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Glioma stem cells (GSCs) are crucial in the formation, perpetuation and recurrence of
glioblastomas (GBs) due to their self-renewal and proliferation properties. Although GSCs
share cellular and molecular characteristics with neural stem cells (NSCs), GSCs show
unique transcriptional and epigenetic features that may explain their relevant role in GB
and may constitute druggable targets for novel therapeutic approaches. In this review, we
will summarize the most important findings in GSCs concerning epigenetic-
dependent mechanisms.
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INTRODUCTION

GB is the most common and aggressive primary brain cancer in adults. Despite the combined
clinical therapy of surgical resection, radiotherapy and chemotherapy with the first-line agent
temozolomide (TMZ), the prognosis is still unfavorable, with a median overall survival of 15
months and a high risk of recurrence (>90%) (1). This ability to resist chemo- and radiotherapy can
be explained by the presence of a subpopulation of cells within the perivascular and hypoxic niches
of the tumor known as GSCs or brain tumor-initiating cells. The subventricular zone (SVZ) is a
neurogenic niche containing NSCs and progenitor cells and is suspected to be the origin of different
brain tumor types due to the generation of GSCs (2–4). GSCs share functional characteristics with
NSCs, including the capacity for self-renewal and long-term proliferation required to maintain and
propagate the tumor, respectively (5). In addition, GSCs exhibit other properties of cancer cells,
such as angiogenesis, invasion and immunosuppression, that promote disease progression and
complicate treatment (6). Cells positive for stemness markers (e.g., CD133) have the ability to form
tumors in vivo and oncospheres in vitro (reminiscent of neurosphere-derived NSCs) (6). In fact,
understanding the hallmarks of GSCs can offer novel therapeutic strategies targeted at these cells to
achieve an effective treatment for this disease.
Abbreviations: BMP, Bone morphogenic protein; BRD, Brodomain; CNTF, Ciliary neurotrophic factor; DIPG, Diffuse
intrinsic pontine gliomas; EED, Embryonic ectoderm development; EMT, Epithelial–mesenchymal transition; ESC,
Embryonic stem cell; EZH2, Enhancer of Zeste homolog 2; GB, Glioblastoma; GSC, Glioma stem cell; HDAC, Histone
deacetylase; HDACi, HDAC inhibitor; HOTAIR, HOX transcript antisense RNA; KAT, Lysine acetyltransferase; lncRNA,
Long Non-coding RNA; MELK, Maternal embryonic leucine zipper kinase; MGMT, O-6-methylguanine-DNA
methyltransferase; NEK2, NIMA-related kinase 2; NSC, Neural stem cell; PRC1/2, Polycomb repressive complex 1/2;
SUZ12, Suppressor of Zeste 12; SVZ, subventricular zone; TMZ, Temozolomide; TUG1, Taurine upregulated gene 1; VPA,
Valproic acid.
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THE RELEVANCE OF EPIGENETICS IN
THE REGULATION OF GENE EXPRESSION
IN GSCs AND NSCs

The nucleosome is the structural unit of chromatin and is composed
of 147 bp of DNA wrapped around an octamer of histones (H2A,
H2B, H3, and H4). The chromatin organization and its degree of
compaction are modulated by DNA and histone covalent
modifications, ATP-dependent chromatin remodeling and certain
non-coding RNAs (ncRNAs). Epigenetic mechanisms contribute to
the cellular hierarchy of tumoral tissue in GB (7) and are crucial to
understanding tumorigenesis and response to treatment in gliomas.
For example, promoter hypermethylation of the O-6-
methylguanine-DNA methyltransferase (MGMT) gene can predict
good outcomes in TMZ treatment (8, 9). Additionally, mutations
in arginine 132 of the tricarboxylic acid cycle component IDH1
(or in arginine 172 of IDH2), which are associated with longer
survival, induce the overproduction of the 2-hydroxybutyrate
metabolite that inhibits the a-ketoglutarate-dependent activity of
epigenetic enzymes such as JumonjiC histone demethylases and
TET hydroxymethylases, affecting both histone and DNA
methylation (10).

The gene expression profiles of GSCs resemble those of normal
NSCs (11, 12), but differential gene expression patterns between
both types of cells can identify a transcriptional signature that is
correlated with patient survival (13); however, copy number
variations only explain a small portion of such gene expression
alterations and other mechanisms (e.g., epigenetics) should be
more relevant. For instance, changes in the patterns of DNA
methylation, H3K27me3 and H3K4me3 are important in neural
lineage differentiation (14–16), and a comparison of the genome-
wide distribution of these and other epigenetic marks revealed
important differences between GSCs and normal NSCs, affecting
genes involved in neural differentiation and cancer processes (17,
18). These glioma-specific patterns of epigenetic marks can be
found in DNA elements that are important for gene regulation:

- Bivalent promoters are considered a feature of embryonic stem
cells (ESCs) due to their high prevalence in these cells (16, 19)
and are characterized by the coexistence of epigenetic marks
associated with active and repressed genes (generally
H3K4me3 and H3K27me3). Genes under the control of
such promoters are poised, i.e., maintained in silent state
but ready to be activated under appropriate external or
developmental stimuli (20). Genome-wide analyses
identified a high diversity of bivalent regions within GSCs,
which were shown to have significantly distinct patterns
compared to NSCs and ESCs (17, 21). Loss of bivalency in
GSCs affected a very low number of promoters but associated
with the potential activation of proto-oncogenes and genes
related to transcription, and the potential repression of genes
linked to cell adhesion and ion channels (17). Moreover,
consistent bivalent genes across several GSCs were members
of the Wnt pathway and HOX family as well as potassium
channels and solute carriers that can be associated with
overall survival (21).
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- Enhancers often regulate cell-specific gene expression and are
defined by the simultaneous occupancy of H3K27ac and
H3K4me1. Although enhancer patterns are relatively
conserved between GSCs and NSCs, unique GSC patterns
are mainly linked to genes with functions in DNA damage
response, p53 signaling and angiogenesis; prominent
examples are HOX cluster genes, which acquire enhancer
histone modifications in GSCs and become highly expressed
despite promoter methylation (22). In contrast, NSC-specific
enhancers are more associated with stem cell differentiation,
apoptosis and epigenetic regulation (22).

Overall, GSCs are characterized by an impairment of
differentiation due to a permanent epigenetic block that maintains
the self-renewal capacity of these cells (18, 23). Nonetheless, GSCs
can rapidly adapt to diverse microenvironments by modulating
their transcriptomes and DNA methylomes (24), indicating that
such alterations are at least partially reversible, contrary to genetic
variations. Reversibility of epigenetic marks was demonstrated in
reprogramming experiments of glioma cells: with the appropriate
combination of transcription factors they can be reversed into an
early embryonic state that was accompanied by a widespread
resetting of cancer-associated DNA methylation (23). Still, this
resetting was not sufficient to abolish the malignant behavior of
these cancer cells, indicating that we need to decipher how
epigenetic-related activities work in GSCs to explaining their
malignancy. In the following sections we review the experimental
evidences found in GSCs about the role of epigenetics in malignancy
and potential treatments.
THE ROLE OF POLYCOMB REPRESSIVE
COMPLEXES IN THE MAINTENANCE OF
THE GSC PHENOTYPE

The Polycomb repressive complexes, essential for normal
developmental processes, have been the most studied
epigenetic modulators in GSCs. The most relevant findings are
summarized in Figure 1A. Polycomb repressive complex 2
(PRC2) is necessary for neurogenesis at the SVZ (25, 26) and
regulates the trimethylation of H3K27 thanks to the catalytic
activity of Enhancer of Zeste Homolog 2 (EZH2), which transfers
a methyl group from S-adenosyl methionine, in cooperation with
Suppressor of Zeste 12 (SUZ12) and Embryonic Ectoderm
Development (EED). Overexpression of EZH2 has proto-
oncogenic implications in several cancers, including glioma, in
which elevated EZH2 expression has been associated with high-
grade disease and poor overall survival (27, 28). Moreover, EZH2
activity is required for GSC maintenance by targeting MYC
expression (29). Even in cells derived from diffuse intrinsic
pontine gliomas (DIPG), a brain pediatric cancer that can also
affect young adults, in which the actions of EZH2 are inhibited by
the H3K27M mutation, residual EZH2 activity is still retained at
strong PRC2 targets to drive GSC proliferation (30). Therefore, it
is not surprising that selective EZH2 inhibition can constitute a
promising therapeutic approach, as treated GSCs can reduce the
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levels of EZH2 and H3K27me3, cell proliferation and migration,
the number and diameter of oncospheres, and the growth of
intracranial xenotransplanted cells in mice, reverse epithelial-
mesenchymal transition (EMT), potentiate the effects of TMZ
and downregulate stem cell markers while increasing the
expression of differentiation markers (29, 31–33).

PRC2 activity is important for other epigenetic modifications.
First, trimethylation of H3K27 is a prerequisite for histone H2A
monoubiquitylation by Polycomb repressive complex 1 (PRC1)
(34). Within this complex, the ring finger protein BMI1 is also a
glioma stemness marker, and interference of its activity
affects GSC malignancy in vitro and in xenotransplanted
mice and enhances radiosensitivity (35–37). Second, EZH2
Frontiers in Oncology | www.frontiersin.org 3
can recruit DNA methyltransferases (38), which explains the
hypermethylation of PRC2 targets in primary GB (39, 40).

GSC characteristics display regional variations depending on
the tumor niche. Whereas the regions defined by the disruption
of the blood-brain barrier in angiogenesis foci were characterized
by a high expression of proneural genes, an enrichment of EZH2/
SUZ12/H3K27me3 targets and GSCs primarily positive to the
proneural markers SOX2 and OLIG2, the hypoxic necrotic
regions contained high expression of mesenchymal genes, a
strong association with H2A119ub, an enrichment of BMI1
targets and GSCs primarily positive to the mesenchymal
markers CD44 and YKL40 (41). Selective inhibition of either
EZH2 or BMI1 was highly effective against the survival of
A

B

C D

FIGURE 1 | Summary of the epigenetic regulation of the GSC phenotype. (A) Coordinated actions and regulation of Polycomb complexes; (B) role of H3.3 in
pediatric and adult GSCs as a result of gain and loss-of-function, respectively; (C) TET3-STAT regulation by the laminin-integrin signaling pathway; (D) H3K23ac-
TRIM24-STAT regulation by the EGFRvIII signaling pathway. See main text for further details.
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proneural and mesenchymal GSCs, respectively. Thus, the
combined strategy to abolish the activity of both PRCs can
target different tumor compartments, increasing the efficacy of
the therapy (41).

Research on GSCs is starting to disentangle EZH2-dependent
oncogenic mechanisms. In certain GSCs, astroglial
differentiation mediated by the bone morphogenic protein
(BMP) and ciliary neurotrophic factor (CNTF) signaling
pathways is impaired due to the silencing of the BMP receptor
subtype gene BMPR1B by hypermethylation of its promoter,
mediated by the EZH2-dependent recruitment of DNMT1 (42).
Whereas incubation with BMP2 or CNTF can induce an increase
in the differentiation markers GFAP or b-III tubulin in cultured
NSCs and GSCs, in GSCs with impaired expression of BMPR1B,
these trophic factors enhance proliferation (42). These
pleiotropic actions are reminiscent of the role of the BMP
signaling pathway in embryonic NSCs to promote either NSC
proliferation or neuronal differentiation, depending on the
expression of the BMP receptor subunit (43). To add more
complexity to the EZH2 involvement in gliomagenesis, EZH2
can methylate non-histone proteins such as oncogenic STAT3.
This association leads to enhanced activation of STAT3 to
positively regulate GSC self-renewal and survival (44).

How PRC2 activity is deregulated in GSCs has been
intensively explored. For instance, EZH2-dependent resistance
of GSCs to radiotherapy can be explained by the transcriptional
upregulation of EZH2 induced by maternal embryonic leucine
zipper kinase (MELK) and activation of EZH2 through
phosphorylation by NIMA-related kinase 2 (NEK2) (33, 45).
Moreover, it has been proposed that dysfunction of miR-128 is
an early event of gliomagenesis that increases the levels of both
SUZ12 and BMI1, augmenting the histone modifications they
regulate: H3K27me3 and H2AK119ub. These observations
suggested a coordinated regulation of PRC1 and PRC2
activities. Therefore, restoring miR-128 expression diminishes
proliferation and confers radiosensitivity (46). Additionally,
EZH2 activity can be regulated by the lncRNA HOX transcript
antisense RNA (HOTAIR), which is associated with poor
survival in diverse cancers (47). In CD133+ cells, HOTAIR
recruits both EZH2 and the lysine demethylase KDM1A/LSD1
to repress the tumor suppressor gene PDCD4 (48). In addition,
another lncRNA, taurine upregulated gene 1 (TUG1), also binds
to EZH2 and SUZ12 to repress neuronal differentiation genes
such as BDNF, NGF, and NTF3 (49).
THE HISTONE VARIANT H3.3 IN
PEDIATRIC AND ADULT GSCS

The histone H3 variant H3.3 can play a determinant role in
pediatric GB. H3.3 is an independent replication variant that
replaces the canonical histones H3.1 and H3.2 during brain
development, becoming predominant in adulthood (50). H3.3 is
encoded by two genes: H3F3A (H3.3A) and H3F3B (H3.3B).
Mutations in H3F3A are present in approximately one-third of
pediatric gliomas, affecting either lysine 27 (H3K27M) or glycine
Frontiers in Oncology | www.frontiersin.org 4
34 (H3G34R/V), although the former mutation can also be found
to a much lesser extent in the HIST1H3B (H3C2) gene (51–53).
H3K27M is a relevant driver mutation in the pathogenesis of
DIPG and is sufficient to immortalize NSCs from human embryo
pons (54). In DIPG-derived cell lines, H3K27M specifically
increases the acetylation of H3K27 and creates heterotopic
H3K27M/H3K27ac nucleosomes that can be targeted by
inhibitors of bromodomain (BRD) proteins to modulate the
expression of the cell cycle arrest gene CDKN1A, the neuronal
mature markers TUBB3 and MAP2, and the Zn finger protein
GLI2 (55), a relevant downstream target of the Sonic Hedgehog
pathway that is implicated in the etiology of DIPG (56)
(Figure 1B).

In adult GB, dominant negative mutations in histone H3 are
extremely rare. Instead, downregulation of the H3F3B gene has
been reported to lead to a deficit of H3.3 function in GSCs as a
result of the action of the lysine methyltransferase KMT2E
(myeloid/lymphoid leukemia MLL5), maintaining the self-
renewal capacity of GSCs and interfering with their
differentiation (57) (Figure 1B). These findings suggest that
H3.3 impairment in adult GB may produce similar chromatin
rearrangements as the H3.3 mutation in pediatric GB, given the
similar DNA methylation patterns in both types of tumors (57).
OTHER EPIGENETIC MODULATORS

In addition to PRCs and H3.3, other epigenetic-related factors
have been implicated in the GSC phenotype and are listed in
Table 1.
HDAC INHIBITORS AS THERAPEUTIC
AGENTS IN GSCs

Considering that altered gene expression levels have been reported
for histone deacetylases (HDACs) in GB (66, 67), most therapeutic
approaches have been focused on histone deacetylase inhibitors
(HDACis) due to their recognized antiproliferative effects in
multiple cancer models and their benefits and tolerability in the
amelioration of several neurological conditions in vivo at the
preclinical stage; in addition, some of these compounds have
been approved as therapeutic agents in other types of cancers.
Histone acetylation is regulated by the opposing enzymatic
activities of lysine acetyltransferases and HDACs: whereas the
former enzymes transfer the acetyl group from an acetyl-CoA
molecule to the lysines of the protruding histone tails (an activity
that is associated with active genes), HDACs catalyze this removal,
which is associated with gene repression. Inhibition of HDACs can
induce cell cycle arrest, apoptosis and cellular differentiation and
can interfere with cancer angiogenesis (68). One interesting target
of HDACis is the phosphatase DUSP1, an inhibitor of the JNK,
ERK1/2 and p38 MAPK pathways that is associated with GSC
differentiation and good prognosis (69).

Among the tested HDACis in clinical trials, vorinostat/SAHA,
romidepsin/FK228/FR901228 and panobinostat/LBH-589
December 2020 | Volume 10 | Article 602378
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demonstrated very limited efficacy as therapeutic agents in single
therapies in both newly diagnosed and recurrent GB. However,
the most promising effect of HDACis is as sensitizers to current
therapeutic approaches such as radiotherapy and TMZ therapy
[see (70) for a review on this topic]. Some considerations should
be kept in mind to understand the potential benefits and
limitations of HDACi-based treatment in vivo . First,
acetylation increase by HDACis is not exclusive of histones
(71); second, antineoplastic actions of HDACis can be achieved
independently of (or in addition to) HDAC inhibition (72); third,
the solubility of HDACis in water is usually poor, resulting in
inefficient transport through the blood-brain barrier with oral
administration (73); last, chemoresistance has been reported in
long-term treatments (74). In any case, the prospects of using
HDACis are still promising, and research on GSCs can help in
elucidating the underlying anticancer mechanisms of HDAC
inhibition and in proposing novel formulations to improve drug
delivery (e.g., loading these hydrophobic compounds into
nanomicelles) (75). Efforts are being mainly focused on
valproic acid (VPA), with proven antitumoral effects (72, 76,
77). Often administered as an anticonvulsant agent to treat
epilepsy in brain tumors (78), retrospective clinical studies
reported that treatment with this compound increased the
overall survival of GB patients (79) although this effect was not
found in other reports and still remains controversial (80, 81).
VPA is capable of inducing a predifferentiation state in GSCs
(74) and can be combined with other antineoplastic compounds
for synergistic effects, as reported for the antimitotic paclitaxel
(82). However, VPA failed to sensitize GSCs to TMZ (74),
although another study reported sensitization to both TMZ
and nimustine (ACNU), especially in MGMT-expressing cells
(83). VPA is able to modify the DNA methylomes of GSCs (74),
leading to the activation of the Wnt/b-catenin pathway which
was related with growth inhibition, reduced migration and EMT
Frontiers in Oncology | www.frontiersin.org 5
impairment (84). This is in conflict with the suppression of the
Wnt/b-catenin pathway by SAHA, which partially rescues the
downregulation of histocompatibility complex class I and
antigen-processing machinery genes, as a plausible strategy to
potentiate the activation of cytotoxic T cells in vivo (85).
Side effects have also been reported as VPA can exacerbate
the unfolded protein response program, leading to
protein homeostasis dysregulation and proteostasis stress in
GSCs (86).
CONCLUDING REMARKS

Research on the epigenetics of GSCs has the potential to
elucidate the self-renewal and perpetuation mechanisms of
these cells through the identification of the epigenetic program
that governs aberrant gene activation and repression in cancer.
Less known epigenetic modifications should be further explored,
as they can provide further insights into tumorigenesis, as in the
case of 5’-formylcytosine (5fC) and 5′-carboxylcytosine (5caC)
(22). In addition, a systematic and detailed description of direct
target genes of epigenetic activities is required to understand the
complex mechanisms of epigenetic dysregulation in gliomas. As
we have seen through this review, multiple epigenetic activities
can be involved in glioma malignancy in a complex manner;
therefore, the simultaneous modulation of various epigenetic
activities may be highly effective, as demonstrated by the dual
inhibition of HDACs and KDM1A/LSD1 (87, 88).
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TABLE 1 | List of other epigenetic-related factors in GSC studies.

Modulator Epigenetic action Role and mechanisms

Helicase, lymphocyte-
specific HELLS

Member of the ATP-dependent
chromatin remodeling SWI2/SNF2
complexes

Maintenance of proliferation and self-renewal of GSCs through binding to the promoters of cell cycle
genes, including E2F3 and MYC targets (58).

Lysine-specific
demethylase KDM1A/
LSD1

Demethylation of mono- and di-
methylated lysines 4 and 9 of
histone H3

Cell viability, oncosphere formation and tumorigenesis of intracranial xenografts. Rescue by novel
inhibitors (59).

Lysine demethylase with
Jumonji domain KDM6B/
JMJD3

Demethylation of mono- and di-
methylated lysine 27 of histone H3

Cell growth and tumorigenesis of intracranial xenografts of pediatric brainstem GSCs. Rescue by
treatment with GSKJ4 (60)

Lysine methyltransferase
KMT2A/MLL1

Methylation of lysine 4 of histone H3 Upregulation in GSC and in hypoxic GB. GSC growth and self-renewal (61).

Ten–Eleven Translocation
TET3

Conversion of 5 mC to 5 hmC Inhibition of self-renewal and tumorigenesis after downregulation of its repressor, the nuclear
receptor NR2E1/TLX (62). In highly aggressive GSCs, maintenance of laminin-integrin a6 signaling
pathway-dependent cell survival through TET3 interaction with STAT3 at methylated loci, leading to
global increase of 5hmC levels and the upregulation of oncogenes (e.g., c-Myc, surviving, BCL2-like
protein BCL-XL (63) (Figure 1C). Inhibition of the differentiation marker GFAP (22) after TET3
translocation into the GSC nucleus.

Tripartite motif-containing
protein TRIM24

Reader of histone H3 with
unmethylated K4 and acetylated
K23

Association with tumor grade and GB recurrence (64).
In EGFRvIII-expressing glioma cells, association with increased H3K23ac and recruitment of STAT3
to promote GSC proliferation and oncosphere formation (Figure 1D). Rescue by treatment with
EGFR inhibitor erlotinib (65).
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distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
December 2020 | Volume 10 | Article 602378

https://doi.org/10.1093/ofid/ofv037
https://doi.org/10.1093/ofid/ofv037
https://doi.org/10.3892/or.2016.4665
https://doi.org/10.2147/IJN.S125300
https://doi.org/10.2176/nmc.52.186
https://doi.org/10.2176/nmc.52.186
https://doi.org/10.1007/s11060-012-0871-y
https://doi.org/10.1007/s10072-019-04025-9
https://doi.org/10.2217/cns-2016-0004
https://doi.org/10.2217/cns-2016-0004
https://doi.org/10.1016/j.clineuro.2018.09.019
https://doi.org/10.1200/JCO.2015.63.6563
https://doi.org/10.1016/j.toxrep.2014.05.005
https://doi.org/10.1016/j.toxrep.2014.05.005
https://doi.org/10.3892/ol.2018.8551
https://doi.org/10.3390/genes9110522
https://doi.org/10.1038/s41388-019-1045-6
https://doi.org/10.1074/jbc.M113.527754
https://doi.org/10.1093/neuonc/nor049
https://doi.org/10.1093/neuonc/nov041
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	The Epigenetics of Glioma Stem Cells: A Brief Overview
	Introduction
	The Relevance of Epigenetics in the Regulation of Gene Expression in GSCs and NSCs
	The Role of Polycomb Repressive Complexes in the Maintenance of the GSC Phenotype
	The Histone Variant H3.3 in Pediatric and Adult GSCs
	Other Epigenetic Modulators
	HDAC Inhibitors as Therapeutic Agents in GSCs
	Concluding Remarks
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


