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Cognição, Laboratório do Biologia Computacional e Bioinformática–LBCB, Universidade Federal do ABC, Sao Paulo, Brazil,
5 Faculty of Basic and Biomedical Sciences, Universidad Simón Bolı́var, Barranquilla, Colombia, 6 Centro de investigación e
innovación en Biomoleculas, Care4You, Barranquilla, Colombia

Glioblastoma (GB), the most aggressive malignant glioma, is made up of a large
percentage of glioma-associated microglia/macrophages (GAM), suggesting that
immune cells play an important role in the pathophysiology of GB. Under physiological
conditions, microglia, the phagocytes of the central nervous system (CNS), are involved in
various processes such as neurogenesis or axonal growth, and the progression of
different conditions such as Alzheimer’s disease. Through immunohistochemical
studies, markers that enhance GB invasiveness have been shown to be expressed in
the peritumoral area of the brain, such as Transforming Growth Factor a (TGF-a), Stromal
Sell-Derived Factor 1 (SDF1/CXCL12), Sphingosine-1-Phosphate (S1P) and Neurotrophic
Factor Derived from the Glial cell line (GDNF), contributing to the increase in tumor mass.
Similarly, it has also been described 17 biomarkers that are present in hypoxic
periarteriolar HSC niches in bone marrow and in hypoxic periarteriolar GSC niches in
glioblastoma. Interestingly, microglia plays an important role in the microenvironment that
supports GB progression, being one of the most important focal points in the study of
therapeutic targets for the development of new drugs. In this review, we describe the
altered signaling pathways in microglia in the context of GB. We also show how microglia
interact with glioblastoma cells and the epigenetic mechanisms involved. Regarding the
interactions between microglia and neurogenic niches, some authors indicate that
glioblastoma stem cells (GSC) are similar to neural stem cells (NSC), common stem
cells in the subventricular zone (SVZ), suggesting that this could be the origin of GB.
Understanding the similarities between SVZ and the tumor microenvironment could be
important to clarify some mechanisms involved in GB malignancy and to support the
discovering of new therapeutic targets for the development of more effective
glioblastoma treatments.
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INTRODUCTION

Among primary brain tumors, glioblastoma (GB) has been
described as the most aggressive and is generally associated
with a poor prognosis (1). GB is commonly treated with a
combination of elements, starting with surgery and followed by
radio- and chemo-therapy (2). However, the life expectancy of
patients is reduced to approximately 15 months, and they face a
high likelihood of the cancer recurring (3). New approaches for
the treatment of newly diagnosed and recurrent GB such as
Tumor Treating Fields (TTF), have shown a prolonged survival
in these patients up to 20 months (4). In addition, GB therapies
based on engineering Chimeric Antigen Receptors (CARs) have
emerged as an immunotherapeutic approach with high
specificity for target tumorigenic cells, but with some adverse
effects that must be well defined, in order to design effective
control strategies (5).

GB is classified as a grade IV glioma due to its patterns of
histological necrosis and vascular changes (6). GB is composed of
different types of cells, including glioblastoma stem cells (GSCs)
that are responsible for tumor malignancy and expansion (7).
Other types of cells that are also present in the tumor mass
include NK cells, plasma cells, B cells, gamma delta (gd) T cells,
regulatory T cells (Treg), Follicular helper T (Tfh) cells, Th1,
Th17, Th2, naïve CD8+ T cells, EMRA CD8+ T cells, effector
memory CD8+ T cells, central memory CD8+ T cells,
plasmacytoid dendritic cells, granulocytes, dendritic cells,
monocytic cells, macrophages type 2 and type 1, which are the
most common cells in GB (8–11). Hira et al. demonstrated that
GSC niches are located close to tunica adventitia of a small subset
of arterioles in hypoxic areas in GB. Thus, the hypoxic condition
of GSH niches promotes the conservation of stem cells (12).

Microglia cells are the resident macrophages in the central
nervous system (CNS) and could respond to tumorigenesis
signaling by producing chemokines and cytokines that favor
tumor progression (1, 13, 14). Glioma-associated microglia/
macrophages (GAMs) are abundant in the tumor mass and
favor tumor progression (15–17). In the tumor, microglia cells
can polarize into two different phenotypes, the typical M1 and
M2 phenotype (18). The M1 phenotype is functionally
distinguished by its ability to eliminate microorganisms or
tumor cells, and to secrete proinflammatory cytokines, such as
IL-23, IL-12, IL-6, IL-1b, tumor necrosis factor a (TNF-a), with
production of reactive oxygen species (ROS), and a low
expression of IL-10 favoring the polarization of T helper cells
to Th1 lymphocytes (19, 20); while M2 phenotype is
characterized by a low expression of MHC-II, IL-12, IL-23 and
a high expression of arginase 1 (Arg1) and anti-inflammatory
cytokines, such as TGF-b and IL-10. Thus, M2 phenotype is
associated with prolonged neural survival, restriction of brain
damage, and prevention of destructive immune responses (21,
22). It has been shown that human GB has a heterogeneous
population of M1/M2 macrophages, and M1:M2 ratio is
associated with a better prognosis in IDH1 R132H wild-type
GB (23). Using automated quantitative immunofluorescence
Sørensen et al. found that M2-like TAMs (Tumor associated
macrophages) show worse progression in high-grade gliomas
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and these favor a pro-tumorigenic microenvironment (24). This
negative correlation was corroborated by Caponegro et al. (25)
and Zhou et al. (26).

Nowadays researchers are focused on discovering the
underlying mechanisms of this awful disease, understanding its
biology, and researching therapeutic targets to alleviate the
symptoms associated with GB, one of which could involve
microglial cells’ interactions within the tumor origin and the
epigenetics associated therewith.
NEURAL STEM CELLS, MICROGLIA, AND
GLIOBLASTOMA STEM CELLS:
INTERACTIONS IN THE NEUROGENIC
NICHE

Neurogenesis is the action through which the neurons are
generated out of neural stem cells (NSCs). This process occurs
during the embryonic stage and during adulthood where
neurogenesis is relegated to two principal regions in the
mammalian brain. These specific neurogenic sites are the
dentate gyrus of the hippocampus (DG) and the subventricular
zone (SVZ) (27, 28). However, other regions have also been
described as neurogenic niches, such as the hypothalamus or the
striatum in some species (29–31). The SVZ in the lateral
ventricles is a neuroepithelium that contains the specific
conditions to form and maintain NSCs. NSCs could be
differentiated into neurons or glial cells, such as astrocytes,
oligodendrocytes, and neurons (Figure 1A), and share some
specific characteristics with astrocytes (32). NSCs, also called
type B cells, embed apical processes into the cerebrospinal fluid,
and at the opposite side, embed their basal processes into blood
vessels, creating a unique site to drive cell fate according to
environmental signaling (33). NSCs are closely related to
microglial cells within the SVZ as they are the primary
macrophages of the CNS (34). In fact, microglia within the
SVZ show a specific morphology, differential expression of
some types of receptors, as well as some differences in
expression of typical microglial markers such as Iba1, which is
underexpressed (35, 36). Furthermore, some studies revealed
that microglia release several factors that stimulate migration
(37), promote the generation of neuroblasts (38), and enhance
not only neurogenesis but also oligodendrogenesis (39). In fact,
microglial cells are related to synaptic connectivity, programmed
cell death, and regulation of neuronal activity (40–42). All things
considered; microglia are a crucial component for determination
of NSC fate.

For many years, researchers focused their attention on the
SVZ as a potential contributor to GB development. That is
because 50%–60% of GB is related to the SVZ and is also
associated with the short life expectancy typical of glioblastoma
patients (43, 44). This relationship is likely to cause a multifocal
diagnosis, as well as an NSC transformation to a new form of
cancer cell called glioblastoma stem cells (GSCs) (45). In 2018,
Lee et al. described the relationship between GB and its SVZ
origin, directing their attention to GSC characteristics using
January 2021 | Volume 10 | Article 603495
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single-cell sequencing to show that some mutations could
transform healthy cells into cancer cells (46) (Figure 1B).
GSCs show similarities with NSCs, such as the capacity to
form cell aggregates called neurospheres (47–49), and the
expression of several markers such as nestin, Sox2, Musashi-1, or
BMI1 (50, 51). It has been postulated that GSCs are responsible for
resistance tomedical treatments and chemotherapeutic agents such
as temozolomide (TMZ) (52–55). GSCs are self-renewing and are
important for other components in the tumor origin, such as the
microglial cells. Glioma tissues suppress the secretion of some
factors, such as TGF-a, IL-10, prostaglandin E2 and IL-14, that
promote M2-like microglial phenotype polarization (56), which is
implicated in some immune response downregulation processes
(57). In tumor masses, M2 microglia are associated with
protumorigenic activities that are capable of stimulating tumor
growth through several cytokines and chemokines like IL-10,
monocyte chemotactic protein-1 (MCP-1/CCL2), some
metalloproteinases (MMPs), and ARG1 (13, 42, 58, 59). These
factors could affect cell behavior by enhancing the crosstalk
between microglia and astrocytes.

Another point associated with the tumor origin is related to
the hypoxic environment. In this respect, the Vascular
Endothelial Growth Factor (VEGF) is important because it
induces the proliferation and activation of microglia and the
neural precursor cells are involved in its secretion (60–62).
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Regarding GB, hypoxia induces angiogenesis and promotes
GSCs self-renewal via VEGF secretion (63, 64).

Therefore, researchers are now focused on identifying
alterations in the signaling pathways and looking for new
therapeutic targets to treat GB, focusing on microglia and their
relationship with the neurogenic niche.
ALTERED SIGNALING PATHWAYS IN
MICROGLIA IN GLIOBLASTOMA

Various alterations have been described in GB signaling
pathways that involved microglia (1). Walentynowicz et al.
characterized the functional response and transcriptional
activity in human and mouse microglial cultures with fresh
human cell glioma–conditioned substrate. They found
activated pathways related to immune evasion and TGF-b
signaling (65). Brennan et al. performed a protein analysis in
surgical glioma specimens to identify differential patterns
of coordinated switch on between glioma-relevant signal
transduction pathways, which revealed three patterns of
protein expression and activation: Epidermal Growth Factor
Receptor (EGFR) expression related to receptor mutation and
amplification; stimulation of the platelet-derived growth factor
(PDGF) pathway that is mediated by ligands; or loss of
FIGURE 1 | Glioblastoma and the subventricular zone. Details of the subventricular zone (SVZ), microglia cells and its relationship with glioblastoma (GB). Type B
cells, knowing as the resident neural stem cells (NSC) within the SVZ are postulated as an origin of glioblastoma stem cells (GSC) because of the accumulation of
some mutations. Signaling pathways are modified in response of the changing cancer niche soluble factors that promote M2 microglial cells phenotype. (A) SVZ
niche in physiological conditions. (B) SVZ niche in the GB context.
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Neurofibromatosis type I NF1 gene expression (66). In addition
other researches have shown that the polarized M2 microglia
induces the transcription of PDGF Receptor Beta in glioma cells
and stimulates their motility capacity (67).

Furthermore, several alterations have also been described in
signaling pathway of CCL2 chemokine receptor CCR2 and its
major (CCL2/CCR2) GB (68). CCL2 is over-expressed in GB.
Interestingly, the secretion level of this chemokine correlates
with tumor grade. Glioma cells initially secrete low levels of
CCL2 to chemotactically attract microglia cells, which increase
CCL2 generation in the tumor environment. The amplified
secretion of CCL2 by microglial cells recruits even more
microglial cells into the tumor, stimulating the progression and
development of the glioma (69).

Relevant findings from Hira et al. show that Mesenchymal
Stem Cells (MSCs), expressing SDF-1a and OPN, capture
CXCR4-CD44 positive GSCs into GSC niches and protect
them from chemotherapy and irradiation (12).

Another altered signaling pathway associated with a negative
regulation of T-cells, promoted by microglia, is the Programmed
cell Death protein 1 (PD-1), due to the overexpression of ligand
Programmed cell Death-Ligand 1 (PD-L1), in GB cells. The PD1
pathway alteration increases the possibility of PD-1/PD-L1
binding in microglia, which is associated with an increased
invasion of GB cells into the brain tissue (70).

In addition, blocking the myeloid checkpoint of Signal
regulatory protein alpha (SIRPa)/CD47 has shown to be
efficient improving tumor phagocytosis and thus decreasing
tumor burden (71, 72). SIRP-a in microglia exerts action in
the neuronal CD47 to repress microglial stimulation (73). SIRP-
a has a receptor tyrosine-based inhibitory motif (ITIM) in its
cytoplasmic region (74) that is phosphorylated after CD47–SIRP-
a interaction, promoting the binding and activation of SHP-1 and
SHP-2 [(Src 2 (SH2) -like domain possessing protein tyrosine
phosphatases (PTP)],which inhibits phagocytosis by preventing
myosin IIA deposition at the phagocytic synapse (75, 76). Hence,
the documented overexpression of CD47 in GB tumor cells (71)
favors the immunosuppressive characteristics of microglia in the
tumor microenvironment.
EPIGENETIC MECHANISMS IN
MICROGLIA IN THE CONTEXT OF
GLIOBLASTOMA

The phenotype of microglia is characterized by its own expressed
gene pattern. This transcriptional signature is modified when
cells are stimulated by a signal, or under pathological conditions
such as GB. In this context, under homeostatic conditions,
microglia have a transcriptional spectrum of expression with a
main signature consisting of P2RY13, TMEM119, CX3CR1,
P2RY12 ,CSF1R , MARCKS , and SELPLG genes and a
diminished expression of MHC class II and lipid metabolism
genes (2, 3). In the context of GB, microglia present higher
expression of proinflammatory and metabolic genes, including
SPP1, HLA-DR, TREM2, APOE, CD163, GPR56, and several type
Frontiers in Oncology | www.frontiersin.org 4
I interferon genes, which is substantially different from the
genetic expression in homeostatic microglia (4). These changes
in expression are modulated by epigenetic mechanisms that
regulate the accessibility of genetic loci to transcriptional
machinery, gene expression levels, and chromatin architecture
without altering the sequences in the DNA (5). This can be
demonstrated by treatment with Valproic acid, which inhibits
class I HDAC catalysis, promotes proteasomal hydrolysis of
HDAC2 and primary adult human microglia, and decreases
phagocytosis and levels of PU.1 and CD45, indicating that the
regulation of the phagocytic activity of the microglia is carried
out by epigenetic mechanisms (6). These HDAC inhibitors
(HDACi) have a proapoptotic effect on cancer cells, which
involves the interruption of the mitochondrial membrane
potential and the increasing of acetylation in the protein
histone H3 (7).

Global hypomethylation has been reported in 80% of GB (8),
showing intratumoral DNA methylation heterogeneity (9). DNA
methylation is closely related to the response to temozolomide
(TMZ) treatment, with O6-methylguanine-DNA methyltransferase
(MGMT) being the only predictive biomarker for a patient’s
response to first-line chemotherapy with TMZ (10).
Hypermethylated CpG in the promoter of the connexin 30
(Cx30) gene have also been establish in grade III and IV GB, but
not in grade I and II gliomas. This hypermethylated region is related
to Sp1 and Ap2 expression factor recognition sites and it is
correlated with progressive downregulation of Cx30 mRNA and
with the degree of GB (11).

MiR-138 has been found to effectively inhibit cell division in GB
in vitro and tumorigenicity in vivo by arresting a transcription
factor EZH2–mediated signaling loop (12). Inhibition of EZH2 in
GB decreases the transcription of M2 profile and increases the
expression of M1 related proteins in microglia cells (13). We still
have a long way to understand the role that epigenetic modifications
play in microglia in GB, but research effort is focused on bringing
light to this issue (Figure 2).

A detailed view of gene expression of microglia under
homeostatic conditions versus GB, supports the understanding
of the dysregulation processes in this disease, and could help to
find new GB therapeutic targets.
MICROGLIA AS A THERAPEUTIC TARGET
FOR GLIOBLASTOMA

Tumor-associated microglia have been shown to be a key
therapeutic target in GB (14) since microglia cells decline in
animal experimental models reduces tumor growth (15). Thus,
therapies based on microglia as a target could complement the
treatments currently used against this disease. Among the
molecules that block microglial/macrophages’ infiltration of
GSC-derived tumors, the integrin inhibitor arginine-glycine-
aspartic acid (RGD) peptides have been shown to interfere
with GSC-secreted periostin, thereby these peptides could
suppress tumor growth and augment survival of GB-bearing
animals (16).
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Another strategy employed promotes the antitumor activities
of GAMs. For example, in an experimental model of GSC tumors
derived from humans implanted in non-obese mice with
combined diabetic/severe immunodeficiency (NOD-SCID), it
was shown that systemic administration of amphotericin B
(AmpB) significantly reduces tumor growth and increases the
chances of survival. In animals treated with AmpB, a greater
tumor penetration of M1 macrophages and microglial cells was
found (77), showing a significant positive regulation of iNOS,
and resulting in a higher production of cytotoxic nitric oxide
(NO). In these same experiments, positive effects of AmpB it was
also found in immunocompetent C57BL/6 mice against very
aggressive tumors from stem-enriched CD133 + GL261 glioma
cells (17).

Additionally, mTORC plays a key role in the integration of c-
MET and PDGFRa signal transduction that are co-activated
with EGFR in the context of GB, and it has been shown that
inhibition of mTOR activity in rat microglial cells can promote
its antitumor properties while restricting its protumorigenic
characteristics. Therefore, mTOR inhibitors have the potential
to attack both glioblastoma and the protumor functions of
GAMs (78–81).

Intracranial injection of a viral recombinant adeno-associated
vector (rAAV2) expressing IL-12, induce an increased level of IL-
12 in tumor-bearing animals, contributing to microglial
penetration in the tumor and reactivation of GAMs’ protective
effects. This immunological reactivation of GAMs significantly
decreases tumor growth and prolongs animal life (19).

An oncolytic virotherapy using Herpes simplex virus type 1
(HSV-1) has been authorized by the FDA for cancer therapy
after the optimum completion of clinical trials (20). In GB, the
Frontiers in Oncology | www.frontiersin.org 5
antitumor efficacy of oncolytic HSV-1 (oHSV-1) is determined,
in part, by the amount of microglia/macrophages that
phagocytize viruses with the ability to express reporter genes.
Thus, viral replication was inhibited, forming an unpermissive OV
barrier, and avoiding the spread of oHSV-1 in the glioma mass. The
decrease in viral replication, in microglial cells, was related to the
suppression of some viral genes by phosphorylation of STAT1/3,
responsible for suppressing oHSV-1 replication in microglia/
macrophages (21). Together, these strategies employ microglia as
a promising therapeutic target in treating glioblastoma.

Microglia are executors of the innate immune response and
are specialized in sensing and eliminating abnormal cells,
however these cells can change their phenotype and become
tumor-promoting cells due to the influence of tumor signals. As
part of the tumor mass, tumor-associated macrophages (TAM)
are interesting therapeutic target based on data that have shown
that the antiphagocytic protein CD47 is increased on the surface
of cancer cells, allowing them to evade the innate immune system
To avoid the interaction of CD47 with SIRP-a, it is used an anti-
CD47 monoclonal antibody (mAb). In microglia cells, anti-
CD47 could prevent the expression of their protumorigenic
phenotype and turn them into a potential weapon, to arrest
GB progression (72).

Stupp et al. In a study with 695 patients with glioblastoma who
have completed their initial radio-chemotherapy, the combination
of tumor treatment fields (TTFields) with maintenance
chemotherapy using alkylating agent TMZ demonstrated a
statistically significant improvement with a median overall
survival of 20.9 months in this group vs. 16 months in the
temozolomide-only group (HR, 0.63, 95% CI, 0.53–0.76,
P <0.001) (4).
FIGURE 2 | Alterations in microglia in the context of glioblastoma. The gene expression patterns in microglia in homeostatic conditions vs glioblastoma differ significantly,
presenting in the latter an inflammatory pattern characterized by an increase in the expression of SPP1, HLA-DR, TREM2, APOE, CD163, GPR56, and interferons.
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Pang et al. demonstrated the ability of macrophages as cell
carriers of drugs. Culture of RAW264.7 cells in presence of LPS
and IFN-g, shown that these molecules bind to Toll-like receptor
4 and the IFN-g receptor respectively, activating and promoting
the exocytosis of the drug loaded by these cells. Thus, they
propose the use of patient-derived M1-type macrophages loaded
in vitro with the drug of interest, and then transferring them back
to the patient to treat GB (82).
CONCLUSION

Microglia and TAMs comprise up to 30% of cells in the brain
tumor environment (56, 83–88). Microglia cells in the CNS
are keys regulators of homeostasis, but their function in
immunological surveillance of glioma cells remains little known.
Tumor cells, through the expression of different surface and
secreted molecules, modulate the phagocytic activity of microglia
by altering various signaling pathways and epigenetic mechanisms.
Therefore, the modulation and reeducation of the set of microglia
constitute a promising antitumor strategy against glioblastoma.
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