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Since SARS-CoV-2 outbreak in December 2019, world health-system has been severely
impacted with increased hospitalization, Intensive-Care-Unit (ICU) access and high
mortality rates, mostly due to severe acute respiratory failure and multi-organ failure.
Excessive and uncontrolled release of proinflammatory cytokines (cytokine release/storm
syndrome, CRS) have been linked to the development of these events. The recent
advancements of immunotherapy for the treatment of hematologic and solid tumors shed
light on many of the molecular mechanisms underlying this phenomenon, thus rendering
desirable a multidisciplinary approach to improve COVID-19 patients’ outcome. Indeed,
currently available therapeutic-strategies to overcome CRS, should be urgently evaluated
for their capability of reducing COVID-19 mortality. Notably, COVID-19 shares different
pathogenic aspects with acute graft-versus-host-disease (aGVHD), hemophagocytic-
lymphohistiocytosis (HLH), myelofibrosis, and CAR-T-associated CRS. Specifically,
similarly to aGVHD, an induced tissue damage (caused by the virus) leads to increased
cytokine release (TNFa and IL-6) which in turn leads to exaggerated dendritic cells,
macrophages (like in HLH) and lymphocytes (as in CAR-T) activation, immune-cells
migration, and tissue-damage (including late-stage fibrosis, similar to myelofibrosis).
Janus Kinase (JAK) signaling represents a molecular hub linking all these events,
rendering JAK-inhibitors suitable to limit deleterious effects of an overwhelming
inflammatory-response. Accordingly, ruxolitinib is the only selective JAK1 and JAK2-
inhibitor approved for the treatment of myelofibrosis and aGVHD. Here, we discuss, from
a molecular and hematological point of view, the rationale for targeting JAK signaling in the
management of COVID-19 patients and report the clinical results of a patient admitted to
ICU among the firsts to be treated with ruxolitinib in Italy.
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INTRODUCTION

Since late December 2019, severe atypical pneumonia cases
requiring prompt hospitalization and frequent access to
Intensive care Units (ICUs) have been reported in China. The
etiological microbial agent was identified as a novel member of the
b-Coronaviridiae family, named SARS-CoV-2 (1). The new
epidemy [declared as pandemic since March 12th, 2020 by
WHO (2)], rapidly spread in and out of the country, involving
millions of cases around the world [https://www.ecdc.europa.eu/
en/geographical-distribution-2019-ncov-cases]. Early data from
Chinese studies claimed an overall case-fatality rate of about
2.3% (up to 14.8% in patients aged >80 years) (3). However, the
infection has shown a more aggressive clinical course in European
countries and USA, with an overall mortality rates of about 10%
(4), which increases to 26% in ICU-admitted patients, being
even higher in the elderly population and in patients with pre-
existing comorbidities (hypertension, diabetes, obesity) (5, 6).
Clinically, SARS-CoV-2 related disease (COVID-19) ranges
from asymptomatic or mild/moderate symptoms (fever, arthro-
myalgia, nausea, and diarrhea, anosmia) to a severe respiratory
illness requiring ventilatory support and, in a small percentage of
patients, extracorporeal membrane oxygenation (ECMO) (6, 7).
Overall, approximately 20% of patients deteriorate (often rapidly)
about 7-10 days after the onset of symptoms (8) and about 25%
will require mechanical ventilation (associated with increased
mortality risk) (8). Although the exact mechanism of lung
damage is still under investigation, some Chinese reports and
Frontiers in Oncology | www.frontiersin.org 2
previous experience with SARS/MERS related diseases (9–12)
focus on the possibility that SARS-CoV-2 induces alveolar
macrophages activation and release of inflammatory cytokines
and chemokines (i.e., cytokine release syndrome, CRS), that
further recruit innate (monocytes and neutrophils) and adaptive
(T and B cells) effectors to the lung. This event likely promotes an
inflammatory cascade at the tissue site that in turn, induces
thromboembolic events and a condition of acute respiratory
failure (ARDS-like). In some cases, CRS related damage extends
to liver, heart, and kidney, leading to multiorgan failure (13, 14)
and/or macrophage activation syndrome (MAS) (15, 16). The
most common clinical manifestation, viral pneumonia, affect more
than 90% of symptomatic patients within 4 days from onset (17).
However, in severe patients, a progressive loss of epithelial-
endothelial integrity with capillary damage, neutrophils, and
complement activation with localized intravascular coagulation
could be observed (18). These pathological findings suggest that
this most advanced and potentially fatal stage (19, 20) relies on the
(over-) involvement of the adaptive immunity more than on a
direct effect of the virus on the lung epithelium.

Currently, no specific treatments exist for COVID-19 and
many drugs such as lopinavir/ritonavir (21–27), remdesivir (28,
29), chloroquine (30), or hydroxychloroquine (31), azithromycin
(32, 33) as well as the anti- IL-6 receptor monoclonal antibody
tocilizumab (34, 35), failed to demonstrate a clear clinical benefit.
Here, we review the current knowledge on the immune and
inflammatory response to SARS-CoV-2 from a hematological
and molecular point of view (Figure 1) and we report the results
FIGURE 1 | Cartoon representing the overview of the pathogenesis of COVID-19 and the potential activity of ruxolitinib. The left part of the picture reports the most
common pathogenetic events happening along SARS-Cov2 infection in 85/90% of patients: after virus invasion, antigen presentation, and establishment of an
adaptive immune response, lungs reach the viral clearance with low or no symptoms. The right part of the figure reports instead the worse scenario where an
exacerbation of the inflammatory response characterized by increased neutrophils and Th17 activation lead to ferritin overload, alveolar damage with fibrosis, and
disseminated intravascular coagulation (DIC) which could potentially kill the patient. These events mainly depend on an uncontrolled activation of the JAK-STAT
pathway (trough canonical and non-canonical signaling) which finally leads to uncoordinated production and release of inflammatory cytokines (CRS) within the
alveolar microenvironment. By targeting the JAK-STAT pathway, ruxolitinib could disrupt this “vicious circle” and restore the correct alveolar functionality.
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of one of the first COVID-19 patients admitted to ICU treated
with the JAK2-inhibitor ruxolitinib, belonging to a group of
patients who started this treatment under off-label use (under
physician responsibility) on March 27th 2020.
COVID-19: IMMUNOLOGICAL AND
INFLAMMATORY CHANGES

Physiologically, the immune system responds to viral infection by
activating both cellular and humoral responses. However, while a
quick and coordinated immune response leads to rapid viral
clearance, an overwhelming inflammatory response and
uncontrolled adaptive immunity could be harmful for the host. As
already stated, CRS (and its sequelae) is considered themain cause of
COVID-19 patient’s death. Indeed, in patients admitted to ICU and
with an extensive lung injury, proinflammatory cytokines and
chemokines [such as IL2, IL7, TNFa, IL17, Monocyte
Chemoattractant Protein-1 (MCP-1), and others] were found to be
significantly upregulated (36, 37). While the triggers of CRS still
remain to be completely elucidated, several mechanisms could be
hypothesized for similarity with other diseases. Specifically, a
damaged tissue (endothelial and alveolar epithelial cells) could lead
to the production and release of i) chemotactic factors attracting
monocytes and neutrophils and ii) specific molecules commonly
known as damage-associated molecular patterns (DAMPs) such as
high-mobility group box 1 (HMGB1), ATP, and cell free DNA.
DAMPs, together with pathogen-associated molecular patterns
(PAMPs), including viral RNA/DNA, are recognized by a group of
receptors (Pattern Recognition Receptors, PRRs) such as toll-like,
RIG-I-like, andNOD-like receptors, expressed onbothmacrophages
and neutrophils, whose engagement activate a series of downstream
regulators (NFKB, inflammasome, JAK/STAT) which induce
proinflammatory cytokines and chemokines release (38). To be
noted that ferritin, usually elevated in “hyperinflammed” COVID-
19 patients, is overexpressed during CRS and released by tissue
infiltrating macrophages further increasing local inflammation by
working as proinflammatory molecule (see below).

By looking at the immunological side of COVID-19 infection,
several recent studies identified lymphocytopenia, neutrophilia and
neutrophil-to-lymphocyte ratio as hallmarks of worse prognosis
(39). Overall, the lymphopenia affects both the T and B
compartments. CD4 and CD8 T cell subpopulations where
significantly reduced in absolute count, while a significant relative
increase in the Th17 pro-inflammatory subpopulation was
observed (40). The latter is known to be involved in the
pathogenesis of autoimmune and cancer disease and rely on the
microenvironmental presence of IL-6 and IL-23 (41, 42).
Interestingly, it is thought that, in analogy so SARS-CoV, SARS-
CoV2 could infect both lymphocytes andmonocytes/macrophages
through a still unknownmechanism (ACE2 is present at a very low
level on the surface of these cells). This event could lead to a further
exacerbation of the inflammatory machinery due to the fact that
viral component (RNA) could be sensed by intracellular PRRs.
Additionally, the observed increase inNaïve/memory ratiowithinT
cell population, coupledwith an unexpected reduction inTregs, has
Frontiers in Oncology | www.frontiersin.org 3
been hypothesized to further activate systemic inflammatory
response (41, 42).

Regarding the myeloid compartment, in a recently published
single cell RNAseq study, IL1b, accordingly to what already stated,
emerged as a new hallmark of COVID-19 infection. Specifically, it
was found to be upregulated (as compared to control) in CD14+
monocytes and dendritic cells from COVID-19 patients, thus
further supporting an excess in inflammatory response.
FERRITIN AND COVID-19: THE
INFLUENCE OF IRON METABOLISM IN
INFLAMMATORY RESPONSE TO THE
NEW CORONAVIRUS

Aspreviously stated,high levelsof serumferritinhavebeen found to
be a risk factor for COVID-19 severity and assessing this serum
biomarker during hospitalization could be of utmost importance to
identify high-risk patients with COVID-19 (43–47). In agreement,
patients with diabetes, which faced a higher probability to
experience complications from COVID-19, exhibited elevated
serum ferritin levels upon hospitalization (48). Furthermore,
autoptic studies on SARS-CoV-2 patients revealed elevated
ferritin levels (49). The exact mechanism underlying the
association of hyperferritinemia and COVID-19 severity is still
under active investigation, but several reports highlighted an
increased frequency of bilateral pulmonary infiltration and
concurrent coagulopathy in patients with hyperferritinemia
(≥500 ug/L) (43–47).

Ferritin is a major intracellular iron storage protein (50) and its
accumulation (hyperferritinemia) is a hallmark of the so-called
anemia of inflammation (AI), which is common in patients bearing
a prolonged immune activation, typical ofmalignancies, infections,
autoimmune diseases, and chronic kidney or pulmonary
diseases (51).

The origin of circulating serum ferritin during inflammatory
conditions is still not clear. Additionally, increasing evidence
supports the concept of ferritin as a modulator of systemic and
local inflammation (52). Indeed, despite most of the serum ferritin
derives from tissue injury and, in particular, from hepatic cells death,
during “hyperferritinemic syndromes”, ferritin could be even actively
released by hepatocytes (53) as well as by macrophages (54). Once
released, ferritin loses part of the iron content determining extremely
high serum levels of “free iron”, which, in turn, can deteriorate the
inflammatory reaction by inducing a marked pro-coagulant state
(55). “Free iron”may, indeed, favor theproductionof reactive oxygen
species (ROS) (55) and promote oxidative stress on red blood cells
and fibrin activation, thus leading to the production of dense clots,
involved in stroke pathogenesis (56). Due to the property of iron
chelation to modulate the inflammatory response through the
reduction of ROS production, the activity of this therapeutic
approach in patients with SARS-CoV-2 infection has been recently
investigated (57). However, further studies are needed to confirm the
role of serum ferritin as a therapeutic target as well as predictive/
prognostic marker of COVID-19 patients’ outcome.
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COVID-19 HYPERINFLAMMATION:
MOLECULAR MECHANISMS AND
TARGETING OPPORTUNITIES

The identification of the intracellular signaling pathways
underlying host immune systems response may be crucial for
the treatment of COVID-19 since it can lead to the identification
of new therapeutic actionable targets. Notably targeting
intracellular molecules rather than viral proteins shows the
advantage to exert less-selective pressure on viral populations,
being less likely to be “escaped” by virus mutations.

As described before, upon binding of the viral “spike” protein
to the target cell by the ACE2 receptor, viral RNAs are detected
by the PRRs, that, in turn, activate different downstream
transduction pathways crucial for the proper antiviral response
(58). Among them, NF-kB and JAK/STAT, key molecular
pathways in the immune response, raised a particular interest
representing attractive targets for therapeutic intervention (59).

The JAK/STAT signaling, in particular, is one of the main
regulatory cell pathways that transduces extracellular signals in
response to a variety of cytokines, lymphokines, and growth factors,
and regulates key cellular processes such as differentiation, cell cycle,
apoptosis and immune response (60, 61). The JAK non-receptor
tyrosine kinase family is composed by Jak1, Jak2, Jak3, and Tyrosine
kinase 2 (Tyk2) proteins. When extracellular signals are detected by a
specific JAK-associated receptor, JAKs phosphorylate a member of
STAT family (including STAT1, STAT2, STAT3, STAT4,
STAT5a, STAT5b, and STAT6), which results in dimerization
and translocation of STAT into the nucleus where it activates or
suppresses the transcription of different genes involved in immune
regulatory, differentiation, cell cycle, and apoptotic signaling (60, 61).

Interestingly, IL-6, reported to be increased in COVID-19
patients, is one of the major activators of JAK/STAT signaling
(47, 62, 63). IL-6 activates JAK/STAT signaling in different cell
types expressing IL-6 receptors, stimulating, in a positive feedback
loop, IL-6 production, and release (42, 64). Aberrant activation of
this pathway has been reported in patients affected by chronic
inflammatory diseases (e.g., arthritis rheumatoid), and could occur
in COVID-19 patients, thus exacerbating host inflammatory
response. Of note, chronic increase of serum IL-6 levels has been
associated with higher risk of cardiovascular events (65, 66), thus
supporting its role in the development of cardiovascular
complications (including inflammation-dependent diffuse
microangiopathy with thrombosis) in COVID-19 patients.
Interestingly, IL-6 synthesis and secretion could be induced by
Angiotensin II (ATII), releasedby inflamedvessels, in a JAK/STAT-
dependentmanner. Specifically,ATII binding toATII receptor type
1 (ATR1) activates JAK/STATdownstreamsignaling andpromotes
theproductionof IL-6 inapositive inflammatory feedback loop (67,
68). Notably, it has been shown that SARS-CoV spike could reduce
ACE2 expression, resulting in the overproduction of ATII by the
related enzymeACE (69, 70). Accordingly, it could be hypothesized
that SARS-CoV-2 acts in a similar manner by: 1) inducing an
overproduction of ATII, which 2) enhances IL-6 production in a
ATR1/JAK/STAT-mediated manner that 3) finally leads to
inflammation-dependent microangiopathy and lung injury.
Frontiers in Oncology | www.frontiersin.org 4
Based on these findings, approved drugs inhibiting IL-6/JAK/
STAT signaling may represent a valuable tool in the treatment
of COVID-19. In particular, as already reported, drugs as
Tocilizumab, have been investigated in COVID-19 with
contrasting results. About 40 clinical trials are ongoing to test
tocilizumab, alone or in combinations, in patients with COVID-
19 (clinicaltrials.gov and clinicaltrialsregister.eu).

On the other hand, JAK signaling inhibitors (baricitinib,
fedratinib, and ruxolitinib), already approved for the treatment of
several diseases including rheumatoid arthritis, myelofibrosis and
acute graft-versus-host disease (a-GVHD), have been reported to
counteract the host inflammatory response dependent on excessive
pro-inflammatory cytokines and chemokines release, thus
representing an interesting drug repurposing therapeutic strategy
(see below). On these premises, a number of clinical trials are
investigating the efficacy and safety of JAK inhibitors in COVID-19
patients, especially taking into account the balance between benefits
and potential side effects connected to these treatments
(Supplementary Table 1).

TARGETING THE JAK SIGNALING:
THE PROMISE OF RUXOLITINIB

Ruxolitinib is a JAK inhibitor currently approved for the treatment
of JAK-STAT dependent myeloproliferative syndromes (MFI, in
both USA and Europe) and graft-versus-host disease (USA). As
previously explained, due to its mechanism of action, the drug
presents potent immunosuppressive and anti-inflammatory
properties on both innate (dendritic cells, macrophages, and
neutrophils) and adaptive (T cells) immune effectors (71–74) and
reduces the secretion of several pro-inflammatory mediators
including IL-6 and TNF-alpha (75). Additionally, thanks to it
safety profile, ruxolitinib has been shown to be suitable even for
elderly population with myelofibrosis (76).

Ruxolitinib demonstrated anti-inflammatory and immunomodulatory
activity in hemophagocytic lymphohistiocytosis (HLH) and steroid
refractory aGVHD (both resembling many characteristics of the
inflammatory response against SARS-Cov-2) where induced a
strong reduction of ferritin and LDH and of other inflammatory
molecules such as IL-1, TNF, and MIP1a (77), coupled with a
recover from T and B cell lymphopenia and the normalization of
CD4/CD8 ratio (78). These data support the potential role for
ruxolitinib, as a drug repurposing strategy for the treatment of
SARS-CoV-2 driven CRS syndrome.

However, some specific concerns should be taken into account:
as other JAK inhibitors, ruxolitinib impairs the capability of antigen
presenting cells (such as macrophages and dendritic cells) to
produce, among others, type I interferons, Il-12, IL-15, and IL-23.
This event negatively influences NK activation, antigen
presentation and Th1/Th17 polarization, with consequent
alterations in antigen-specific T cells response, including viral
clearance, providing a possible mechanistic explanation for the
increase of infection rates in patients with MPN undergoing long-
term ruxolitinib treatment (36, 79–87).

Along this line, it could be conceivable that a short-term
treatment with ruxolitinib could be suitable to abrogate CRS
January 2021 | Volume 10 | Article 599502
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response during viral infection and avoididing the risk of innate
and adaptive systemic anti-viral response impairment. On these
bases, we requested and obtained the approval for using
ruxolitinib in a patient with COVID-19 admitted to ICU, via
nasogastric tube. We describe below the results obtained in this
seriously ill patient.
FROM THEORY TO CLINICAL PRACTICE:
CASE REPORT OF THE FIRST ICU
PATIENT TREATED WITH RUXOLITINIB

In middle March 2020, a 54-year-old man accessed the emergency
unit presenting with fever poorly responsive to acetaminophen and
antibiotic therapy with azithromycin. After about 10 days from
symptoms appearance and taking into account the progressive
worsening of respiratory function, a nasal and pharyngeal swab
was carried out for the research of SARS-COV-2 genes, confirming
the diagnosis of COVID-19. The baseline high resolution thoracic
CT scan (Figure 2A) detected signs of lung disease such asmultiple
bilateral “frosted glass” areas and interstice thickening. Due to
worsening in respiratory function, the patient began a Venturi
mask respiratory support quickly replaced by a C-PAP application
due to insufficient peripheral oxygenation. Since hospital
admission, the patient began the standard medical therapy used
at that time in our institution, which included a combination of
hydroxychloroquine, azithromycin, lopinavir/ritonavir,
Frontiers in Oncology | www.frontiersin.org 5
corticosteroids and LMWH, without significant clinical
benefit after 10 days of continuous administration. Indeed,
inflammatory markers such as LDH, ferritin, CRP, and IL-6
constantly increased, and the worsening of respiratory function
(PaO2 FiO2 ratio < 200) required ICU admission and orotracheal
intubation with passive mechanical ventilation. Continuous
administration of neuromuscular blocker agents was started.
Because of severe hypotension, continuous infusion of
norepinephrine administration was necessary. Two days before
ICU admission, taking into account age, systemic inflammatory
status, radiological scenario, and clinicalworsening, after signing an
informed consent, the patient started a short-term treatment with
ruxolitinib under a specifically authorized off-label access (the
patient belongs to a group of patients for whom we asked
authorization on March 23th 2020), granted by the Italian ethical
committee for COVID-19 experimentation located at the National
Institute for Infectious Diseases “Lazzaro Spallanzani” in Rome,
under the complete responsibility of the physicians who requested
the drug. At that moment, no shared and uniform criteria for
patient selection were available, so, taking into account the activity
of thedrug,we chose to treat “hyperinflamed”patientsonly, defined
as having 2 or more of the following criteria: ferritin> 400 ng/ml,
lactate dehydrogenase (LDH)> 480 U/l, lymphopenia (lymphocyte
count<1,000/ul), reactive proteinC(CRP)>5mg/l,fibrinogen<200
mg/dl, albumin <3.9 g/dl, triglycerides> 150 mg/dl, aspartate
aminotransferase (AST) or alanine aminotransferase (ALT)> 40
IU/l. Of note, mechanical respiration was not an exclusion criteria.
As per hematological clinical practice, before treatment start, the
A B

C

FIGURE 2 | (A) CT-scan at baseline and after ruxolitinib treatment demonstrating the resolution of the ground-glasses areas at two different levels. (B) Timeline
reporting ferritin modulation according to patient treatment; ruxo, ruxolitinib. (C) Patient laboratory values at baseline, 5 and 7 days, and at the time of discharge.
n.a., not available.
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patient was screened for HBV, HCV, and HIV positivity and for
active or latent tuberculosis, also in consideration of the recent
hypothesis that SARS-Cov-2 infections can cause lung
inflammation leading to the reactivation of dormant tuberculosis
in the lung (https://www.biorxiv.org/content/10.1101/2020.05.
06.077883v1).

The treatment schedule was ad hoc designed, mimicking
aGVHD therapy and included a 3-days “induction” phase (5
mg bid) followed by a “ramp-up” to 10 mg bid for 10 days and,
lastly, a 7 days decalage phase (5 mg BID for 3 days followed by 4
days at 5 mg dose one once a day) to minimize the risk of serious
adverse events due to “ruxolitinib withdrawal syndrome” (88).

Treatment with antiviral agents was continued, taking into
account that in healthy subjects the concomitant administration of
ruxolitinib with a CYP3A4 inhibitor resulted in an increase in
Cmax and AUC by 33% and 91% (89), rendering unnecessary to
increase ruxolitinib dosage over 10 mg bid. Twenty-four hours
after increasing the dosage of ruxolitinib (administered through
the nasogastric tube), we observed the first signs of improvement
in the laboratory parameters (Figures 2B, C and Supplementary
Figure 1), which allowed the start of weaning procedures on the
5th day from the start of the 10 mg bid therapy. After few hours,
ventilation mode was shifted to Pressure Support Ventilation. The
day after, because of the improvement of respiratory exchange,
patient was extubated and not-invasive ventilation by helmet was
performed. Overall, along recovery in ICU, patient underwent four
pronation cycles and ruxolitinib administration continued after
patient discharge in infectious disease department according to the
treatment schedule. After 23 days from ruxolitinib initiation the
patient was discharged at home in perfect condition and with all
the laboratory parameters normalized (Figure 2C). Of note, post-
treatment CT scan (Figure 2A) demonstrated clear resolution of
lung disease without signs of interstitial fibrosis, a finding in line
with the antifibrotic effect on bone marrow during ruxolitinib
treatment in hematological diseases (90–97). The patient did not
experience any side effect during the treatment, with the exception
of a potentially treatment-related anemia (which spontaneously
resolved after discharging, data not shown) (Supplementary
Figure 1). The patient is currently (after 6 months from
discharging) in perfect conditions with all laboratory exams
within the range of normality (data not shown).
DISCUSSION

The cytokine storm in COVID-19 patients and the resulting
hyperinflammatory syndrome with hyperferritinemia (36, 44, 98–
107) often leads to the hypoxic lung lesions observed in ICU patients
(36, 108, 109). Unfortunately, blocking interleukin-6 alone
demonstrated to be rarely sufficient to counteract (or at least
control) the establishment of the immune/inflammatory/
thrombotic vicious circle (110, 111) responsible for patients’ death.
In our view, a short-term inhibition of the JAK pathway could
represent an important therapeutic weapon for these patients.
Indeed, in addition to significantly reducing the serum levels of
IL-6 and C-reactive protein (CRP) (77, 112), ruxolitinib could
Frontiers in Oncology | www.frontiersin.org 6
influence the regulation of several inflammatory cytokines
(including IL-2, IL-5, and IL-10) (36, 113), and consequently
reduce hyperferritinemia. The observed rapidity of action
obtainable in just 2 h from administration (114) in modulation of
the cytokine-induced STAT3 phosphorylation signal, and the
possibility of administration by nasogastric tube, could make the
drug definitely suitable for a therapeutic approach of emergency in
serious ICU patients even in patients refractory to anti-IL-6
agents (115).

Taking into account that only 14%ofCOVID-19patients develop
symptoms that require hospitalization and oxygen support and that
around 5% require ICU admission (36), strict criteria for patient
selection should beused to identify hyperinflammedpatients likely to
benefit from ruxolitinib short-term administration (116). These
“markers” should include advanced age, high SOFA score, D-
Dimer values > 1 mg/L, and ferritin (44, 81, 117) and IL-6 values
increase (where and if dosage is possible). It is therefore clear that a
close collaboration between emergency and infectious diseases
physicians and hematologists (77, 78) is mandatory to render this
treatment easy tomanage and safe for patients. Being used as an oral
treatment, under the supervision of hematologists, ruxolitinib could
be administered at home in “hyperinflamed” patients with COVID-
19 to avoid aworsening of clinical conditions and reduce the need for
hospitalization, at an accessible drug cost per patient of about 3.500€
(price in Italy for the5mg56 tabletspackage). Indeed, as showninour
case report, ruxolitinib could induce a strong anti-inflammatory
response with normalization of different inflammatory parameters,
quickly leading to a respiratory improvement.

On the bases of all biological premises (62, 115, 118–129), and of
our preliminary results, we firmly believe that ruxolitinib presents a
strong potential in overcoming lung and systemic complications
caused by JAK/STAT-mediated immune hyperactivation during
COVID-19 disease. Indeed, while recent works in this field (123–
125, 127)demonstratedapromisingactivityof ruxolitinib inavoiding
respiratory worsening and progression to mechanical ventilation in
hyperinflamed patients at imminent risk to be admitted to ICU (by
using different treatment schedules, including a dose escalation in
case of not-responding patients), here we presented a case-report
documenting the potential activity of the drug (with a slightly
different 20-days schedule which include a preplanned dose
intensification followed by a decalage phase) in patients already
under mechanical ventilation, thus extending the possibility of
using this drug in critical patients (our patient was indeed quickly
intubated after treatment beginning and received ruxolitinib through
a nasogastric tube). Anyway, while using different timings and
schedules, all the studies reported a clinical benefit within few days
from treatment starts without major signs of ruxolitinib-associated
toxicities (mainly due to the short treatment courses) underscoring
theneedof larger studies (phase 3 studies are ongoing) to confirm the
activity of the drug in hyperinflamed COVID-19 patients regardless
of the respiratory support they need. Ruxolitinib-related side effects,
when present, could bemanaged and resolved through a fruitful and
humble cooperation between oncohematologists familiar to the drug
(130–133) and clinicians from infectious disease, lung and intensive
careunits (118, 123–125, 127, 130, 134),without beingmisledby false
convictions, lack of personal experience, overestimated toxicity (134)
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or by unethical conflicts of interests. In line with what recently
highlighted in Lancet (135) and by La Rosée and colleagues (127), in
this sad and difficult historical moment, patients deserve the best
possible care and kind evaluation of new agents, communicating
positive results immediately and promptly to the whole scientific
community and translating new observational findings into
structured (randomized) andmethodologically correct clinical trials.
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