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Background: Radiation-induced lung fibrosis (RILF) is an important late toxicity in patients
with non-small-cell lung cancer (NSCLC) after radiotherapy (RT). Clinically significant RILF
can impact quality of life and/or cause non-cancer related death. This study aimed to
determine whether pre-treatment plasma cytokine levels have a significant effect on the risk
of RILF and investigate the abilities of machine learning algorithms for risk prediction.

Methods: This is a secondary analysis of prospective studies from two academic cancer
centers. The primary endpoint was grade≥2 (RILF2), classified according to a system
consistent with the consensus recommendation of an expert panel of the AAPM task for
normal tissue toxicity. Eligible patients must have at least 6 months’ follow-up after
radiotherapy commencement. Baseline levels of 30 cytokines, dosimetric, and clinical
characteristics were analyzed. Support vector machine (SVM) algorithm was applied for
model development. Data from one center was used for model training and development;
and data of another center was applied as an independent external validation.

Results: There were 57 and 37 eligible patients in training and validation datasets, with 14
and 16.2% RILF2, respectively. Of the 30 plasma cytokines evaluated, SVM identified
baseline circulating CCL4 as the most significant cytokine associated with RILF2 risk in
both datasets (P = 0.003 and 0.07, for training and test sets, respectively). An SVM
classifier predictive of RILF2 was generated in Cohort 1 with CCL4, mean lung dose (MLD)
and chemotherapy as key model features. This classifier was validated in Cohort 2 with
accuracy of 0.757 and area under the curve (AUC) of 0.855.
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Conclusions: Using machine learning, this study constructed and validated a weighted-
SVM classifier incorporating circulating CCL4 levels with significant dosimetric and clinical
parameters which predicts RILF2 risk with a reasonable accuracy. Further study with
larger sample size is needed to validate the role of CCL4, and this SVM classifier in RILF2.
Keywords: Support Vector Machine, radiation-induced lung fibrosis, non-small-cell lung cancer, cytokine, lung
dosimetric factors
INTRODUCTION

Lung cancer is the leading cause of cancer-related death. Non-
small-cell lung cancer (NSCLC) is the predominant (85%) form
of lung cancer (1). The majority of patients with locally advanced
NSCLC are unresectable and treated with chemotherapy and
radiation therapy (RT). While curative in a subset of patients, RT
as a mainstay local treatment of cure for NSCLC is often limited
by the concerns of radiation-induced lung toxicities (RILT),
including radiation pneumonitis (RP) and radiation-induced
lung fibrosis (RILF) (2). The risk of RP following receipt of
thoracic RT has been widely studied (3). However, RILF as
another important RILT whose significance was recently
highlighted in a global context recently by a global workshop
organized by the Center for Cancer Research of the National
Cancer Institute (NCI) global workshop (4) has not been
adequately reported.

RILF is typically considered to be a late and irreversible
pathologic process (5, 6). Persistent injury of type II alveolar
epithelial cells, infiltration of inflammatory cells, deposition of
collagen, and formation of lung fibrosis (7, 8) are contributing
pathophysiologic mechanisms in RILF. Clinically, it can cause
dyspnea, impaired lung function, and even fatal respiratory
insufficiency (8–10). Clinically significant RILF affects quality
of life and can be a critical condition for long-term survivors
(10). Unfortunately, RILF remains understudied, and the
treatment is primarily supportive with supplemental oxygen
for symptomatic relief (11). Thus, it is crucial to identify risk
factors and models that may predict RILF prior to treatment
with RT.

Multiple studies have identified dosimetric correlates of RILF
(8, 12–14), but models which integrate clinical, biological, and
dosimetric features to predict RILF have not been constructed.
Recently, urine gastrin-releasing peptide (GRP) (15), serum club
cell secretory protein (CCSP), and serum surfactant protein D
(SP-D) (16) levels were found to predict RILF development in
mice. Cytokines play crucial roles in the interactions and
communications between cells; in particular, some are essential
in pathologic process of inflammation/pro-inflammation and
fibrosis development, thus potentiating the effect of RP on
RILF. We recently reported a significant correlation of baseline
Interleukin-8 (IL-8) and C-C Motif Chemokine Ligand 2 (CCL2)
levels with RP2 (RP grade≥2) risk (17). For RILF risk, we have
studied the effect of circulating cytokines in mice, demonstrating
that granulocyte-colony stimulating factor (G-CSF), Interleukin-
6 (IL-6), and keratinocyte-derived chemokines (KCs) were
significant factors (18).
2

In this study, with long-term follow-up data from prospective
clinical trials , we hypothesized that cytokines with
immunomodulating, inflammatory, and fibrosis forming effects
play key roles for the development of RILF, and thus baseline
cytokine levels in combination with treatment dosimetric and
clinical variables can improve the predictive accuracy of RILF.
Specifically, this study aimed to explore such a combined
predictive model for RILF2 (RILF grade≥2) and the clinical
utility of using machine learning algorithm for modeling.
Weighted-Support Vector Machine (weighted-SVM) was
chosen as it can handle small size and imbalanced datasets,
using the weighted soft margin approach (19–21).
METHODS

Study Population
The study population was 185 patients with NSCLC who
participated in four prospective clinical trials (UMCC 2003.073,
UMCC 2003.076, NCT00603057, and NCT01190527) at two
Medical Centers: Cohort 1 (the Veterans Affairs Medical
Center, Ann Arbor, MI) and Cohort 2 (the University of
Michigan Cancer Center) from 2003 to 2016. Study eligibility
included those with FDG-avid (maximum SUV ≥4.0, from PET
scan of any date, any scanner); histologically or cytologically
proven NSCLC; with follow-up assessment for RILF risk. All
clinical data, including grading of RILF, clinical and dosimetric
parameters, and blood samples, were prospectively collected. We
excluded patients without follow-up and those treated with
stereotactic body radiation therapy (SBRT) considering their
entirely different dose fractionations and biologic mechanisms.
Furthermore, all patients were required to have at least six
months of follow-up for RILF, which was necessary for
latency considerations.

Radiation Treatment
All patients received daily fractionated 3D conformal radiation
therapy with or without concurrent chemotherapy (Chemo). The
gross tumor volume (GTV) including the primary tumor and
any involved hilar or mediastinal lymph nodes was delineated
on the basis of clinical, pathologic, and radiographic data
which included a positron emission tomography–computed
tomography (PET-CT). Radiation therapy was given in 60–86
Gy in 2–3.8 Gy fractions, including two dose escalation studies
which allowed tumor prescription doses up to 86 Gy. The details
and RT dose-fractionations for each trial are summarized in
Supplemental Table S1. Since various doses/fractions were used
February 2021 | Volume 10 | Article 601979
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for patients, bio-corrected radiation doses with alpha/beta = 3
were used to calculate MLD and V20 in order to compare lung
biological effective dose for different RT fractionations.

Endpoint and RILF Grading
The primary endpoint was clinical RILF grade ≥2 (RILF2).
Patients were evaluated at every 3 months in year 1 and every
6 months in year 2 and every year after 3 years and after. RILF
was graded prospectively, according to a predefined grading
system which was consistent with the recommendation of the
expert panel of an AAPM task for normal lung toxicity (22),
similar to detailed statement of adverse events and radiographic
changes according to CTCAE3.0 (Table 1). RILF2 was defined by
the presence of radiologic fibrosis with dyspnea symptom (2) but
without notable changes of average daily living. RILF3 was those
with symptom and with changes of average daily living. RILF
grade for each patient was reviewed by both American Board
Certified radiologist and radiation oncologist.

Plasma Cytokines
Baseline levels of 30 plasma cytokines including Epidermal
growth factor (EGF), Granulocyte-colony stimulating factor
(G-CSF), Granulocyte-macrophage colony stimulating factor
(GM-CSF), Interferon gamma (INF-g), Interleukin 10 (IL-10),
Subunit beta of interleukin 12 (IL-12p40), Interleukin-12 (IL-
12p70), Interleukin 13 (IL-13), Interleukin 15 (IL-15),
Interleukin 17 (IL-17), Interleukin 1a (IL-1a), Interleukin 1b
(IL-1b), Interleukin 1ra (IL-1ra), Interleukin 2 (IL-2),
Interleukin 4 (IL-4), Interleukin 5 (IL-5), Interleukin 6 (IL-6),
Interleukin 7 (IL-7), Interleukin 8 (IL-8), C-C motif chemokine
ligand 2 (CCL2), C-C motif chemokine ligand 3 (CCL3), C-C
motif chemokine ligand 4 (CCL4), C-C motif chemokine ligand
11 (CCL11), C-X-C motif chemokine ligand 10 (CXCL10), C-
X3-C Motif Chemokine Ligand 1 (CX3CL1), Soluble CD40
ligand (sCD40l), Transforming growth factor-alpha (TGF-a),
Tumor necrosis factor-a (TNF-a), Vascular endothelial growth
factor (VEGF), and Transforming growth factor-beta1 TGF-b1
were measured. The protocol for plasma collection, storage, and
cytokine measurements had been described previously (23, 24).
Since the cytokine levels were right-skewed, they were
normalized by a log transformation before further analysis.

Statistical Analysis
The patients with missing data were excluded in this study.
Fisher’s exact test and logistic regression were used to evaluate
Frontiers in Oncology | www.frontiersin.org 3
the statistical significance of clinical variables, dose metrics, and
baseline plasma cytokine levels with RILF2. All statistical
analyses were two-sided, with the overall P threshold of 0.05
for significance. All statistical analyses and machine learning
algorithms of this study were performed using R, version
3.6.1 (25).

Machine Learning Algorithms: Weighted-
SVM Classifier
Multiple machine learning algorithms can be applied to identify
significant biomarkers by building (Cohort 1) and externally
validating (Cohort 2) a predictive model to classify the RILF risk.
Considering the limitations of a small sample size and
imbalanced datasets, the weighted-SVM algorithm was
elected (21).

For SVM classifier building, limited by the sample size, only
three features were allowed to avoid over-fitting. These three
features were selected by machine learning algorithm to be the
representative of cytokine biology, physical dosimetrics, and
clinical treatment variables. The tuning hyperparameters of the
weighted-SVM included the following: radial kernel, cost from
400 to 800 stepped 100, gamma from 0.001 to 0.01 stepped
0.001, and weight of cases without RILF2 from 0.1 to 0.15
stepped 0.002. The SVM classifiers with final features and
hyperparameters were trained and tested in Cohort 1 by cross-
validation (CV) algorithm. Five times fivefold CV algorithm was
performed to control for the limited sample size. 1) The data was
randomly divided into a training set and a testing set (fourfold
and onefold). 2) For each set of three features and each set of
hyperparameters, SVM models were generated on each training
set and validated in each testing set to calculate accuracy, area
under receiver operative curve (AUC), and the area under
precision-recall curves (PRAUC). 3) Steps 1 and 2 were
repeated five times, therefore for each set of three features and
each set of hyperparameters, there were five models trained and
tested; then the model closest to the mean accuracy value was
chosen. 4) SVM models with different sets of three features and
sets of hyperparameters were compared by accuracy, AUC and
PRAUC; finally the one with the highest value was selected as the
final SVM classifier.

The generalized performances of this final predicting classifier
were externally validated in Cohort 2, including accuracy,
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV), receiver operative curves
(ROCs), and its corresponding AUC, and precision-recall
TABLE 1 | Diagnosis and grading for clinical radiation-induced lung fibrosis (RILF) (2, 22).

Adverse event Radiographic changes

Grade 1 Radiographic evidence of radiation fibrosis with no or mild dyspnea Minimal radiographic findings (or patchy or bibasilar changes) with estimated
radiographic proportion of total lung volume that is fibrotic of <25%

Grade 2 Radiation fibrosis causing dyspnea but does not interfere with ADL Patchy or bi-basilar changes with estimated radiographic proportion of total lung
volume that is fibrotic of [25%, 50%)

Grade 3 Radiation fibrosis causing dyspnea that interferes with ADL, or
requiring oxygen or increase in baseline home oxygen use

Dense or widespread infiltrates/consolidation with estimated radiographic proportion
of total lung volume that is fibrotic of [50%, 75%)

Grade 4 Radiation fibrosis that causes respiratory insufficiency, requires
assisted ventilation

Estimated radiographic proportion of total lung volume that is fibrotic is ≥75%;
honeycombing

Grade 5 Radiation fibrosis directly contributing to death
February 2021 | Volume 10 | Article 601979
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curves and its AUC (PRAUCs). To further evaluate the
prediction performance of this final SVM classifier, the
generalized linear models (GLMs), which are multivariable
logistic regression in binary classification, were also trained
and tested in Cohort 1 by CV and externally validated in
Cohort 2. The performances of SVM classifiers and GLM
models were compared.
RESULTS

Patient Characteristics
A total of 94 patients (shown in Figure 1) which met the
analysis inclusion criteria were identified in two independent
cohorts: 57 patients with eight cases of RILF2 (14%) in Cohort
1 and 37 patients with six cases of RILF2 (16.2%) in Cohort 2.
The median follow-up time was 5.98 years, and the median
onset time of RILF2 was 5.4 months. In Cohort 1, 56/57
patients were male with a median age of 65.7 years. Fourteen
patients received RT alone, and 43 received RT with
concurrent chemotherapy. In 37 patients of Cohort 2, 14/37
patients were male with a median age of 64.2 years. Six patients
received RT alone, and 31 received RT with concurrent
chemotherapy. Two cohorts’ clinical characteristics and dose
metrics were summarized in Table 2.
Frontiers in Oncology | www.frontiersin.org 4
Univariate Analysis of Cytokines and RILF2
To explore the effect of each cytokine, conventional logistic
regression was performed for each cytokine at baseline in
Cohort 1. CCL4 was significantly associated with the risk of
RILF2 (odds ratio, OR = 0.404, 95%CI = 0.223–0.733, P = 0.003).
CX3CL1 level (OR = 0.494, 95%CI = 0.296–0.826, P = 0.007), G-
CSF level (OR = 0.616, 95%CI = 0.403–0.944, P = 0.02), TNF-a
level (OR = 0.464, 95%CI = 0.23–0.938, P = 0.03) and CCL11
level (OR = 0.304, 95%CI = 0.098v0.944, P = 0.04) were also
significantly associated with the risk of RILF2.

Performing the same analysis in Cohort 2, IL-8 (OR = 0.33,
95%CI = 0.129v0.847, P = 0.02) and IL5 (OR = 0.613, 95%CI =
0.41–0.916, P = 0.02) were significantly associated with the risk of
RILF2. The CCL4 level (OR = 0.536, 95%CI = 0.274–1.048, P =
0.07) and G-CSF level (OR = 0.668, 95%CI = 0.421–1.06, P =
0.09) were also borderline significant with the risk of RILF2 in
Cohort 2.

Weighted-Support Vector Machines
SVM classifiers for RILF2 risk were first trained and tested in
Cohort 1 by cross validation. The classifier with the best model
performance was selected, and this model included three
representative features from cytokines, dosimetrics, and clinical
factors. For visual comparison, this model is shown in Figure 2
to compare the model performances of other SVM classifiers
FIGURE 1 | Study flow chart.
February 2021 | Volume 10 | Article 601979

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yu et al. Machine Learning for Predicting RILF2
with inclusion cytokines of our interest like IL-8 and most
significant ones as identified above by conventional logistic
regression. V20 was also included as it is commonly used in
clinical practice guideline. The final weighted-SVM classifier
with radial kernel included CCL4, MLD and receipt of
chemotherapy as model features, while cost = 400, gamma =
0.006, and weight = 0.132 as model parameters. The classifying
performance measures in Cohort 1 included: accuracy = 0.754,
sensitivity = 0.875, specificity = 0.735, PPV = 0.35, NPV = 0.973,
AUC = 0.867 (95% confidence interval, CI = 0.763–0.972, P <
0.001), PRAUC = 0.576.

Figure 3 shows the visualization of this final weighted-SVM
classifier for Cohort 1 patients. In patients who received
chemotherapy, 7/8 patients actually had RILF2 when they were
Frontiers in Oncology | www.frontiersin.org 5
predicted to have RILF2, while 36/49 patients without RILF2
were predicted to not develop RILF2. In patients who received
radiation alone, this final SVM model was classified correctly in
all patients 100%.
External Validation
The final SVM model was externally validated in Cohort 2. It
predicted RILF2 risk with accuracy = 0.757, sensitivity = 0.833
specificity = 0.742, PPV = 0.385, NPV = 0.958, AUC = 0.855
(95%confidence interval, CI=0.712–0.998, P < 0.001), PRAUC =
0.595. The validated results are shown in Figure 4; six patients
who developed RILF2 are shown as red dots, five patients were
predicted to have RILF2 risk (sensitivity = 0.833); while 31
TABLE 2 | Clinical variables and dosimetric factors for radiation induced lung fibrosis (RILF).

Characteristic Cohort 1 n (%) Cohort 2 n (%)

Without RILF2 n = 49 With RILF2 n = 8 P Without RILF2 n = 31 With RILF2 n = 6 P

Gender$

Female
Male

1 (2.1)
48 (97.9)

0 (0)
8 (100)

1 18 (58.1)
13 (41.9)

5 (83.3)
1 (16.7)

0.45

Age#

Median
1st–3rd Qu

65.7
60–74

67.3
58–72

0.85 65.6
57–70

60.5
59–63

0.41

KPS#

Median
1st–3rd Qu

80
80–90

90
80–90

0.62 90
80–90

90
90–90

0.62

Smoking status$

Never
Former
Current
Unknown

0 (0)
21 (42.9)
23 (46.9)
5 (10.2)

0 (0)
3 (37.5)
4 (50)
2 (12.5)

1 3 (9.6)
14 (45.2)
14 (45.2)
0 (0)

0 (0)
3 (50)
3 (50)
0 (0)

1

Chemotherapy$

No
Yes

14 (28.6)
35 (71.4)

0 (0)
8 (100)

0.26 6 (19.4)
25 (80.6)

0 (0)
6 (100)

0.68

Clinical staging of cancer$

1
2
3

6 (12.2)
9 (18.4)
34 (69.4)

0 (0)
0 (0)

8 (100)

0.38 3 (9.7)
2 (6.5)

26 (83.8)

0 (0)
0 (0)

6 (100)

1

T stage$

T1
T2
T3
T4

11 (22.4)
10 (20.4)
19 (38.8)
9 (18.4)

0 (0)
2 (25)
2 (25)
4 (50)

0.27 5 (16.1)
6 (19.4)
8 (25.8)
12 (38.7)

1 (16.7)
1 (16.7)
1 (16.7)
3 (50)

1

N stage$

N0
N1
N2
N3

16 (32.7)
3 (6.1)

22 (44.9)
8 (16.3)

0 (0)
1 (12.5)
3 (37.5)
4 (50)

0.04 7 (22.6)
5 (16.1)
10 (32.3)
9 (29)

1 (16.7)
1 (16.7)
3 (50)
1 (16.7)

0.92

GTV (cm3)#

Median
1st–3rd Qu

89.9
48.4–234.5

272.3
192–316.2

0.09 80.6
34.8–185.3

94.7
85.1–155.3

0.76

Total Prescription Dose (Gy)#

Median
1st–3rd Qu

73.5
68.2–78.5

68.9
65.6–70

0.2 66
64.6–74.2

83.8
79.4–85.3

0.01

MLD (Gy)#

Median
1st–3rd Qu

15
12.4–17.6

15.64
14.4–16.8

0.41 13.2
10–17.2

17.4
15–18.7

0.1

V20 (%)#

Median
1st–3rd Qu

24.1
18.6–27.9

26.6
23.7–27.9

0.23 23
15.7–27.2

27.5
26.8–29.9

0.11
February 20
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KPS, Karnofsky Performance Status; Chemo, concurrent chemoradiotherapy; GTV, gross tumor volume; MLD, mean lung dose.
$Fisher’s exact test; #logistic regression; -QU = quartile.
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patients without RILF2 are shown as blue dots, 23 patients were
predicted to be without RILF2 risk, while eight patients were
misjudged (specificity = 0.742). Alternatively, a total of 13
patients in the region to the upper-left boundary were
predicted to have RILF2, five patients actually had RILF2 risk
(PPV = 0.385), while in the region to the down-right boundary, a
total 24 patients were not predicted to have RILF2, 23 patients
did not have RILF2 (NPV = 0.958).

The performances of the final SVM classifier were compared
with that of conventional GLM models (also built in Cohort 1
and listed in Supplemental Table 2) in Cohort 2 as shown in
Figure 5. The ROC curve (AUC = 0.855) of the final SVM
classifier was not only higher than that of the SVM classifiers
with other features of our interest as described above Cohort 1,
but also higher than the conventional GLM models. Moreover,
considering the imbalanced cases, the PR curve (PRAUC =
0.595) of the final SVM classifier wasn’t close to 1, but it was
still remarkably higher than the rate of RILF2 risk (0.162) and
also the highest in Figure 5, especially comparing with
GLM models.
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

In patients with locally advanced NSCLC treated with
predominantly conventionally or slightly hypofractionated
radiation therapy, this study demonstrated a significant
correlation of the pre-treatment cytokine biomarkers CCL4
and G-CSF with RILF2 risk. Machine learning models
integrating CCL4 with dosimetric and clinical parameters for
RILF2 risk prediction showed reasonable predictive values.
Within the limitations of a moderate sized study, the AUC and
PRAUC of the final weighted-SVM model showed reasonable
performances for predicting RILF2 risk.

Prior reports have highlighted that machine learning
approaches can better predict radiation-induced lung disease
(17, 26, 27) due to high model accuracy and diminished
overfitting (19). SVM is highly resistant to over-fitting because
of their mapping into finite dimensional spaces (19).
Furthermore, weighted-SVM algorithms (20, 21) are capable of
dealing with datasets with imbalanced class frequencies by
changing the misclassification penalty per class. Consistent
FIGURE 2 | Performances of the final weighed-SVM classifier in Cohort 1 generated by machine learning algorithm comparing with the other classifiers. The panel
shows their ROC (upper) and precision-recall curves (bottom) performances. The models’ features are shown in subplots’ head. The panel demonstrates that the
final model of using CCL4, MLD and Chemo with the best performance. (Abbreviations: ROC, receiver operating characteristic; MLD, mean lung dose; Chemo,
concurrent chemoradiotherapy; AUC, the area under the ROC curve; PRAUC, the area under the precision-recall curve).
February 2021 | Volume 10 | Article 601979
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with this, our data (Figure 5) shows that weighted SVM
generated classifier had better performances than the
conventional GLM model. Moreover, as shown in Figures 3
and 4, the SVM classifier may be used as an intuitive and
convenient tool to help clinical decision making. For example,
a clinician could estimate the risk of RILF by evaluating CCL4
baseline level, MLD, and chemotherapy. Should a patient be
estimated to have high risk of RILF2, the physician could modify
the radiation treatment plan to decrease the risk of RILF2 by
decreasing the MLD.

Although a link between CCL4 and radiation-induced
toxicity has been previously unappreciated, CCL4 (also known
as MIP-1 beta) has been reported to be elevated in the
bronchiolar lavage fluid of patients with lung fibrosis as
compared to healthy controls (28). It also has been suggested
that CCL4 levels are elevated in patients with idiopathic
pulmonary fibrosis (29). Ishida Y et al. (30) have found that
CCL3, another chemoattractant for CCR5-expressing cells the
Frontiers in Oncology | www.frontiersin.org 7
same as CCL4, was enhanced rapidly and remained at elevated
levels after injection bleomycin into wild-type mice until fibrosis
developed. But the cytokine milieu which predisposes to
radiotherapy-induced fibrosis is not well understood. On the
other hand, this study also demonstrated the significance of the
pre-treatment levels of other cytokines such as G-CSF with
RILF2 in NSCLC patients though they were not into the SVM
model achieved by the machine learning algorithm. In mice that
received a high-dose G-CSF for 7 consecutive days right after
autologous fat grafting, high-dose G-CSF injection was found to
have a prolonged macrophage infiltration and elevated levels of
inflammation, which could be the direct cause of severe fibrosis
(31). Future studies are needed to define the contribution CLL4
and G-CSF to RILF as well external validate our results.

Interestingly, our results suggest that high baseline levels of
CCL4 and G-CSF were associated with lower RILF risk, while
elevations in these cytokines promoted inflammation and
fibrosis in some previous reports in fibrosis with inclusion of
FIGURE 3 | Visualization of the final weighted-SVM Classifier for RILF2 risk in Cohort 1. The decision boundaries are presented in subplots (A, B), and the decision
regions as subplots (C, D). The decision region of the final weighted-SVM classifier with radial kernel, include three features: CCL4, MLD, Chemo, using parameters
as: cost = 400, gamma = 0.006, and weight = 0.132. CCL4 is in log transformation of pg/ml. The subplots (A, C) are for patients treated with radiation therapy with
concurrent chemotherapy (Chemo = 1) and the subplots (B, D) are for patients treated with radiotherapy alone (Chemo = 0). In these subplots, without RILF2, are
defined as blue and with RILF2 are shown in red. SVM, Support Vector Machine.
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animal studies (30). While the reason of this is unclear, such
inconsistencies are not uncommon, particularly in comparison
between animal and human. For example, cytokine IL-8 induced
collagen synthesis and cell proliferation (32) in animal studies
though high levels of IL-8 were often found to have an anti-
inflammatory effect in human studies (33, 34) and also as shown
in our previous work in RP (17). It is also known that increased
concentration of cytokines, such as IL-8, CCL4, and G-CSF,
might influence macrophages, neutrophils, and lymphocytes
chemotaxis and promote pneumonitis and subsequent fibrosis
formation. In a study of cutaneous systemic sclerosis patients,
CCL4 was augmented along with elevation of myeloid dendritic
cells in patients with lung fibrosis (35). One has to note that there
was no published study to our knowledge that focused on the role
of CCL4 on RILF. It is possible that patients with lower baseline
levels of CCL4 might be more sensitive to radiation damage, thus
more susceptible to the formation of fibrosis after radiation
therapy. On the other hand, high baseline levels of CCL4 may
act like against the formation of fibrosis. This matches the results
of low PPV value and high NPV value. The exact role of CCL4
needs to be tested in future studies.

It is encouraging to note that SVM classifier which integrated
MLD and chemotherapy improved predictive accuracy. This
finding was consistent with previous studies (8, 12–14). In our
study, the correlation of MLD with RILF2 risk was not significant
on univariate analysis as shown in Table 2, but it was still an
important feature in the final SVM classifier. In Figure 3 of the
SVM classifier, it can be seen that the patients, who with low
CCL4 baseline levels were classified to have high risk of RILF2
when MLD was high. MLD is an important radiation dosimetric
factor which is normally limited during RT planning. the clinical
integration of this SVM classifier may assist in evaluation of
radiation plans and enable selection of the optimal plan with the
lowest RILF2 risk for each individual patient. Finally, it is
Frontiers in Oncology | www.frontiersin.org 8
interesting that RILF2 was not observed in patients treated
with radiotherapy alone in these two cohorts, albeit with
limited sample size. The mechanism remains unclear but may
be related to the selection criteria and the effects of concurrent
chemotherapy with radiation therapy by both increasing tissue
injury and altering immune responses.

Of additional note, previous studies have highlighted that the
GTV is predictive of lung fibrosis when using SBRT (36). The
conventional statistical testing (Table 2) also showed GTV with
some trend of association with RILF2 (P = 0.07 in Cohort 1),
GTV was also considered in the Weighted-SVM classification
process as the clinical variable. GTV was not included in the final
model in the machine learning framework as receipt of
chemotherapy better informed prediction and we restricted our
model to one clinical feature to prevent overfitting. GTV may
have been less predictive in our dataset because its impact was
already being taken into consideration in the lung dose metrics
(MLD or V20), and it can’t present the various doses/fractions in
this study.

There are some limitations of this study. First, the sample size is
small which limits statistical evaluation and constraints machine
learning model selection. Second, the three-factor weighted-SVM
was constructed to avoid overfitting but is susceptible to type I
error and underfitting. This approach does not include other
different significant cytokines in models and thus prevented
more in-depth pathway analysis. Third, patients in this study
were from four prospective studies and some patients received
alternative dose/fractionation schemes necessitating 2 Gy
equivalent dose calculation for calibration. Fourth, limited by
the number of events, the model in this study simplified RILF as
a binary outcome, while RILF is a time-dependent five-level
graded event which is a topic of our ongoing study.
Additionally, the patients were somewhat heterogenous with
dose per fraction and biological effective doses were computed
FIGURE 4 | The final weighted-SVM classifier’ external validation in Cohort 2. The cases in the upper-left region of the decision boundary i.e. the gray line were
predicted occurrence of RILF2 while cases in the bottom-right region were predicted without occurrence of RILF2. The red cases are the real cases with RILF2, and
the blue cases are the real cases without RILF2. SVM, Support Vector Machine.
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with an assumed alpha-beta ratio which could be sources of
potential bias. These limitations could be addressed in future
validation studies with larger sample sizes.

In summary, using a machine learning framework, a
weighted-SVM classifier of RILF2 risk was established which
integrated CCL4, MLD, and chemotherapy as representative of
cytokines, dosimetric and clinical variables. The weighted-SVM
classifier was externally validated and confirmed to have reliable
predictive performance. Additionally, our study provides
important insights into biomarkers of RILF2 risk and has
identified pre-treatment cytokine levels such as CCL4 and G-
CSF to be significantly lower in patients who subsequently
develop RILF2. Finally, for each individual patient, MLD can
be fine-tuned with considering the risk of RILF based on the
SVM classifier model. Further study will need to validate this
finding and will need to consider the incorporation of other
biologic factors such as individual variations of radiation
sensitivity to improve positive predictive value for RILF2.
Frontiers in Oncology | www.frontiersin.org 9
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