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Background: Invasive mucinous adenocarcinoma (IMA) of the lung is a distinct
histological subtype with unique clinical and pathological features. Despite previous
genomic studies on lung IMA, the genetic characteristics and the prognosis-related
biomarkers in Chinese surgically resected lung IMA remain unclear.

Methods: We collected 76 surgically resected primary tumors of invasive lung
adenocarcinoma, including 51 IMA and 25 non-mucinous adenocarcinomas (non-IMA).
IMA was further divided into pure-IMA (mucinous features≥90%) and mixed-IMA
subgroups. Comprehensive genomic profiling based on targeted next-generation
sequencing (NGS) of 425 genes was explored and genomic characteristics were
evaluated for the correlation with postoperative disease-free survival (DFS).

Results: IMA had a unique genetic profile, with more diverse driver mutations and more
tumor drivers/suppressors co-occurrence than that of non-IMA. The frequency of EGFR
(72.0% vs. 40.0% vs. 23.1%, p=0.002) and ALK (undetected vs. 20.0% vs. 26.9%,
p=0.015) alterations showed a trend of gradual decrease and increase from non-IMA to
mixed-IMA to pure-IMA, respectively. The frequency of KRAS mutations in pure-IMA was
higher than that in mixed-IMA, albeit statistically insignificant (23.1% vs. 4.0%, p=0.10).
TP53 mutation was significantly less in pure-IMA compared to mixed-IMA and non-IMA
(23.1% vs. 52.0% vs. 56.0%, p=0.03). Besides, IMA exhibited less arm-level
amplifications (p=0.04) and more arm-level deletions (p=0.004) than non-IMA, and the
frequency of amplification and deletion also showed a trend of gradual decrease and
increase from non-IMA to mixed-IMA to pure-IMA, respectively. Furthermore, prognosis
analysis in stage III IMA patients showed that patients harboring alterations in EGFR
(mDFS=30.3 vs. 16.0 months, HR=0.19, P=0.027) and PI3K pathway (mDFS=36.0 vs.
16.0 months, HR=0.12, P=0.023) achieved prolonged DFS, while patients with poorly
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differentiated tumors (mDFS=14.1 vs. 28.0 months, HR=3.75, p=0.037) or with KRAS
mutations (mDFS=13.0 vs. 20.0 months, HR=6.95, p=0.027) had shorter DFS.
Multivariate analysis showed that KRAS mutations, PI3K pathway alterations, and
tumor differentiation status were independent factors that have statistically significant
influences on clinical outcomes of IMA patients.

Conclusion: Our study provided genomic insights into Chinese surgically resected lung
IMA. We also identified several genomic features that may serve as potential biomarkers
on postoperative recurrence in IMA patients with stage III disease.
Keywords: invasive mucinous adenocarcinoma, surgical resection, next generation sequencing, genomic profiling,
prognostic biomarker
INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality
among various malignancies worldwide (1). In addition to
surgery and chemoradiotherapy, targeted therapy has now
become an effective treatment for lung cancer (2–5), which in
turn emphasizes the importance of understanding tumors at
gene levels.

According to the lung adenocarcinoma classification system
proposed by the International Association for the Study of Lung
Cancer (IASLC)/American Thoracic Society (ATS)/European
Respiratory Society (ERS) in 2011 (6), invasive mucinous
adenocarcinoma (IMA) is considered to be a distinct subtype
of lung adenocarcinoma. IMA appears as translucent and grayish
jelly-like lesions at gross observation, while the tumor cells are
typified by a tall columnar or goblet cell morphology with
abundant intracellular or extracellular mucus under the
microscope (7). IMA has a low incidence, accounting for only
2%–5% of lung invasive adenocarcinoma, and IMA is associated
with poor survival outcomes (6, 8). It has been shown that more
than 70% of IMA tumors were associated with the spread-
through-air-space pattern, which a poor prognostic predictor
for various lung adenocarcinoma subtypes (9). In addition, some
distinct clinic-pathological features were observed within the
IMA subtype. Beck et al. reported spontaneous regression of
airspace opacities in some patients with IMA, who tended to
have worse overall survival than other IMA patients (10). Several
pathological parameters of the MIA tumors, such as the mucin
spread size, tumor cell spread size, and invasive size, were also
negatively correlated with poor prognosis (11). Therefore, MIA is
a clinically important and complex lung adenocarcinoma
subtype that needs to be carefully investigated.

A number of studies have suggested that IMA differs from
other adenocarcinomas in clinical manifestations and pathology
(6, 8, 12, 13). Some studies indicated that certain genetic
differences have been observed between IMA and other non-
mucinous adenocarcinomas (non-IMA) particularly for driver
genes. Early studies found that the mutation frequency of EGFR
was lower than other adenocarcinomas (undetectable to ~28% in
IMA vs. 47%–78% in non-IMA patients) (14, 15), while the
frequency of KRAS mutations was higherin IMA than other
adenocarcinomas (14%–86% in IMA vs. 1.5%–17% in non-IMA
2

patients) (16, 17). These results implied that the mucinous
differentiation might be partially relied on KRAS aberrations,
whereas EGFR mutations tended to be involved in driving the
development of other adenocarcinoma subtypes. However, these
studies only detected a narrow range of genes and did not include
other key oncogenic drivers, such as ALK fusions. In 2014, high
rates of ALK fusions and KRASmutations were observed in IMA
from a study containing 13 samples, and a rare CD74-NRG1
fusion was also detected (18). In the same year, a study
conducted on 44 pulmonary mucinous adenocarcinomas found
that IMA had a lower frequency of EGFRmutations and a higher
frequency of several other genetic alterations (e.g., KRAS
mutations, HER2 mutations, and ALK fusions) than other
invasive adenocarcinomas (19). These studies revealed that
IMA is likely to have a unique genetic profile, especially for the
driver genes. Although more and more genetic changes have
been detected in IMA, the overall genetic spectrum is still
unclear. In 2015, a study of 72 IMA patients from the USA
and South Korea showed that KRAS mutations were the most
common genetic aberrations (63%), whereas in KRAS-negative
patients several rare gene fusions and mutations were observed,
including CD74-NRG1, VAMP2-NRG1, TRIM4-BRAF, TPM3-
NTRK1, and EML4-ALK fusions, as well as ERBB2, BRAF, and
PIK3CAmutations (12). Among those 72 IMA patients, only 2 of
them harbored TP53 mutations, which was much less than that
observed in unselected lung adenocarcinomas (12). This study
also employed next-generation sequencing (NGS) for gene
detection, which increased the coverage and detecting
sensitivity compared to previous studies. In 2016, another
NGS-based study using a panel of 50 genes identified KRAS
and TP53 as the most commonly mutated genes in IMA, as well
as several rare EGFR gene mutations (20). Of note, this study
categorized IMA into pure-IMA (≥ 90% invasive mucinous
pattern) and mixed-IMA (> 10% of the non-mucinous invasive
component) (20). Specifically, ALK rearrangements were found
in two of mixed-IMA patients but none in pure-IMA patients,
and patients with mixed-IMA had poorer prognosis (20),
indicating that IMA patients with different proportions of
mucinous components may have different molecular profiles
and clinical prognosis, which is worthy of further investigations.

A review of existing studies suggested that the frequency of
EGFRmutations was lower and the frequency of ALK fusions and
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KRAS mutations was markedly higher in IMA patients compared
to the general lung invasive adenocarcinomas, whereas the
frequency of rare mutations remains controversial. In addition,
most of the previous studies were conducted on the Westerner
population using small panel molecular assays, while the extensive
genetic analysis in the Chinese population is still lacking. In this
study, we retrospectively analyzed 76 surgically resected primary
tumors from Chinese patients with invasive lung adenocarcinoma,
including 51 IMA and 25 non-IMA. Furthermore, based on the
presence of a non-mucinous component, IMA was further divided
into pure-IMA and mixed-IMA subgroups. Targeted NGS of 425
cancer-relevant genes was performed on these tumors, and their
genomic profile was comprehensively investigated and compared
among 3 different histological subgroups. We also explored the
association between molecular aberrations and postoperative
disease-free survival (DFS) in stage III IMA patients. This
study could enhance our understanding of the molecular
characteristics and the potential prognostic biomarkers of East-
Asian IMA patients.
METHODS

Patients
A total of 79 surgically resected primary invasive lung
adenocarcinomas diagnosed between October 2010 to July 2019
at the Cancer Hospital of the University of Chinese Academy of
Sciences (Zhejiang Cancer Hospital). All cases were retrospectively
collected andwere centrally reviewedby twopathologists according
to the 2015 WHO classification of lung adenocarcinoma.
Specifically, during the screening process, patients with mucinous
component higher than 10% were enrolled in the IMA group.
Among the 79 patients, three did not pass the quality control of the
sequencing analysis, resulting in 51 IMA and 25 non-mucinous
adenocarcinomas (non-IMA). In addition, given that some IMAs
have certain levels of the non-mucinous component to some extent,
IMA can be further classified based on the percentage of mucinous
pattern, that is, pure mucinous (≥90% of the invasive mucinous
pattern) and mixed mucinous/non-mucinous (>10% of the non-
mucinous invasive component). All patients provided informed
consent forms in accordance with institutional regulations and
study protocols were approved by the Ethical Review Community
of Zhejiang Cancer Hospital.

DNA Extraction and Library Construction
NGS was performed in a centralized testing center (Nanjing
Geneseeq Technology Inc.). DNA extraction, library preparation,
and targeted-capture enrichment were performed as previously
described (21). Briefly, genomic DNA from the white blood cells
(WBCs) was extracted using the DNeasy Blood & Tissue Kit
(Qiagen) and used as the normal control to distinguish germline
mutations. Formalin-fixed and paraffin-embedded (FFPE)
samples were de-paraffinized with xylene, and genomic DNA
was extracted using the QIAamp DNA FFPE Tissue Kit
(Qiagen). DNA was quantified by Qubit 3.0 using the dsDNA
HS Assay Kit (Life Technologies), and the quality was evaluated
by a Nanodrop 2000 (Thermo Fisher).
Frontiers in Oncology | www.frontiersin.org 3
Libraries were prepared by the KAPA Hyper Prep kit (KAPA
Biosystems) as previously described (22). Briefly, genomic DNA
was sheared into fragments using a Covaris M220 instrument.
End repair, A-tailing, and adaptor ligation of fragmented DNA
were performed using the KAPA Hyper DNA Library Prep kit
(Roche Diagnostics). DNA Libraries were then amplified by
polymerase chain reaction (PCR) and purified using
AgencourtAMPure XP beads.

Customized xGen lockdown probes panel (containing 425
predefined cancer-related genes) were used for selective
enrichment. The capture reaction was performed with
Dynabeads M-270 (Life Technologies) and the xGen
Lockdown Hybridization and Wash kit (Integrated DNA
Technologies). Captured libraries were PCR-amplified with
KAPA HiFi HotStart ReadyMix (KAPA Biosystems). The
purified library was quantified using the KAPA Library
Quantification kit (KAPA Biosystems).

Sequencing and Bioinformatics Analysis
Target enriched libraries were sequenced on the HiSeq4000
platform (Illumina). Sequencing data were demultiplexed by
bcl2fastq (v2.19), analyzed by Trimmomatic (23) to remove
low-quality (quality<15) or N bases. Then the data were
aligned to the hg19 reference human genome with the
Burrows-Wheeler Aligner (bwa-mem) (24) and further
processed using the Picard suite (available at https://
broadinstitute.github.io/picard/) and the Genome Analysis
Toolkit (GATK) (25) SNPs and indels were called by VarScan2
(26) and HaplotypeCaller/UnifiedGenotyper in GATK, with the
mutant allele frequency (MAF) cutoff as 0.5%. Common variants
were removed using dbSNP and the 1000 Genome project
databases. Germline mutations were filtered out by comparing
to patient’s WBCs controls.

Gene fusions were identified by FACTERA (27) and copy
number variations (CNVs) were analyzed with ADTEx (28). The
log2 ratio cut-off for copy number gain was defined as 2.0 for
tissue samples. A log2 ratio cut-off of 0.6 was used for copy
number loss detection. Allele-specific somatic CNVs (SCNVs)
were analyzed by FACETS (29) with a 0.2 drift cut-off for
unstable joint segments. In pathway analysis, sets of genetic
aberrations were included according to the ten previously
defined canonical oncogenic signaling pathways (30).

Statistical Analysis
Quantitative data were presented as median (range) or the
number of patients (percentage). Comparisons of proportion
between groups were performed using Fisher’s exact test.
Survival analysis was performed using Kaplan-Meier curves,
and the p-value was determined with the log-rank test, and
hazard ratios (HRs) were calculated by Cox proportional hazards
model. A two-sided p-value of less than 0.05 was considered
significant for all tests unless indicated otherwise. Univariate and
multivariate analyses were used to study the associations between
different variables and DFS, and the results were presented as
HRs and their 95% confidence intervals (CIs). All analyses were
performed with R 3.4.0.
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RESULTS

Patient Characteristics
Baseline demographics and clinical characteristics of 51 IMA and 25
non-IMA patients were summarized in Table 1. There were no
significant differences between patients with IMA and those with
non-IMA with respect to age, sex, stage, smoking status,
intravascular tumor thrombus, perineural invasion, differentiation
grading, and pleural invasion. The median age of IMA and non-
IMA was 61 and 62 years, respectively. Twenty-eight females (55%)
were enrolled in IMA cohort and 11 females (44%) were enrolled in
non-IMA cohort. More than half of both IMA and non-IMA
patients did not have a smoking history. The proportion of stage
III patients in IMA cohort seemed more than that in non-IMA
cohort, but no statistical significance was observed (p=0.11). The
majority of the patients did not have intravascular tumor thrombus
or perineural invasion, and slightly more patients had moderately
differentiated tumors than those with poorly differentiated tumors.
Nearly half of the IMA patients had pleural invasion, whereas there
were a lower proportion of the non-IMA patients who had pleural
invasion, although the difference was not statistically significant.
According to the proportion of mucinous components, patients
with IMA were divided into sub-groups of pure-IMA (n=25) and
mixed-IMA (n=26).

Different Mutational Spectra of Driver
Genes Between IMA and Non-IMA
Given that each tumor sample had the corresponding white blood
cell sample as the normal control, we used these normal control
samples to filter out the germline mutations, and all of our
molecular analyses were based on tumor somatic alterations.
Frontiers in Oncology | www.frontiersin.org 4
In IMA patients, the most frequently altered driver genes were
EGFR (33.3%), ALK (27.5%), KRAS (13.7%), ERBB2 (11.8%), and
PIK3CA (11.8%) (Figure 1 and Figure S1). Among these
alterations, the well-known EGFR driver mutations (i.e., L858R,
exon 19 deletions, andG719S) andALK rearrangements accounted
for 31.4% and 23.5%, respectively (Figure S2). Specifically, EGFR
G719S, L858R, and exon 19 deletion (E19 del) were detected in one
(2.0%), 3 (5.9%), and 12 (23.5%) patients, respectively. In addition
to these knowndrivermutations,EGFRA750P andE19del coexisted
in one patient, and a concomitant EGFR L747S mutation was also
observed in a patient with EGFR G719S. Besides, an EGFR exon 20
insertion (20Ins)wasdetected in1 (2.0%)patient. In termsof theALK
rearrangement, 10 (19.6%) patients harbored EML4-ALK fusions,
one (2.0%) had an intergenic region (IGR)-ALK fusion (i.e.,
downstream TTC32-ALK exon 18 fusion), and one patient (2.0%)
had IGR (downstream CTNNA2)-ALK exon 20 and ALK exon 18-
LYN 5’ UTR co-fusions. ERBB2 20Ins were detected in four (7.8%)
patients, which was much higher than that in unselected lung
adenocarcinoma patients. In addition, the frequencies of RET and
NRG1 alterations were both 5.9%, which includes two patients with
RET fusions (KIF5B-RET and CCDC6-RET) and two patients with
NRG1 fusions (SLC3A2-NRG1) (Figure 1 and Figure S2). Although
MET aberrations were not detected in IMA patients,MET (12.0%),
together with EGFR (72.0%) and KRAS (12.0%), was commonly
mutated in non-IMA patients. The mutation frequency of ALK,
PIK3CA,BRAF, andROS1wasall 4.0%(Figure1 andFigureS2), and
MET exon 14 skippingwas detected in two (8.0%) patients (Figure 1
and Figure S2). The frequency of EGFR (33.3% vs. 72.0%, p<0.01)
and MET (undetected vs. 12.0%, p=0.03) mutations in IMA were
significantly lower than that innon-IMApatientswhile the frequency
of ALK rearrangements showed the opposite trend (27.5% vs. 4.0%,
TABLE 1 | Baseline demographics and clinical characteristics of non-IMA and IMA patients enrolled in this study.

Histology Non-IMA (n=25) IMA (n=51) P value

Median age (range) 62 (50–83) 61 (25–79) 0.29
Gender 0.47
Male 14 (56.0%) 23 (45.1%)
Female 11 (44.0%) 28 (54.9%)
Clinical stage 0.31
I 14 (56.0%) 24 (47.1%%)
II 5 (20.0%) 6 (11.8%)
IIIA 6 (24.0%) 21 (41.2%)
Smoking status 0.62
Never 14 (56.0%) 33 (64.7%)
Ever 11 (44.0%) 18 (35.3%)
Intravascular tumor thrombus 0.37
Yes 3 (12.0%) 11 (21.6%)
No 22 (88.0%) 40 (78.4%)
Perineural invasion 0.66
Yes 1 (4.0%) 5 (9.8%)
No 24 (96.0%) 46 (90.2%)
Differentiation grading 0.81
Poor 10 (40.0%) 22 (43.1%)
Moderate 15 (60.0%) 29 (56.9%)
Well 0 (0.0%) 0 (0.0%)
Pleural invasion 0.051
Yes 7 (28.0%) 27 (52.9%)
No 18 (72.0%) 24 (47.1%)
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p=0.01). IMA group tended to have more ERBB2 mutations than
non-IMA group, albeit no statistical difference (11.8% vs. 0%,
p=0.17). Differences in frequencies of other driver genes were
observed, although the results were not statistically significant
(Figure 1 and Figure S2). In addition, all the gene mutations
detected in three or more patients were shown in Figure S1.
Among these genes, the mutation frequency of FBXW7 was
significantly lower in IMA than in non-IMA (undetected vs. 12.0%,
p=0.03) (Figure S1). In terms of gene-level copy number variations,
therewasno significant differencebetweennon-IMAand IMAinour
patient cohort (Data not shown).

Frequency of Driver Mutations Related to
the Proportion of Mucinous Component
Based on the presence of the non-mucinous component, IMA was
further divided into pure-IMA and mixed-IMA subgroups, and
comparative analysis of their driver genes was performed.
Intriguingly, as the content of the mucinous component
increased, the frequency of EGFR mutations gradually decreased,
with significantly higher frequency in non-IMA comparing with
mixed-IMA (72.0% vs. 40.0%, p=0.045) or pure-IMA (72.0% vs.
26.9%, p<0.001). TheEGFRmutation frequency inmixed-IMAwas
higher than pure-IMA, but no significant difference was observed
(p=0.24) (Figure 2A, Figure S2B). By contrast, as mucinous
content increased, the frequency of ALK fusions gradually
increased, with significantly higher frequencies in mixed-IMA
(20.0% vs. undetected, p=0.05) and pure-IMA (26.9% vs.
undetected, p=0.01) when compared with non-IMA (Figure
S2B). The ALK fusion was slightly more frequent in pure-IMA
than mixed-IMA, with no statistically significant difference (26.9%
vs. 20.0%, p=0.74) (Figure 2B).On the other hand, the frequency of
KRAS mutation in pure-IMA was higher than that in non-IMA
(23.1% vs. 12.0%) and mixed-IMA ad less KRAS mutation than
non-IMA (4.0% vs. 12.0%), although none of these results
were statistically significant (pure-IMA vs. non-IMA, p=0.47;
Frontiers in Oncology | www.frontiersin.org 5
mixed-IMA vs. non-IMA, p=0.36) (Figure 2C and Figure S2B).
Besides, mixed-IMA tended to have more ERBB2 20Ins than pure-
IMA (11.5% vs. 4.0%, p=0.35). NRG1 fusion and RET fusion were
individually observed in one patient from each of the two IMA
cohorts of (Figure S2B).

Different Profile of Tumor Suppressor
Genes Between IMA and Non-IMA
Next, we investigated the mutational profile of tumor
suppressors in patients with IMA and non-IMA. TP53 (37.3%
vs. 56.0%, p=0.14) showed a lower frequency while RB1 (9.8% vs.
0%, p=0.17) showed a higher frequency in IMA than in non-IMA
(Figure 1). In addition, the mutation frequency of other tumor
suppressors, including NF1, APC, PTEN, and STK11, was higher
in IMA than in non-IMA, albeit no significant difference (27.5%
vs 12.0%, p=0.15). Interestingly, the frequency of co-mutations
in these tumor suppressors was also higher in IMA than in non-
IMA (19.6% vs 4.0%, p=0.09). In a specific subgroup of patients
who harbored tumor suppressor mutations, the frequency of co-
mutations in these suppressor genes was significantly higher in
IMA patients than in non-IMA patients (40.0% vs 6.3%,
p=0.003) (Figure 1). Similar to the results of EGFR mutations,
as mucinous content increased, the frequency of TP53mutations
gradually decreased (Figure 1). TP53 mutations in pure-IMA
were significantly more frequent than in non-IMA (23.1% vs.
56.0%, p=0.02) or mixed-IMA (23.1% vs. 52.0%, p=0.04),
whereas no statistical difference was observed between non-
IMA and mixed-IMA (p=1.0) (Figure 2D).

No Difference in the Number of Somatic
Mutations Between IMA and Non-IMA
We then compared the number of somaticmutations between non-
IMA and IMA patients, including missenses, insertions/deletions
(indels), fusions, and splice-sitemutations.No significantdifference
in the number of somatic mutations was observed between IMA
FIGURE 1 | Co-mutation plot of common driver and suppressor genes in invasive mucinous adenocarcinoma (IMA) and non-IMA patients in our cohort. The mutation
profile of 25 non-IMA patients and 51 IMA patients were shown. The IMA group could be further divided into mix-IMA (n=25) and pure IMA (n=26) based on the mucinous
content of the tumor. Different colors indicate different mutational types. Clinical information on sex, TNM stage, and smoking history was shown at the bottom.
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and non-IMA (p=0.8), and themedian numberwas four andfive in
IMA and non-IMA, respectively (Figure 3A). Similarly, there was
no significant difference in the number of mutations among non-
IMA, mixed-IMA, and pure-IMA (Figure 3B).

The Different Pattern of Chromosome
Arm-Level SCNVs in Non-IMA and IMA
The chromosome arm-level SCNVs in non-IMA and IMA were
analyzed. In IMA, the number of amplifications (p=0.04) was
significantly lower while the number of deletions (p=0.004)
was significantly higher than in non-IMA (Figure 3C). In
detail, the frequencies of 5p (OR=0.34, 95% CI, 0.11–1.04;
P=0.04), 6q (OR=0.11, 95% CI, 0.00–1.18; P=0.04), 8q
(OR=0.21, 95% CI, 0.05–0.74; P=0.01), 16p (OR=0.14, 95%
CI, 0.02–0.65; P<0.01), 16q (OR=0.17, 95% CI, 0.01–1.13;
P=0.04), and 20q (OR=0.21; 95% CI, 0.06–0.68; P<0.01)
amplifications were significantly lower in IMA than in non-
IMA (Table S1). The frequency of 18q deletion in IMA was
higher than that in non-IMA (OR=Inf; 95% CI, 0.9–Inf;
P=0.05). The frequencies of 12p (OR=Inf; 95% CI, 0.74–Inf;
P=0.09) and 18p (OR=6.48; 95% CI, 0.84–295.3; P=0.09)
deletions in IMA were higher than that in non-IMA (Table
S1). In addition, the arm-level SCNVs in patients with different
proportions of the mucinous component were also analyzed.
As the proportion of mucinous component increased, the
frequency of amplification gradually decreased while the
frequency of deletions gradually increased. There were also
trends in arm-level SCNV differences when comparing non-
IMA and mixed-IMA (amplification, p=0.12; deletion, p=0.07).
Significant differences in SCNVs were observed between non-
Frontiers in Oncology | www.frontiersin.org 6
IMA and pure-IMA (amplification, p=0.008; deletion, p=0.03),
whereas no significant difference was found between mixed-
IMA and pure-IMA (p>0.05) (Figure 3D).

Comparison of Mutation Profile Between
East-Asian and Western IMA Patients
Herein, a study conducting on Caucasians reported by Righi
et al. (20) was selected as the reference study, in which 49 out of
50 genes used in their panel were also analyzed in our sequencing
panel. In addition, patients in this reference study were mainly
Western patients who were also divided into pure-IMA and
mixed-IMA subgroups. Several driver genes that we analyzed
above were then compared between the two patient cohorts. The
frequency of ALK fusions (23.5% vs. 4.2%, p=0.008) and ERBB2
mutations (11.8% vs. undetected, p=0.03) was significantly
higher in our cohort while the frequency of EGFR mutations
was comparable between the two cohorts (33.3% vs. 18.8%,
P=0.12) (Figure 4). The frequency of KRAS mutations was
significantly lower in our cohort (13.7% vs. 68.8%, p<0.001)
(Figure 4). Furthermore, we compared the gene mutation profile
between our cohort with the reference study in terms of the
mucinous content. As shown in Figure S3, for mixed-IMA
patients, there was a trend of higher, but not statistically
significant frequency of ALK rearrangement (P=0.38) and
EGFR mutation (P=0.33) in our study. ERBB2 mutation also
had the trend to be more frequent in our patients (P=0.06).
However, there was almost no difference in the frequency of
TP53 and APC mutations (Figure S3). For pure-IMA patients,
the frequency of ALK rearrangement was significantly higher in
our study than in the reference study (26.9% vs. 3.3%, P=0.019),
A B

DC

FIGURE 2 | Comparing the alterations of common driver and suppressor genes among samples with different mucinous contents. The mutational frequency of
EGFR mutation (A), ALK fusion (B), KRAS mutation (C), and TP53 mutation (D) was compared in patients with non-IMA, mixed-IMA and pure-IMA.
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while the frequency of EGFR mutation was similar between the
two studies (26.9% vs. 20.0%, p=0.52). Besides, there was almost
no difference in mutation frequencies for ERBB2 and FLT3.
Mutations in TP53 (23.1% vs. 76.5%, p=0.16) and APC (3.8% vs.
25.0%, p=0.11) were less in our cases, although no significant
difference was observed. The frequency of KRAS mutations in
both mixed-IMA and pure-IMA was significantly lower in our
study than that in the reference study (p<0.001) (Figure S3).

Individual Somatic Gene and Signaling
Pathways Alterations Associated With
Recurrence in Surgically Resected
Patients With IMA
We then aimed to investigate whether the molecular profile in
IMA patients affected their prognosis. We compared the
postoperative disease-free survival (DFS) between patients with
stage I/II tumors and stage III tumors. As shown in Figure 5A,
the median DFS (mDFS) of patients with stage III disease was
significantly worse than that of stage I/II (mDFS=17.0 months vs.
Not reached; HR=6.58; 95% CI, 2.28–18.98; p<0.001). Due to the
higher maturity of DFS in stage III patients, we further analyzed
the correlations between molecular features and DFS in these
patients. Survival data of 18 patients were available among the 21
stage III patients with IMA, and 14 of whom have relapsed after
surgery. Our results showed patients with EGFR mutations had
prolonged DFS than wildtype patients (Figure 5B). EGFR-
mutated patients had an mDFS of 30.3 months, compared with
an mDFS of 16.0 months in wildtype patients (HR=0.19; 95% CI,
Frontiers in Oncology | www.frontiersin.org 7
0.04–0.96; P=0.027; Figure 5B). In contrast, patients with KRAS
mutations showed shorter mDFS than those without KRAS
mutations (mDFS=13.0 vs. 20.0 months; HR=6.95; 95% CI, 0.96–
50.45; p=0.027) (Figure 5C). Previous studies reported that TP53
mutations may lead to a worse prognosis in TKI-treated NSCLC
patients; however, we did not observe significant differences in
mDFS between patients with TP53 mutations and those with
wildtype TP53 (mDFS=16.0 vs. 20.0 months; HR=1.18; 95% CI,
0.39–3.57; p=0.771) (Figure S4A). Moreover, in EGFR-mutated
patients, no significant difference of mDFS was found in cases who
had concomitant TP53 mutations and those without TP53 co-
mutations (mDFS=30.3 vs. 28.0months; p=0.810) (Figure S4B).As
for other known oncogene drivers, such as KRAS, ERBB2, RET,
NRG1, and ALK, there were only a limited number of patients
harboring these oncogenic mutations or having available clinical
results, thus the clinical impact of concomitantTP53mutationswas
still inconclusive in our patient cohort. Furthermore, the results of
pathway analysis showed patients with genetic alterations in the
PI3Kpathway showed improvedDFS (mDFS=36.0vs. 16.0months;
HR=0.12; 95% CI, 0.02–0.99; P=0.023; Table S2 and Figure 5D).

Lastly, we checked if some histopathologic features, such as
intravascular tumor thrombus, perineural invasion, differentiation
grading, and pleural invasion, were associated with prognosis in
stage III IMApatients.Byunivariate analysis,we found that only the
differentiation gradingwas significantly associatedwithDFS (Table
S3). Specifically, IMA patients with moderately differentiated
tumors had better DFS than those with poorly differentiated
tumors (mDFS 28.0 vs. 14.1 mouths, p=0.037). In addition, we
A B

DC

FIGURE 3 | Comparing molecular features among samples with different mucinous contents. The number of genetic mutations for invasive mucinous adenocarcinoma
(IMA) vs. non-IMA patients (A) or for patients that were divided based on the mucinous content (B) was shown in violin plots. The number of chromosome arm-level somatic
CNVs (SCNVs) for IMA vs. non-IMA patients (C) or for patients that were divided based on the mucinous content (D)was shown in bar graphs.
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A B
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FIGURE 5 | Prognostic analysis for various histopathologic and molecular features in invasive mucinous adenocarcinoma (IMA) patients. Kaplan-Meier curve of
disease-free survival (DFS) in IMA patients in strata of different disease stages (A). Kaplan-Meier curve of DFS in stage III IMA patients in strata of EGFR mutation
status (B), KRAS mutation status (C), and PI3K signaling pathway alteration status (D). The log-rank test was used to analyze the DFS for all of the survival analyses.
FIGURE 4 | Distinct frequency of common driver genes between Chinese and Caucasian patients. The frequency of ALK fusion, EGFR mutation, KRAS mutation,
and ERBB2 mutation was shown in bar graphs.
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included both the differentiation grading and clinically-important
molecular features thatwere identified in our study (Figures 5B–D)
to perform a multivariate analysis. Intriguingly, DFS in these IMA
patients remained to be significantly associated with KRAS
mutation (p=0.016), PI3K pathway alteration (p=0.043), and
differentiation grading (p=0.030), but not EGFR mutations
(p=0.391) (Table 2), which might be due to the impact of EGFR
mutations on lung adenocarcinomas differentiation, as previously
described (31).
DISCUSSION

In our study, the most commonly mutated driver gene in Chinese
IMA patients was EGFR. The frequency of EGFR mutations
was significantly lower while the frequency of ALK fusion was
significantly higher in IMA compared to non-IMA, which was
consistentwith the previous studies (14–19, 32). The comparisonof
mixed-IMA and pure-IMA showed that there was no statistical
difference in the frequency of EGFR or ALK variations, suggesting
that these gene-level changes might happen in the entire tumor
when lung adenocarcinoma harbors mucinous components.
Interestingly, we observed a reverse trend in the frequency of
EGFR and ALK alterations among patients with different
proportions of the mucinous component, ranging from non-
IMA, mixed-IMA, to pure-IMA. These results implied that
adenocarcinoma with different proportion of mucinous
component might be driven by distinct gene mutations.

In previous studies,KRASmutation was more frequent in IMA,
reaching as high as 63% (12, 17–19). In our study, the frequency of
KRAS mutations was low in IMA (13.7%) and non-IMA (12.0%),
which is likely due to the difference in KRAS mutation frequency
between Caucasians and East-Asian populations (33). Of note, the
frequency of KRAS mutations tended to be higher in pure-IMA
compared tomixed-IMA (23.1% vs. 4.2%, p=0.1) in our East-Asian
patient cohort, while almost no difference in KRAS mutation
frequency was observed between pure-IMA and mixed-IMA in a
study conducting on Caucasian patients (34). This suggested that,
compared to Caucasians, there may be differences in the frequency
of KRAS mutations in lung adenocarcinoma harbored different
mucinous content in East-Asians. In a study performed on the
Chinese population, reported byChen et al., the frequency ofKRAS
mutations was 36%, which was higher than that of 13.7% in our
study (19). As the mucinous content of IMA patients was not
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discussed in Chen et al.’s study, the detailed proportion of pure-
IMA and mixed-IMA was unknown and, we speculated that the
differences inKRASmutation frequencymay be partially due to the
different proportion of pure-IMA patients.

In addition, multiple gene fusions, such as NRG1, RET, and
ALK, were only detected in IMA patients in our cohort and the
detecting rate (16/51, 31.4%) of gene fusions was significantly
higher than the unselected lung adenocarcinoma patients (34). In
addition, greater diversity in driver gene mutations in IMA
compared to non-IMA was observed. For example, in a large
cohort study of 10,966 Chinese NSCLC patients, the frequency of
NRG1 fusions was only 0.16% in these unselected lung cancer
patients, with CD74 being the most common fusion partner (35).
In contrast, NRG1 fusions occurred in 2 out of 51 (3.9%) IMA
patients in our cohort, both of which harbored the SLC3A2-
NRG1 fusion that was previously reported by Jonna et al. (36)
suggesting that NRG1 fusions were highly enriched in the IMA
subtype. For NRG1 fusions, patients may benefit from the
tyrosine kinase inhibitors (TKIs), e.g. afatinib (37). There are
also several TKIs available for targeted therapy in advanced lung
cancer patients with RET fusions, e.g. selpercatinib (38),
pralsetinib (39), cabozantinib (40, 41), and vandetanib (42). In
patients harboring ALK fusions, various ALK TKIs could be used
in the clinical treatment of advanced NSCLC patients, such as
crizotinib (43), alectinib (44–46), brigatinib (47, 48), ceritinib
(49, 50), lorlatinib (51), ensartinib (52), and repotrectinib (53).
Therefore, IMA patients may benefit from a broader option of
TKIs compared to non-IMA patients.

Regarding tumor suppressors, TP53mutation was less in IMA,
especially in pure-IMA. However, the mutation frequency of other
tumor suppressors was higher in IMA than that in non-IMA.
Moreover, the frequency of tumor suppressor co-mutations was
significantly higher in IMA than non-IMA. This indicates that in
IMA patients, once a tumor suppressor gene is involved in
tumorigenesis, mutating additional tumor suppressor genes may
have a synergistic effect. This may be a potential molecular
mechanism underlying the poor prognosis of IMA patients, but
studies with larger sample sizes are required for further verification.

In terms of the number of somatic mutations, no difference
between IMA and non-IMA was observed. However, there were
significant differences in SCNVs between IMA and non-IMA at the
chromosome arm-level. There were more arm-level deletions and
fewer arm-level amplifications in IMA compared to non-IMA. In
addition, gradual decreasing and increasing trends of arm-level
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TABLE 2 | Impact of genetic factors and differentiation grading on disease-free survival (DFS) in stage III patients with disease-free survival (IMA).

Variables Univariate analysis Multivariate analysis

HR (95% CI) P_value HR (95% CI) P_value

EGFR
(with vs. without)

0.19 (0.04–0.96) 0.027 2.49 (0.31–20.02) 0.391

KRAS
(with vs. without)

6.95 (0.96–50.45) 0.027 85.15 (2.27–3,200.87) 0.016

PI3K pathway
(with vs. without)

0.12 (0.01–0.99) 0.023 0.05 (0–0.91) 0.043

Differentiation grading
(Poor vs. moderate)

3.75 (1.00–14.10) 0.037 17.14 (1.32–221.76) 0.030
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amplifications and deletions were observed from non-IMA to
mixed-IMA to pure-IMA, respectively. These findings suggest
that differences in molecular characteristics do exist between IMA
and non-IMA and they may belong to different diseases.

Lastly, the survival-related analysis showed that the TNM
stage was still the main factor affecting DFS after surgery, which
is consistent with previous reports (54–56). In stage III IMA
patients, cases who harbored EGFR mutations showed
significantly prolonged DFS. According to previous studies, the
prognostic impact of EGFR mutation status in patients with
NSCLC remains controversial. Several articles have reported that
the presence of EGFR mutations is a favorable prognostic factor
in patients with surgically resected NSCLC (56–60). However,
some other studies did not show a significant difference in
survival between patients with EGFR-mutated tumors and
those with wild-type after surgical resection (55, 61–64). In our
study, we found that EGFRmutation is associated with improved
DFS in stage III IMA patients. Similarly, patients with
abnormalities in the PI3K signaling pathway displayed
improved DFS. A previous study had suggested that lung
adenocarcinoma patients with positive PI3K expression had a
favorable survival, although it failed to be an independent
prognostic predictor (65). In addition, Shan et al. found that
phosphorylated AKT expression in the PI3K signaling pathway
was a significant independent favorable prognostic factor in stage
I to IIIA NSCLC (66). These findings suggest that the PI3K
signaling pathway may be a potential favorable prognostic factor
in patients with NSCLC. Conversely, patients with KRAS
mutations have a poorer prognosis than those without KRAS
mutations, which is consistent with previous studies conducted
on unselected lung adenocarcinoma (54, 62, 67, 68). This
suggests that KRAS-activating mutation is still an unfavorable
prognostic factor in particular cases with IMA. As we did not
have a large enough sample size, studies with more samples are
required to further verify the prognostic values of abnormalities
in EGFR, KRAS, and the PI3K pathway in IMA patients.

In summary, firstly, our study confirmed that the pattern of
driver gene mutations between IMA and non-IMA was different,
and IMA had greater diversity in mutations of driver genes. In
addition, significant differences in the mutation frequency of some
driver genes were observed between East-Asian and Caucasian
populations, i.e. ALK, KRAS, and ERBB2. Secondly, we found that
there were differences in the frequency ofEGFR,ALK,KRAS,TP53,
and arm-level SCNVs in tumors with different mucinous content.
EGFR and ALK showed gradual decreasing and increasing trends
from non-IMA to mixed-IMA to pure-IMA, respectively. KRAS
mutation was more frequent in pure-IMA than in mixed-IMA.
Compared to mixed-IMA and non-IMA, mutations in TP53 were
significantly enriched in pure-IMA. With regards to arm-level
SCNVs, fewer amplifications but more deletions in IMA
compared to non-IMA were observed, and these alterations also
showed gradual decreasing and increasing trends fromnon-IMA to
mixed-IMA to pure-IMA, respectively. Thirdly, co-mutations in
tumor suppressors were more common in IMA compared to non-
IMA, suggesting that this may be a potential molecular mechanism
for poorer prognosis in IMA. Lastly, in stage III IMA patients,
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mutations inEGFR and thePI3K signalingpathwaywere associated
with favorable postoperative DFS while patients with KRAS
mutations or poorly differentiated tumors showed a shorter DFS.
In conclusion, this study enhances our understanding of the
genomic characteristics of IMA patients in an East-Asian
population and helps us have a more comprehensive insight into
this distinct histological subtype of lung adenocarcinoma.
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SUPPLEMENTARY FIGURE 4 | Prognostic analysis of TP53 mutations in IMA
patients. Kaplan-Meier curve of DFS in strata of TP53 mutation status in all stage III
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patients (A), and concomitant TP53 mutation status in EGFR-mutated stage III
patients (B). The log-rank test was used to analyze the DFS for the survival analyses.
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