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Acute myeloid leukemia (AML) is a heterogeneous clonal disease associated with a dismal
survival, partly due to the frequent occurrence of relapse. Many patient- and leukemia-specific
characteristics, such as age, cytogenetics, mutations, and measurable residual disease
(MRD) after intensive chemotherapy, have shown to be valuable prognostic factors. MRD
has become a rich field of research where many advances have been made regarding
technical, biological, and clinical aspects, which will be the topic of this review. Since many
laboratories involved in AML diagnostics have experience in immunophenotyping,
multiparameter flow cytometry (MFC) based MRD is currently the most commonly used
method. Althoughmolecular, quantitative PCR based techniquesmay bemore sensitive, their
disadvantage is that they can only be applied in a subset of patients harboring the genetic
aberration. Next-generation sequencing can assess and quantify mutations in many genes
but currently does not offer highly sensitive MRDmeasurements on a routine basis. In order to
provide reliable MRD results, MRD assay optimization and standardization is essential.
Different techniques for MRD assessment are being evaluated, and combinations of the
methods have shown promising results for improving its prognostic value. In this regard, the
load of leukemic stem cells (LSC) has also been shown to add to the prognostic value of MFC-
MRD. At this moment, MRD after intensive chemotherapy is most often used as a prognostic
factor to help stratify patients, but also to select the most appropriate consolidation therapy.
For example, to guide post-remission treatment for intermediate-risk patients where MRD
positive patients receive allogeneic stem cell transplantation and MRD negative receive
autologous stem cell transplantation. Other upcoming uses of MRD that are being
investigated include: selecting the type of allogeneic stem cell transplantation therapy
(donor, conditioning), monitoring after stem cell transplantation (to allow intervention), and
determining drug efficacy for the use of a surrogate endpoint in clinical trials.

Keywords: MRD - measurable residual disease, AML - acute myeloid leukemia, LSC—leukemic stem cells, MRD-
driven therapy, MRD-tailored therapy
INTRODUCTION

Acutemyeloid leukemia (AML) is a heterogeneous clonal disease that remains to have low overall survival
(OS) despite recent developments of better supportive care and emerging targeted therapies (1). Death
often results from relapse after an initial successful induction treatment that led to a complete remission
(CR). This relapse is often inherently drug-resistant (2) (Figure 1). Many patient- and leukemia-specific
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characteristics are associated with clinical outcome such as age,
cytogenetics and mutational profile determined before treatment,
and measurable residual disease (MRD) determined after intensive
chemotherapy (3).

MRD measurement in AML is challenging due to the highly
clonal nature of the disease. However, several different techniques to
assess MRD are currently being investigated, and their prognostic
value is being validated. The potential uses of MRD in the clinical
practice such as selecting appropriate consolidation therapy based
on MRD or the usage of MRD as a surrogate endpoint are also
currently being explored (partly summarized in Figure 2).

In this review, we will present the differences between MRD
assessment techniques, developments of MRD, current literature
that gives evidence for MRD-tailored strategies, and future
perspectives in the use of MRD for the clinic.
MEASURABLE RESIDUAL DISEASE IN
ACUTE MYELOID LEUKEMIA—
DIFFERENT TECHNIQUES

Multiparameter flow cytometry MRD
(MFC-MRD)
Since many laboratories involved in AML diagnostics have experience
in immunophenotyping, MFC-MRD is currently the most commonly
used method to determine MRD. The technique is accessible
and widely applicable for about 90% of the AML patients (4).
However, a high level of expertise is needed to perform MFC-
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MRD accurately, and its sensitivity limit is around 10−4–10−5 (Table
1) (4, 13). The expertise includes not only the technique but also
the selection of the right antibody panel, standardized flow
data analysis, and extensive knowledge about normal bone
marrow (BM) expression patterns of the selected cluster of
differentiation (CD) markers. Moreover, since MRD is assessed
after intensive chemotherapy, knowledge of regenerative BM CD
marker expression patterns is crucial (14). MFC-MRDmeasures the
load of leukemic blasts (immature blasts markers: CD34, CD117,
and CD133) within the white blood cells (WBC) fraction. Their
aberrant expressions are grouped by: cross lineage expressions of
non-myeloid CD markers on myeloid blasts (e.g., CD7, CD56),
asynchronous expression of mature CD markers on immature cells
(e.g., CD11b), lack of expression (CD13, CD33) or overexpression
(CD33, CD34) of CDmarkers. These leukemic blasts are referred to
as leukemia-associated immunophenotypes (LAIPs). MFC-MRD is
calculated as the percentage of LAIP positive cells within the total
WBC measured in BM.

Generally, there are two approaches to assess MFC-MRD:
The LAIP-based approach where the LAIP is assessed at
diagnosis and followed during therapy and the Different from
Normal (DfN) approach in which any aberrant pattern of cell
surface markers compared to their combined expression in
normal BM are designated as being residual leukemic disease.
The LAIP-based approach measures only the dominant LAIPs
detected at diagnosis and holds the risk of false negativity,
because LAIPs that arise due to clonal evolution will be missed
(15). While the DfN approach will identify LAIPs that arise due
to clonal evolution, it has the risk of potential false positivity of
FIGURE 1 | Disease progression in AML. After therapy, chemotherapy-resistant leukemic blasts and leukemic stem cells can remain in the bone marrow.
Assessment of the percentage of residual leukemia cells after chemotherapy via multiparameter flow cytometry (MFC) or molecular methods is called MRD. In
particular, the presence of leukemia stem cells (LSC) is of prognostic relevance as they are presumed to initiate the relapse. Created with BioRender.com.
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transient immunophenotypic shifts that occur in regenerative
BM after therapy (15). Although different LAIPs have variable
sensitivity and specificity due to varying background levels of the
LAIP in normal BM, this is in particular variable in regenerating
BM (16, 17). In the ELN 2018 MRD guidelines, an integrated
LAIP-based DfN approach was recommended. Several studies
have been using this LAIP-based DfN approach where LAIPs at
diagnosis were assessed, but also DfN patterns at follow up were
analyzed (16, 18, 19). The dominant LAIPs at diagnosis, LAIPs
that arise due to clonal evolution, and the immunophenotypic
shifts after therapy are taken into account with this approach.
The LAIP-based DfN approach may be essential to gain
information about the efficacy of novel drugs that target
against the dominant clone. An interesting feature from the
LAIP method is that the antibody panel can then be adjusted to
include the marker of interest to assess the effectivity of the
treatment to the target cells present at diagnosis (e.g., CLEC12A,
CD123) (20, 21).
Frontiers in Oncology | www.frontiersin.org 3
Molecular Measurable Residual Disease
Molecular PCR based techniques have higher sensitivity than MFC
MRD, depending on the specific gene and the used molecular
technique (Table 1) (5). The chosen genes for the MRD assay
should be stable genes during disease progression, such as NPM1,
RUNX1-RUNX1, or CBF-MYH11 (5, 22, 23). Although FLT3
harbors frequent recurring mutations, the internal tandem
duplication (FLT3/ITD) is highly unstable and can be gained or
lost during therapy (24, 25). Some research groups still show its
potential as a good prognosticator since the presence of the FLT3/
ITD is a strong indicator of residual disease (26–28). However,
FLT3/ITD negativity does not imply that residual leukemia cells are
absent, and therefore highly sensitive techniques will be required to
ensure FLT3/ITD negativity (29, 30).

The detection of Wilms’ tumor 1 (WT1) by mutation and
expression, has also been suggested to be useful for disease
monitoring (31). Its impact for AML was recently reviewed by
Luo et al. (32). The ELN 2018 MRD guidelines stated that WT1
expression is not preferable to use as a MRD marker and should
only be used when there is no other MRD marker available.
ADVANCES IN CURRENT MEASURABLE
RESIDUAL DISEASE TECHNIQUES

Multiparameter Flow Cytometry-
Measurable Residual Disease Protocol,
Harmonization, and Standardization
A drawback of MFC-MRD is that the assay is technically
heterogeneous because each laboratory employs its own
FIGURE 2 | Overview of possible MRD tailored therapy in different AML treatment phases: Current use of MRD tailored therapy focuses on the choice of
consolidation therapy (post-remission therapy). However, other uses of MRD are also emerging. Future possibilities for MRD usage in the clinic can be the choice in
conditioning treatment, donor in the consolidation phase, and prevention of relapse strategies in the maintenance phase. Pos, positive; Neg, negative; AutoSCT,
autologous hematopoietic stem cell transplantation; HDAC, high doses cytarabine; AlloSCT, allogeneic hematopoietic stem cell transplantation; GvL, Graft versus
Leukemia; DLI, donor lymphocytes infusion. Created with BioRender.com.
TABLE 1 | Different MRD techniques with availability and sensitivity.

Method Availability Sensitivity

Morphology (5) 100% 5 × 10–2 (5%)
Cytogenetics (6) 70% 1–5 × 10–2

FISH (7) 40% 1 × 10–2
(Real-time) RT-PCR* (8–10) 20–40% 1 × 10–3–1 × 10–6

Next generation sequencing* (11) 80–90% 1 × 10–3–1 × 10–4

Flow cytometry (4, 12)
(Immunophenotyping)

80–90% 1 × 10–4–1 × 10–5
FISH, fluorescent in situ hybridization; RT-PCR, reverse transcription-polymerase chain reaction.
*Sensitivity dependent on gene.
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expertise. Therefore, the comparison of MFC-MRD data between
laboratories is complex and its accuracy is hard to interpret. To
properly apply and interpret the MFC-MRD results, the assay
should fulfill specific requirements, including accurate sample
preparation, instrument settings, panel design, awareness of
normal and regenerating BM, gating strategies, and a clinically
validated cut off point for MRD positivity (at a particular time
point during therapy). Furthermore, to get further insight into
important clinical subgroup analyses and optimization of the
assay for clinical decision making, meta-analyses of currently
available data is crucial. To combine the multicenter data,
standardization where necessary and harmonization where
possible have been the emphasis in MFC MRD in the past few
years (15, 33–35). Apart from the multicenter use of data, the use
of MFC-MRD in clinical decision making has made it even more
important to standardize and qualify the assay.

To provide a reliable and valid MRD result, the assay should
be qualified by In Vitro Diagnostic Rules (IVDR). These
prerequisites are mandatory for approval of the U.S. Food and
Drug Administration (FDA) to qualify MFC-MRD as a
biomarker in AML (36, 37). Important recommendations
relate to the usage of BM preferably (to avoid false negatives)
and provide markers used in the MFC-MRD assay that can
distinguish between the aberrant immunophenotype and
regenerating BM (to avoid false positives).

sFor the qualification ofMFC-MRDand to ensure the reliability
of the assay, validation experiments about the accuracy, specificity,
sensitivity, stability, and several comparisons, such as inter-
laboratory comparisons should be made (37). Furthermore, FDA
approval requires that the detection threshold should be tenfold
lower than its clinically relevant cut-off point. For MFC-MRD, the
consensus for the MRD cut-off is 0.1% LAIP+ cells on WBC at
the post-induction measurement (38). With this 0.1% cut-off,
the lower limit of quantification for the detection threshold
would be 0.01%.

The Relevance of Leukemic Stem Cells
One of the methods to refine the current MFC-MRD assessment
is to include the identification of relapse initiating cells that are
capable of repopulating a new leukemia and that are highly
chemotherapy-resistant (39–42). In AML, these have been
shown to be the leukemic stem cells (LSC), which are
characterized by CD34+CD38− expression in combination with
an aberrant (LSC) marker not present on normal hematopoietic
stem cells (HSC) (43). The LSC load at diagnosis and follow-up
has a prognostic value either alone or together with the
MFC-MRD results (44–49). Nevertheless, the development
to incorporate LSC in the MFC-MRD assessment is still not on
the level of the MFC-MRD regarding the technical
recommendations. Standardization and harmonization will be
one of the next developments in the LSC detection. Current
initiatives show that the harmonization and reproducibility of
LSC measurement and analysis between several centers is
possible (50, 51).

Still, more expertise needs to be acquired to give better general
recommendations and show the robustness of the LSC assay.
Because the frequency of LSCs in AML is lower than MRD, more
Frontiers in Oncology | www.frontiersin.org 4
events are needed for acquisition to obtain a reliable result (40,
52). Also, LSCs are highly heterogeneous in their LSC marker
positivity, and clonal evolution can result in shifts of specific LSC
markers during therapy (53). Multiple LSC markers are thereby
crucial in the same LSC detection panel. Since the current panels
used for MFC MRD are 8–10 colors, this would require many
tubes and subsequently (too) many WBCs to accurately measure
LSCs. Therefore, a one-tube assay was developed with six LSC
markers combined in the PE channel, and its technical
reproducibility has been multicenter validated (34, 50, 54).
Advantages of including multiple LSC markers in the Combi
PE channel are that 1) new potentially relevant LSC markers can
be added to this Combi channel, 2) when an LSC marker is a
treatment target (e.g., CLL-1), this LSC marker can be taken out
of this channel and placed into the backbone for monitoring
during treatment, and 3) due to more markers in one channel,
potential upcoming LSC clones during therapy, that were
undetected at diagnosis, can still be found in follow-up setting.
New potential LSC markers are still being investigated (53, 55,
56). As a future perspective, more extensive LSC panels may be
possible because of the technical developments in the flow
cytometry field, e.g., spectral flow cytometers where panels
with more than 18 colors can be designed (57).

Advances in Molecular Measurable
Residual Disease
For molecular PCR, Real-Time quantitative PCR (RT-qPCR) is
most commonly used. Recent novel developments of digital
droplet PCR (ddPCR) show that this might be more sensitive
and more specific than RT-qPCR (58–61). One disadvantage of
molecular MRD techniques is that the method can only be
applied to patients harboring the mutation (4, 8). To account
for this disadvantage, NGS can assess and quantify mutations in
many genes (62). However, NGS still needs much investigation
and optimization before it can be implemented standardly in
routine diagnostics (63, 64).The heterogeneous sensitivity of
NGS between laboratories is currently one issue that prevents
that NGS-MRD be implemented in the routine diagnostics
[reviewed in (65)]. In the ELN 2018 MRD recommendations,
no concrete recommendations were described to ensure good
standardization and harmonization for NGS (38). However,
suggestions for reporting NGS-based AML MRD have been
described in several reviews (62, 66). Which clinical time
point, what tissue and quality of the sample were examples of
these suggestions. In addition, the method to correct the error in
NGS should also be reported (66). Correcting error in NGS can
be done by physical error correction where unique molecular
identifiers are added in the sample DNA or by computational
error correction [reviewed in (65, 67)].

One of the challenges for NGS is the Clonal Hematopoiesis of
Indeterminate/oncogenic Potential (CHIP) detection, which are
potential pre-leukemic mutations that increases in frequency
during higher age (62, 68).These genes (e.g., DNMT3A, TET2,
and ASXL1) were not correlated with an increased relapse rate
and may impact on the specificity of the assay (69). Therefore,
these genes are recommended to be excluded for MRD detection
(38). To prevent false positives with NGS-MRD and for
January 2021 | Volume 10 | Article 603636
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validation, more research should be done to determine these
CHIP mutations and consensus should be made on which CHIP
mutations can be excluded (66).

Combinations of Different Techniques
The development of various MRD measuring techniques
increases the options to measure MRD more accurately.
However, these increasing options also complicates the
appropriate use of MRD. Each technique has its sensitivity and
specificity at different conditions, such as which AML type,
tissue, time point, and threshold.

By combining different MRDmeasurement techniques, a very
poor risk group of AML patients who are double-positive can be
identified, which indicates that the methods, although not
completely concordant, complement each other (69–73). The
use of combined techniques would necessitate laboratories to
have the expertise for each technique. For instance, in HOVON
studies, MFC-MRD is assessed in the central laboratory of the
Amsterdam UMC, location VUMC in Amsterdam, while
molecular MRD is assessed in the central laboratory of the
Erasmus MC in Rotterdam (69). The complementary results of
RT-qPCR NPM1 and MFC-MRD urged us to assign MRD
positivity to patients that are positive for either or both of the
techniques in our current trials. These data are also found by
others (70, 71) and is currently an important research topic. In
particular, to unravel the basis for the discrepancy between both
techniques in the discordant cases.
EMPLOYMENT OF MEASURABLE
RESIDUAL DISEASE IN THE CLINIC

The Current Well-Established Use of
Measurable Residual Disease in the Clinic
In the clinical setting, MRD is currently used to refine the
complete remission (CR) status that is assessed by morphology
(74, 75). Most studies show the prognostic value of MFC-MRD
and molecular MRD, particularly before transplantation (3, 63,
76–81). Measuring MRD at other time points can also have
prognostic value and can help to identify a group with poor
prognosis, such as MRD measurement after the first
chemotherapy (3, 18, 82) and after the consolidation phase (3,
83, 84).

In an international survey of clinicians specialized in AML
treatment, clinicians were asked about the use of MRD in their
clinical decision making. It appeared that although the
availability of qualified MRD assessments is often limited,
MRD is currently widely used in the United States (85). In this
survey, clinicians used MRD measurements mostly after
consolidation (59%) before transplant (64%), and also after
transplant (48%), which is remarkable, as MRD validity outside
the pre-transplant setting is not yet validated. For ensuring the
accuracy of the MRD assessment in real-life MRD utilization, it is
essential to have a qualified assay, to define standard time points,
and to set thresholds that have proven validity in prospective
clinical studies.
Frontiers in Oncology | www.frontiersin.org 5
In the Near Future: Measurable Residual
Disease Tailored Therapy
In the past few years, several definitions for MRD usage in the
guidance of the therapy choice have been published, such as
MRD driven or MRD directed therapies (Table 2) (70, 86–88).
Currently, broadly two MRD driven strategies can be categorized
(Table 2): 1. MRD use in the pre-transplant setting, such as
selecting the most appropriate consolidation therapy. 2. MRD
use in the post-transplant setting, such as taper off maintenance
therapy or manage the Graft versus Leukemia effect.

Measurable Residual Disease Use in Pre-transplant
Setting
Post-Induction Measurable Residual Disease to Select the
Optimal Post-Remission Treatment
Currently, the standard strategy to eradicate AML is
intensive chemotherapy in repetitive cycles or followed by
hematopoietic stem cell transplantation, with allogeneic stem
cell transplantation (alloSCT) having superior anti-leukemic
activity compared to autologous stem cell transplantation
(autoSCT) (75, 89). However, given its potential toxicity,
alloSCT would preferably be averted in those who do not need
it (90, 91). A few published studies that intensified treatment
based on MRD in pediatric AML (92) and t(8,21) patients (86)
suggested that this type of MRD-guided therapy may
improve outcome.

In many protocols, alloSCT is recommended for the adverse
genetic risk group that have a high relapse risk, and often also for
the intermediate-risk group (75). For this latter group, MRDmay
be used to guide consolidation treatment (75, 93, 94). The
GIMEMA AML 1310 trial (70) suggested that the adverse
prognostic effect of MRD positivity in the intermediate-risk
group before transplantation can be improved by performing
alloSCT. MRD positive (>0.035%) patients, who were treated
with alloSCT, performed equally well as MRD negative patients
who received autoSCT (22), but here historical controls were
used. The results of the prospective HOVON 132 study, where
MRD guided treatment was used in the intermediate group to
decide for either allo- or autoSCT, are eagerly awaited. Still, in
none of these, or any of the planned studies as checked at
clinicaltrials.gov, a randomized comparison was or will be
performed to test the value of either conventional treatment or
alloSCT in MRD positive intermediate-risk group patients
(Table 2). Nevertheless, since MRD is the most important
prognostic factor after intensive chemotherapy, new HOVON/
SAKK protocols will continue to guide consolidation treatment
on MRD levels after induction treatment (95).

Measurable Residual Disease Elimination Strategy Before
Transplantation
The upcoming use of MRD in the clinic also provides new
challenges and possibilities for the usage of MRD before
transplantation (Figure 2). Some retrospective studies indicate
that non-acute promyelocytic leukemia (APL) patients who
undergo SCT with an MRD positive result had a poor OS even
when they convert to MRD negative after SCT (96, 97). Therefore
it can be hypothesized that these patients could benefit from extra
January 2021 | Volume 10 | Article 603636
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pre-emptive treatment before transplantation (96, 97). Bataller and
colleagues looked into the usage of pre-emptive therapy after
molecular failure, classified as the increase of MRD after treatment
or failure to achieve molecular response after treatment (98). They
divided theELNfavorable riskNPM1MRDpositivepatients into two
groups: one where patients proceeded directly to alloSCT and the
otherwherepatients receivedadditional therapybeforeproceeding to
alloSCT (69). The choice of additional treatment was based on the
individual situationof thepatient (98).Nodifference in2-yearOSwas
seenbetween themolecular failure group receiving extra pre-emptive
treatment and the group that directly proceeded to alloSCT (81.5
versus 90%, respectively) (98). Compared to the patients that had a
morphological relapse and proceeded to alloSCT after receiving
salvage therapy, patients classified with molecular failure had a
higher 2-year OS (morphological relapse vs. molecular failure, 42
vs. 85.7%, respectively). The authors concluded that pre-emptive
therapy had a favorable outcome in ELN favorable risk NPM1
positive AML patients. However, because the choice of pre-emptive
therapy and direct alloSCT was not randomized and the group of
molecular failure consisted of small numbers, this finding needs to be
validated and confirmed in a different trial. In another trial (open-
label phase II RELAZA2 trial), azacitidine was administrated to
NPM1, RUNX1-RUNX1, or CD34+ mixed donor chimerism
patients, who were MRD positive after conventional chemotherapy
or SCT, and its effect was evaluated after six cycles (87). Of the 53
patients, 58% (n = 31) had an overall response in MRD (major +
Frontiers in Oncology | www.frontiersin.org 6
minor response) after azacitidine administration; 61% (n =19)
converted from MRD positive to MRD negative (major response),
and 39% (n =12) had a decrease in MRD (minor response).
Furthermore, in the patients treated with only conventional
chemotherapy, 48% (14/29) had an overall response (major +
minor response) to azacitidine.

This trial shows that pre-emptive treatment can convert MRD
positive to negative. However, because administering extra pre-
emptive treatment may delay the option of SCT, the chosen
treatment should be fast and effective. As these trials contained
small numbers, the issue of achieving MRD negativity in AML
through additional chemotherapy before transplant deserves
further study. In addition, MRD based approaches may have to
be evaluated extensively with the wider use of novel drugs, which
have recently being approved and entered the clinical stage under
normal clinical practice (real-life), such as FLT3 inhibitors and
IDH1/IDH2 inhibitors. These novel targeted treatments display
different anti-tumor mechanisms than the conventional
intensive chemotherapy, which may impact MRD levels and
kinetics. Potential “deeper” remissions may be established with
targeted drugs that can be tracked based on the specific
characteristic of the drug such as FLT3-ITD measurements
when FLT3 inhibitors are used (99). Slower remissions may be
achieved with differentiation inducing and lower-intensity
therapies (100). The impact of these novel targeted therapies
on the specific properties of MRD (time points, threshold,
TABLE 2 | Current studies where MRD is incorporated in the decision making for AML.

Clinicaltrials.gov n Terms used Age Group Technique

Induction
MRD use in choosing targeted therapy NCT03537560 300 MRD

directed
>20 De novo PCR, MFC

MRD use in intensifying treatment at induction NCT03769532 28 MRD guided >18 NPM1 PCR NPM1
MRD use in choosing extra therapy NCT02349178 6 NA <39 MRD + MFC, molecular

NCT03989713 80 MRD
triggered

18–75 Relapse/refractory MFC

Before transplant
MRD use in risk stratification and choice
consolidation

NCT02870777 743 MRD
directed

18–60 Low/intermediate Unknown

NCT01041040 200 Risk
adapted

All All MFC

NCT03846362 100 MRD based <18 Intermediate/high PCR, MFC
NCT04168502 414 MRD driven 18–60 Favorable/intermediate Unknown
NCT03515707 30 NA 18–69 Favorable/intermediate MRD

negative
MFC, cytogenetics, FISH,
molecular

NCT03620955 1000 Risk
stratified

14–60 De novo MFC

NCT04174612 172 NA 18–65 FLT3 MFC
NCT02272478 1600 NA >60 De novo MFC
NCT01723657 862 Risk

adapted
18–70 De novo MFC

NCT03417427 100 NA 14–60 Intermediate MFC
Post-transplant
MRD use in
post-transplant intervention

NCT02458235 67 Risk
adapted

<29 Post-transplant MFC, gene expression profiling

NCT03121079 29 NA 18–60 Standard Flow and RQ-PCR WT1
MRD use in tapering treatment NCT02458235 67 Risk

adapted
<29 Post-transplant MFC, gene expression profiling

NCT03466294 42 NA >60 De novo/elderly Unknown
January 202
NA, not described/not available; NPM1, nucleophosmin 1; FLT3, fms like tyrosine kinase 3; MFC, multiparameter flow cytometry MRD; RQ-PCR, real-time quantitative polymerase chain
reaction; WT1, Wilms’ Tumor 1; FISH, fluorescence in situ hybridization.
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technique) and the optimal clinical application of MRD are
currently being investigated (Tables 2 and 3).

Measurable Residual Disease and Its Impact on Donor-
and Conditioning Regimen Choice
When used as prognostic factor, MRD should be assessed at an
appropriate time point before transplant (38). As some studies
have shown that an early search for a donor improves OS (82,
101, 102), MRD positivity at an earlier time point may guide the
urgency of searching a donor for alloSCT in the future.

Also, persistent MRD positivity before transplant may be an
indication to select a haploidentical donor instead of a matched
sibling donor to increase the Graft versus Leukemia effect (103–
105), whereas MRD-negative patients may be spared this
intensive treatment modality (103).

Whether persistent MRD positivity should guide the
intensity of conditioning is an unsolved issue. In a recent
study by Dillon and colleagues, no effect of conditioning
regimen intensity or donor type on OS was seen in NPM1
mutated AML patients who remained MRD positive before
transplant (106). Similarly, no effect of conditioning regimen
intensity was also observed in other studies that measured
MRD with MFC-MRD (107–109). However, in another study,
MFC-MRD positive patients receiving reduced-intensity
conditioning had a higher chance of relapse, which was not
observed in the MFC-MRD positive patients receiving
myeloablative conditioning (110). This finding suggests that
myeloablative conditioning had a positive effect on lowering the
relapse rate (110). In another randomized study, NGS-MRD
positive patients who received myeloablative conditioning had
lower relapse rates and higher 3-year OS than those with
reduced-intensity conditioning (1-year cumulative incidence:
15 versus 58%, and 3-year OS, 61 versus 43%, respectively) (64).
This difference in 3-year OS was not observed in the NGS-MRD
negative group (63 versus 56%, respectively), probably due
to the increased treatment-related mortality in the NGS-
MRD negative group. With these conflicting results, the role
of MRD on the conditioning or donor choice remains to be
further investigated.

Measurable Residual Disease Use After
Transplantation
MRD assessment may also be useful to monitor disease kinetics after
SCT and to test interventional strategies to prevent relapse occurrence
(111). These include the use of hypomethylating agents (HMA),
intensive chemotherapy, second alloSCT, immunosuppression
adjustments, and donor lymphocyte infusions (DLI) (112–115). In
a retrospective study including patients with myeloid malignancies
undergoing SCT, patients who were followed by regular qPCR after
transplant had a better survival compared to those with
intramedullary and hematological relapses, probably due to earlier
post-transplant interventions (112). In the RELAZA and RELAZA2
trial, administrating HMA to NPM1, RUNX1-RUNX1, or CD34+
mixed donor chimerism patients who were MRD positive after SCT
could prevent or delay a hematological relapse (87, 116). Similar
beneficial effects on decreasing MRD after MRD positivity by HMA
were also found in CBF-AML and older patients (117, 118), although
Frontiers in Oncology | www.frontiersin.org 7
it needs to be established whether this translates to improved survival.
Currently, the potential benefit of maintenance therapy after the
treatment protocol is being investigated, and MRD may be useful to
taper off maintenance therapies such as described for HMA and
venetoclax (88).

The interval and duration of MRD monitoring after the end
of therapy is still unclear. A survey, distributed among European
Bone Marrow Transplantation centers, showed that MRD
monitoring after transplantation was most often performed
every 2–3 months after transplantation until a wide span of 1–
5 years post-transplant (119). Since relapse after alloSCT
commonly occurs within the first 2 years (106, 120–122), in
particular the first year, seems to be the most valuable to perform
MRD and detect an early increase in residual disease. However,
more research is needed to determine the exact intervals for
MRD monitoring, and on-time administrating pre-emptive
therapy to prevent relapse (123).

Because MRD monitoring requires repetitive and relatively
invasive BM aspirations, reliable MRD monitoring on peripheral
blood (PB) is highly desirable for achieving better patient
comfort. Several studies have shown that MFC-MRD
assessment in PB is possible but is about one log less sensitive,
although it coincides with an increase in specificity (124, 125).
Other techniques such as RT-qPCR MRD have also looked into
monitoring the disease at multiple time points and also suggest
that PB would be an alternative for intensive monitoring in CBF-
AML (126, 127). It has to be emphasized that a clinically relevant
MRD threshold after post-remission therapy and its potential
consequences on interventions has not been determined yet and
requires further investigation.

Future Perspectives
Measurable Residual Disease as a Surrogate
Endpoint
In the last few years, more promising targeted therapies are
emerging. However, the long duration of AML trials (e.g., Ratify
trial 8 years) to assess a significant effect of a new drug is a
limitation to push the development of AML treatments forward
(128). An early endpoint as a surrogate for OS or event-free
survival would therefore be highly desirable. MRD measurement
could fulfill this role. To make MRD eligible for surrogacy,
several requirements have to be met such as the qualification
of the assay, clinical validation of the relationship for surrogacy
and survival benefit (129) (Figure 3).

Although MRD is not officially recognized as a surrogate
endpoint, some trials (clinicaltrials.gov) include MRD as one of
the primary endpoints (Table 3). These trials are mostly phase I/
II studies that include CR based on MRD (CRMRD) as the
primary endpoint of their study (130–137). Recently, Tiong
and colleagues published a retrospective study about
venetoclax that could make patients with low-intensity
chemotherapy achieve durable CRmrd status (138). The change
in MRD levels (139–143) or the proportion of patients achieving
MRD negativity (144–149) are also frequent primary endpoints
of studies. Furthermore, trials that use MRD as primary endpoint
are frequently trials with unfit patients and relapsed/refractory
patients (130, 131, 134, 135, 137, 142, 146, 148).
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For the use of MRD as a surrogate endpoint, the document
provided by the FDA (36) stated that: “The strength for a
potential surrogate endpoint relies on the biological plausibility
of the relationship, demonstration in epidemiological studies of
the prognostic value of the surrogate endpoint for the clinical
outcome and evidence from clinical trials that treatment effects
on the surrogate endpoint correspond to effects on the
clinical outcome”.

For MRD, both the biological plausibil ity of the
relationship that MRD initiates relapse and its relation to
OS and the prognostic value of MRD are published and
generally accepted. Clinical trials which show clear and
significant additional effect of the new treatment and also
include MRD are scarce but instrumental for qualifying MRD
as a surrogate endpoint. Whether MRD as surrogate endpoint
eventually includes the difference or decrease in MRD level,
Frontiers in Oncology | www.frontiersin.org 8
frequency of converted MRD positive patients, or frequency of
MRD negative patients remains to be investigated and is an
attractive emerging research field in the upcoming years
(150–152).

Prediction Models for Improved
Personalized Medicine
As previously stated, MRD is valuable to stratify patients
according on the risk of relapse; however, 30% of MRD
negative patients still relapse. Hence, based on its sensitivity
and specificity measures, MRD is not yet predictive for the
individual patient (3, 44). For achieving a better prediction,
state-of-the-art techniques may help in further characterization
of different AML subtypes. For the development of the right
prediction models, there are several scoring systems to estimate
mortality in different subgroups of AML [reviewed by Walter
TABLE 3 | Current trials using MRD as a primary endpoint.

Clinicaltrials.gov Phase n Age Treatment Group Technique

Groups primary
endpoints

CRmrd NCT04284787 II 76 >60 Pembrolizumab, Azacitidine,
venetoclax

Unfit Duplex sequencing,
MFC

NCT03150004 II 90 >18 CLAG-M R/R secondary AML MFC
NCT04476199 II 100 60–75 Venetoclax, decitabine De novo, alloSCT MFC, cytogenetics,

RT-qPCR
NCT03573024 II 36 18–59 Venetoclax, azacitidine De novo MFC
NCT03701295 I/II 36 >18 Pinometostat, azacitidine 11q23 Unknown
NCT03654703 II 100 3–18 Cyclophasphamide regimens Pediatric R/R MFC
NCT01831232 NA 24 18–74 Idarubicin, cytarabine,

pravastatin sodium
De novo AML MDS MFC

NCT04196010 I 45 >18 CI-CLAM AML r/r or other high-grade myeloid
neoplasms

Unknown

NCT04214249 II 124 >18 Pembrolizumab + intensive
chemotherapy

De novo MFC

Proportion MRD
negativity/
positivity

NCT04168502 III 414 18–60 Gemtuzumab, glasdegib De novo, favorable
intermediate risk

Unknown

NCT04093505 III 252 >60 GO, glasdegib De novo, post remission MFC
NCT04000698 I/II 25 <25 Different targeted therapies Pediatric R/R Unknown
NCT03699384 I/II 0 >18 Azacitidine Avelumab MRD positive MFC
NCT02614560 I/II 14 18–75 Vadastuximab Talirine R/R AML Unknown
NCT04347616 I/II 24 >18 NK cell therapy R/R AML MFC/PCR

MRD change/
conversion

NCT03737955 II 36 >2 GO MRD positive + prior treatment MFC/PCR
NCT01677949 II 0 <60 Clofarabine,

cyclophosphamide, etoposide
ALL, AML MFC/PCR

NCT00863434 II 2 18–75 Clofarabine, Cytarabine MRD positive MFC
NCT03697707 II 20 >18 Dendritic cell therapy R/R AML persistent MRD MFC
NCT03021395 I/II 300 14–55 Decitabine After consolidation Unknown

MRD not specified NCT04209712 Early
phase I

6 1–80 NK infusion MRD positive, after two cycles
chemotherapy and no SCT

MFC

NCT01828489 III 300 0–80 Cytarabine/fludarabine,
DaunoXome, etoposide/
cytarabine

Children/adolescents MFC

NCT00965224 II 50 >18 Dendritic cell therapy Myeloid leukemia and Myeloma WT1 PCR
NCT04086264 I/II 212 18–120 IMGN632, venetoclax,

Azacitidine
CD123 positive AML MFC

NCT01347996 IV 84 >18 Histamine, IL-2 AML in CR1 RQ-PCR
NCT03665480 II/III 122 14–65 G-CSF De novo Unknown
January 2021 | Volum
N, number of patients; CLAG-M, cladribine, cytarabine, filgrastim and mitoxantrone; CI-CLAM, continuous infusion chemotherapy = cladribine, cytarabine, mitoxantrone; R/R, relapse/
refractory; SCT, stem cell transplantation; G-CSF, G colony stimulating factor; GO, Gemtuzumab Ozogamicin; MFC, multiparameter flow cytometry; RT-qPCR/RQ-PCR, real-time
quantitative polymerase chain reaction.
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and Estey (153)]. However, data is not yet collected
systematically and presented clearly, which makes it unclear
how and when to use MRD in the individual patient with
specific characteristics. As described by Walter and Estey, data
of these prediction models should also be updated frequently to
assure the accuracy of the model (153).

In the future, applications or websites that calculate the individual
risk of a relapse or survival based on treatment choice may play a
larger role in supporting clinical decision making in AML. A good
prediction model is needed to support this application (154). By
using a multistage model for predicting outcome, genomic and
clinical variables in AML, Gerstung and colleagues were capable of
making an application that determines individual risk for each
specific treatment choice (155). To make a prediction model that
calculates the individual prognosis, fully annotated individual patient
data and large datasets are needed (155). However, combining
datasets are time-consuming and challenging due to technical
differences of the specific MRD technique, annotations, and
different database source programs used in different institutes.
Standardization and harmonization of MRD measurement
techniques should also improve the comparability of MRD results
in the future. Furthermore, forming regulations and reaching
agreements between collaborative parties to ensure safe data
transfer can also be challenging and time-consuming due
differences in legislation. Currently, the HARMONY alliance big
data portal is in development to combine survival data from different
hematological diseases (156). Another initiative to combine MRD
data is from the collaborators of the AMLMRDworking party of the
European Leukemia Net, where MRD data of many different studies
will be collected in the upcoming years.
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These advances in the harmonization of MRD assessments to be
used in big data analyses are essential to achieve an application to
guide clinicians and patients in their clinical decision makings based
on accurate relapse risk predictions.
DISCUSSION

MRD is quickly evolving in terms of the biological, technical, and
clinical research fields. The use of MRD is potentially relevant for
several clinical decisions such as MRD tailored therapy (before and
after transplant) and as a surrogate endpoint to push forward the
therapeutic AML landscape. However, to make the MRD
assessment good enough for all these envisioned purposes,
technical features of the MRD assay should be standardized,
harmonized, and validated in prospective trials. Several
considerations arise in incorporating MRD tailored therapy, such
as taking into account which treatment (intensive vs. non-intensive
or chemotherapy vs. targeted), time point during therapy, use of
MRD technique, selected threshold per time point, usage of BM or
PB, and possibly also the kinetics of MRD clearance in different
AML subtypes. To evaluate MRD as a surrogate marker, MRD
should be incorporated in more clinical trial designs. Furthermore,
clinical data should be as complete as possible for all relevant
prognostic markers to increase the predictive value of models,
including (LSC)-MRD and precision medicine.

With all these considerations, MRD is indispensable from the
treatment of AML. What we have learned so far about MRD
tailored therapy is that the clinical practice is eagerly anticipating
the use of MRD for clinical decision making. However, the use of
FIGURE 3 | Requirements to make MRD eligible as a surrogate endpoint. 1a) Next to the current evidence on the prognostic value of MRD; 1b) the MRD assay
should be qualified (accurate MRD measurements with established lower limit of quantification). 2a) For use of MRD as surrogate endpoint, the time point of MRD
assessment and readout measures, such as threshold of MRD-positivity or level of decrease (log-reduction), should be established; 2b) Ultimately, it is required to
validate the association between treatment effectivity, MRD as surrogate endpoint, and the change in outcome. Therefore, the added value of MRD as surrogate
endpoint has to be shown in a clinical trial with a (novel) treatment that gives a significant survival benefit and a significant change in MRD using the selected readout
2a). AML, Acute Myeloid Leukemia; MFC, multiparameter flow cytometry; MRD, Measurable residual disease. Created with BioRender.com.
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the current assays for accurate risk prediction for the individual
patient needs more careful evaluation. To reach that goal, data
science and meta-analysis of large clinical trial with MRD data
are being employed to improve personalized treatment and
outcome for the individual patient.
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