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Glioma is the most common primary malignant brain tumor with a poor prognosis. Immune
checkpoaint inhibitors have been of great interest in investigation of glioma treatments. Here, we
report single-cell transcriptomic analyses of two tumor areas from an oligodendroglioma taken
from a patient who had multiple tumor recurrences, following several chemotherapies and
radiation treatments. The patient subsequently received nivolumab and was considered have
disease progression based on conventional diagnostic imaging after two cycles of treatment. He
underwent a debulking surgical resection and pathological diagnosis was recurrent disease.
During the surgery, tumor tissues were also collected from the enhancing and non-enhancing
areas for a scRNAseq analysis to investigate the tumor microenvironment of these
radiographically divergent areas. The scRNAseq analysis reveals a plethora of immune cells,
suggesting that the increased mass observed on MRI may be partially a result of immune cell
infiltration. The patient continued to receive immunotherapy after a short course of palliative
radiation and remained free of disease progression for at least 12 months after the last surgery,
suggesting a sustained response to immunotherapy. The scRNAseq analysis indicated that the
radiological progression was in large part due to immune cell infiltrate and continued
immunotherapy led to a positive clinical outcome in a patient who would have otherwise been
admitted to hospice care with halting of immunotherapy. Our study demonstrates the potential of
scRNAseq analyses in understanding the tumor microenvironment, which may assist the clinical
decision-making process for challenging glioma cases following immunotherapy.
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Case Report: scRNAseq in Glioma Receiving Immunotherapy

INTRODUCTION

Malignant gliomas, which represent about 80% of primary
malignant brain tumors, remain as an incurable disease, due to
many treatment challenges unique to brain tumors (1-3). With
the increasing evidence of the existence of infiltrating immune
cells and immune surveillance in the brain, immunotherapy has
become an interest in brain tumors (4, 5). There have been
positive outcomes with immunotherapy in multiple cancer types,
leading to FDA approval of nivolumab, a monoclonal antibody
targeting PD-1, and ipilimumab, a monoclonal antibody binding
to CTLA-4 for treatment of melanoma and non-small cell lung
cancer (6-8). There is increasing interest in exploring
immunotherapy for brain tumors. Safety profiles have been
established in patients with newly diagnosed glioblastoma
treated with nivolumab and ipilimumab (9).

The management of glioma patients during immunotherapy
remains a challenge as there are no clear radiological features to
distinguish response from progression using the conventional
magnetic resonance imaging (MRI) (10). MRI is the most
commonly used approach for assessment of disease progression
and relies on contrast enhancement to distinguish malignant
transformation which usually results in breakdown of the Blood
Brain Barrier (BBB) (11). However, radiographic changes post
immunotherapy such as increased contrast enhancement,
enlargement of existing lesions, and/or appearance of new lesions
that are not due to tumor progression have been observed and
classified as pseudo-progression (12). Pseudo-progression has been
reported in glioma patients receiving concurrent chemoradiation
and immunotherapy (13-16). Radiographic changes after
immunotherapy may occur for multiple reasons aside from
disease progression. Although early radiographic changes may
reflect true disease progression before the immune response has
initiated (16), an increase in enhancing signals on MRI may
represent an inflammatory response, resulting from infiltration of
tumor-infiltrating immune cells into the tumor (17). Pseudo-
progression may occur with or without observation of clinical
deterioration, which further confounds the interpretation of
radiographic findings (18). Understanding the impact of glioma
immunotherapy at the cellular level will benefit the clinical
decision-making.

Here, we present a patient with a recurrent anaplastic
oligodendroglioma (AO), who showed a prolonged response to
immune therapy despite disease progression by the conventional
MRI with pathological confirmation. It highlights the challenge of
interpreting radiographic progression in gliomas and demonstrates
the potential of additional molecular testing to assist the clinical
decision-making for improving treatment response.

CASE PRESENTATION

A 48-year-old man who initially presented with seizures was
subsequently diagnosed with AO, WHO grade III nineteen years
prior to this study. As illustrated in Figure 1A, he received radiation
therapy (RT) after the initial surgery to remove the tumor. Eight

years later, he had a second resection followed by two years of
temozolomide (TMZ) treatment. The patient then received five
cycles of procarbazine, lomustine and vincristine (PCV) treatment
due to the concern of disease progression. Four years prior to the
current presentation, he underwent a third surgical resection after
disease progression and was treated with bevacizumab for a year
until the disease was found to recur. The patient underwent a fourth
resection two years prior to presentation to the National Institutes
of Health (NIH) for further evaluation. He was enrolled in a
clinical trial (NCT03718767) and started nivolumab treatment.
An MRI scan after two cycles of treatment (nivolumab 240 mg
intravenously, every two weeks on a 28 day-cycle) showed that the
enhancing lesions in the right insular region increased in size
significantly, while the fluid-attenuated inversion recovery
(FLAIR) signal in the right frontal and temporal lobe remained
largely unchanged from the baseline, suggesting worsening high
grade glioma. (Figure 1B). A surgical debulking was indicated due
to potentially life-threatening mass effect and a craniotomy with
tumor resection was performed. The pathologic exam showed a
mixture of tumor cells and immune cell infiltration which suggested
treatment effects (Figure 1C). The final diagnosis was recurrent AO.
Post-surgically, the patient’s overall condition became worse but
without focal neurological deficit. The patient was recommended
comfort care with a short course of palliative radiation to the tumor
resection bed.

DIAGNOSTIC ASSESSMENT

Immunohistological Exam

A hematoxylin and eosin (H&E) stained tumor slide showed a
neoplastic process with oligodendroglia phenotype including
cells with round nuclei. High grade features including marked
cellularity, cell atypia, mitoses, vascular proliferation and
pseudopalisading necrosis were present. Additional immuno
histochemistry (IHC) exam of immune cells revealed the presence
of CD4+ and CD8+ T cell infiltration. CD68+ cells, representing
macrophage and microglia cell populations, were also identified on
the tumor slides (Figure 1C).

Single-Cell RNA Sequencing

To better understand the tumor microenvironment, particularly
the immune cell distribution in radiographically different areas
following immunotherapy, the samples were collected from both
enhancing and non-enhancing lesions during the tumor
resection (lower left, Figure 1B), and processed for single-cell
RNA sequencing (scRNAseq) analysis.

Cell Type Distribution in Tumor Tissue

We identified ten major cell types based on their gene expression
profiles (Figure 2A). Though the tissues were expected to be
composed of mostly tumor, only 3.5% of the cells were classified
as oligodendroglioma cells (Figure 2B). Most of the cell clusters
were identified as immune cell types, including microglia (34.2%),
macrophages/monocytes (14.4%), NK cells (9.8%), T cells (24.6%),
and a small amount of B cells (0.9%) (Figure 2B). Other non-tumor
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FIGURE 1 | Case presentation. (A) Timeline of disease diagnosis and treatment. (B) Magnetic resonance imaging (MRI) obtained at baseline (top panel) and after 2 cycles of
nivolumab treatment (bottom panel). T1 post-contrast and FLAIR sequences are shown in the left and right column, respectively. Red and blue circles indicate the location of

tissue acquisition from the enhancing (red) and non-enhancing (blue) regions. (C) Immunohistochemistry analysis showing H&E staining and reactivity of immune cell markers

CD68, CD4, and CD8 (10x magnification) from the resected tissue following nivolumab treatment.
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FIGURE 2 | Single-cell analysis of resected tissue from enhancing and non-enhancing lesions (A) Uniform Manifold Approximation and Projection (UMAP)
representation of ten identified cell types in enhancing and non-enhancing samples from the resected tissue. (B) Percentages of each cell type of all cell populations.
(C) Percentages of each cell type of the enhancing and non-enhancing samples.

cells included endothelial cells (4%), chondrocytes (2.8%), tissue
stem cells (2.7%), and neurons (3.1%). Thus, based on the single-cell
analysis, almost 84% of the cells analyzed were immune cells and
less than 5% of oligodendroglioma cells. The low percentage of
tumor cells in the single-cell population determined by the
scRNAseq seems to be lower than that detected by the H&E
staining on tumor tissue slides. This difference may be due to

tissue sampling or single-cell processing, including dead cell
removal. Here, we focused on the immune microenvironment.
Notably, cell type distribution was quite different in enhancing
versus non-enhancing lesions. Over half (51.5%) of the cells in non-
enhancing lesion were composed of microglia compared to only
10.4% of the cells in enhancing tissue (Figure 2C). There was a
slightly higher percentage of macrophages/monocytes in the
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enhancing sample (17.6%) compared with non-enhancing sample
(12.1%). Interestingly, 43.6% of the cells from enhancing lesion were
composed of T cells compared to 10.9% of the cells from non-
enhancing region. The percentages of NK cells within each sample
were similar.

Functional Status of Immune Cells

Since T cells, NK cells, microglia, and macrophages/monocytes were
the most represented immune cell types in the tumor tissue, we
further examined the relevant functions of these immune cells. Sub-
clustering analysis of the T cells identified CD8+, CD4+,
and regulatory T cell (Treg, CD4+/FOXP3+) subpopulations
(Figure 3A). The CD8+ T cells, as expected, expressed the highest
cytolytic score of T cells while the Tregs expressing at the lowest
cytolytic score (Figure 3B). Interestingly there were many more T
cells in the enhancing region (Figure 2A). When the cytolytic score
per cell was calculated, a fold-change of 1.33 in non-enhancing lesion
versus enhancing lesion was found (Wilcoxon test p = 3.084 x 10-6)
(Figure 3C). Although we discovered that T cells in non-enhancing
lesion expressed higher levels of PRF1, GZMM, GZMH, and GZMB
when compared to that in the enhancing lesion, the significance of
this is unknown and more studies are needed to define this in the
context of immune therapy (Figure S1). Like CD8+ T cells, NK cells
in the non-enhancing region expressed a higher cytolytic score
compared to that of enhancing region (Figure 3C, fold change
1.52; Wilcoxon test, p = 4.136 x 10-14), though the percentages of

Cytolytic score

® cp4
® cps

~
® Tregs o
(CD4+/FOXP3+) ‘E‘

=]

.
Enhancing
I Non-enhancing
.
. .
.

NK_cells

] 4
UMAP_1

12.54

14
o

o
o

o
°
s

Cytolytic score
N
o

14
o

T_cells

FIGURE 3 | Subclustering analysis of T and NK cells. (A) UMAP plot
showing three distinct T cell subpopulations, CD4+, CD8+, and Tregs (CD4+/
FOXP3+). (B) UMAP representation of cytolytic score of T cells. (C) Violin
plots summarizing the cytolytic score of NK cells and T cells from enhancing
and non-enhancing samples. The average cytolytic scores of T cells were
1.87 in enhancing and 2.50 in non-enhancing lesions (Wilcoxon test p =
3.084 x 10-6), and the average cytolytic scores of NK cells were 3.06 in
enhancing and 4.66 in non-enhancing (Wilcoxon test p = 4.136 x 10-14).

NK cells within each sample were similar. By analyzing differential
gene expression (DGE), we found that SH2D2A, encoding T cell
Specific Adapter protein (TSAd), which mediates the activation of
T cells, increased in the T cells of non-enhancing lesion (Figure S2)
(19). GNLY, which encodes granulysin, a protein presents in the
cytotoxic granules that are released by the activated CTLs, was
found to be upregulated in T cells from non-enhancing tumor area
(Figure S2) (20). NFKBI, which regulates the maturation and
effector function of NK cells, was the only gene upregulated in NK
cells of the enhancing lesion (Figure S3) (21). These findings may
not be applicable to all glioma cases. However, the DGE analysis at
the single-cell level may help to explain the role of T/NK cells in
the immune tumor microenvironment.

The majority of the microglia were found in the non-enhancing
lesion, while macrophages/monocytes have a similar distribution
in both enhancing and non-enhancing lesion (Figure 4A). As
expected, both cell clusters expressed CD68, consistent with the
identity of the cell types (Figures 4B). We used the markers of CD80,
CD86, CD163, and MRCI1 (CD206) to further characterize the
functional status of the subpopulations. The expression of the M1-
like (pro-inflammatory) cell marker CD80 was minimal throughout,
while the CD86+ cells were much more enriched in both non-
enhancing and enhancing lesions (Figure 4C). The expression of
CD86 was found in both microglia and macrophages/monocytes.
The expression of M2-like (anti-inflammatory) markers was found
more in macrophages/monocytes but marginally in microglia
population, suggesting that microglia may have more
proinflammatory phenotype than the macrophages/monocytes in
this case. Both M1-like and M2-like markers were found to be
expressed in macrophages/monocytes to a similar extent in the
enhancing and non-enhancing regions (Figure 4D). The DGE
analysis revealed that RNASET2, which mediates the M1-like
polarization and suppresses M2-like polarization, was upregulated
in microglia and macrophages/monocytes of the non-enhancing
lesion (Figure S2). This finding suggests a potential role of
RNASET2 in an antitumor microenvironment after immune
therapy (22, 23). Together, the scRNAseq data indicate that the
tumor microenvironment in this case is enriched with pro-
inflammatory/anti-tumoral microglia after anti-PD-1 treatment.

Therapeutic Intervention and Clinical Outcome

Overall, the results demonstrate the presence of proinflammatory
microglia, macrophages/monocytes and CD8+ T cells with high
cytolytic scores in the tumor microenvironment after a short course
of anti-PD-1 therapy, suggesting an immune response. Encouraged
by the evidence of the immune response, the patient was continued
on immunotherapy rather than hospice care. After a short course of
palliative radiation around the resection cavity, he went on protocol
“Care of the Adult Oncology Patient, NCI” (NCT00923065) to
receive ipilimumab and nivolumab. Ipilimumab was administered
at 1mg/kg every four weeks in combination with nivolumab 3 mg/kg
every two weeks for four cycles followed by nivolumab alone at
480 mg every four weeks for twelve cycles (each cycle is four weeks).
Since the most recent surgery, he has remained radiographically and
clinically stable for atleast 12 months (Figure S4). Thus, the results of
the scRNAseq analysis are supported by the prolonged durable
response to immunotherapy in this patient.
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DISCUSSION

Here we report a case of recurrent anaplastic oligodendroglioma
with a durable response to repeated immunotherapy. The re-
challenge with immune therapy was provided after the patient
was confirmed with disease progression by conventional MRI and
pathologic exam after a short course of immunotherapy. The
results of single-cell analysis using the tumor samples collected
during the debulking surgery provided insightful information about
the tumor microenvironment in both enhancing and non-
enhancing lesions, suggesting an immune response to the prior

treatment with nivolumab. More importantly, the patient
remained free of progression for at least 12 months on continued
immunotherapy, consistent with the findings of functional and
proinflammatory immune cells from the scRNAseq analysis.

Like other case reports, the major limitation of this study stems
from the nature of case reports. The findings from any single case
may not be applicable to all cases. However, this case report highlights
the challenges of interpreting imaging changes in glioma patients
receiving immunotherapy. This case establishes a feasibility of
obtaining in-depth information of tumor microenvironment by
using single-cell analysis in glioma patients. The findings illustrate
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the different pathophysiology in radiographically different areas.
Such insights can help to understand the biology and possibly
assist in clinical decision making.

Accurately interpreting radiographic changes is of immense
importance in neuro-oncology clinical management, as treatment
may be prematurely discontinued in responding patients if
tumor progression is inaccurately defined by MRI exam. More
importantly, it can delay the adequate treatment for such patients.
Immunotherapy has added increasing difficulty to interpreting
imaging responses, such as inflammatory responses which often
induce more enhancing lesions on the conventional MRI, mimicking
disease progression (16). In recognizing these challenges, the
immunotherapy Response Assessment for Neuro-Oncology
(iRANO) working group has proposed guidelines to address the
uncertain radiographic changes that may occur after immunotherapy
treatment (13). In this case report, we used scRNAseq to investigate
the tumor microenvironment of enhancing and non-enhancing
tissues within the same tumor. Different immune cell infiltration
patterns were found between enhancing and non-enhancing tissues.
The findings of a large amount of T cells in the enhancing lesion may
explain those instances where the increased enhancing lesion were
confirmed not to be caused by tumor progression. The enrichment of
proinflammatory microglia in this case suggest that the change of
non-enhancing lesion may need to be evaluated carefully when a
clinical decision is needed. Overall, the scRNAseq may help us
understand the tumor microenvironment in regions with
radiographic differences, which may provide insights into disease
processes and further assist in clinical decision-making.

Pathologic diagnosis remains the gold standard for tumor
diagnosis. However, smaller biopsies may cause sampling bias.
Even with enough amount of tissue, sampled staining results may
contain evidence of both tumor cells and treatment effects, resulting
in a “mixed” diagnosis, making the treatment decision challenging.
While it is essential to have information regarding the presence or
absence of tumor cells in a tissue specimen, it is also important to
understand the extent of the disease. It becomes more relevant in the
context of immunotherapy, where an overall tumor control is
determined by a dynamic balance between tumor growth and
immune modulation. Compared to the pathologic analysis and
bulk RNA sequencing, scRNAseq provides a much higher
resolution due to the platform’s ability to analyze the RNA
expression at the single-cell level, rather than averaging expression
measurements of all cell types in the bulk tissue (24). Other studies
have used this technology to investigate the landscape of gliomas and
the tumor microenvironment. In a study that analyzed tumor core
and peritumor samples from four patients with glioblastoma, a
scRNAseq study after immunotherapy revealed that on average,
36% of the cells were neoplastic and 46.3% were immune-related (25).
In another study that performed single-cell sequencing of unsorted
samples from eight high-grade gliomas, six were primarily
composed of glioma cells with minimal presence of immune cells
(26). However, two of the eight tumors were composed of a larger
fraction of immune cells, one with 48% myeloid cells, 5% T cells, and
45% tumor cells and the other with 57% myeloid cells and 43% tumor
cells. Furthermore, there is evidence suggesting that IDH-mutant
tumors contain lower numbers of immune cell infiltrates compared

with wild-type (27). In our study, we show that the IDH-mutant
sample from our case contained ~84% of immune cells, suggesting an
enhanced immune cell infiltration compared with the intrinsic
immune cell profiles of gliomas in the literature. Though the tumor
microenvironment profiles may vary between patients, the
predominant immune cell group identified by scRNAseq in glioma
is primarily microglia/macrophages (28). In addition to a large
number of microglia/macrophages, particularly pro-inflammatory
microglia, a large percentage of cytotoxic T and NK cells were also
detected. It provides with further evidence that the enrichment of
immune cell populations more likely results from the response to
immunotherapy than the resident glioma-associated immune cells.

Although the findings are intriguing and may provide with some
insights of the tumor microenvironment in the radiographic different
tumor areas following immunotherapy, they are inconclusive in
nature. Even though the scRNAseq finding of this case is supported
by a durable clinical response, other factors may have contributed to
this favorable treatment response, including the palliative radiation
prior to re-challenging with immunotherapy. Another confounding
factor includes the fact that the second immunotherapy treatment
was initially a combined treatment of nivolumab and ipilimumab for
four cycles, then followed by nivolumab, rather than nivolumab
alone. A prospective controlled study is warranted to elucidate the
treatment response. Other limitations of scRNAseq is that it may be
noisier and more difficult to interpret than bulk RNA sequencing, and
refined methods for sample collection, processing, and bioinformatic
analysis must be standardized for a maximum reliability and
reproducibility for clinical use in directing patient care.

In summary, our study established the feasibility of using the
scRNAseq technology as a strategy to investigate the tumor
microenvironment in the context of immunotherapy in gliomas.
The potentials of scRNAseq analyses in assisting clinical decision-
making in challenging case are demonstrated. A prospective
evaluation of the correlation of scRNAseq with radiographic
findings in glioma following immunotherapy may also be considered.
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