safety of CAR T
cells (177–179). Rupp et al. produced CD19-specific CAR T cells
that were deficient in PD-1 using PD-1 disruption mediated by
CRISPR/Cas9. The destruction of PD-1 increased CAR T cell
ability to kill tumor cells in vitro (180). Based on these findings,
CRISPR/Cas9 holds great promise for the treatment of MM.
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