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Malignant brain tumors remain uniformly fatal, even with the best-to-date treatment. For
Glioblastoma (GBM), the most severe form of brain cancer in adults, the median overall
survival is roughly over a year. New therapeutic options are urgently needed, yet recent
clinical trials in the field have been largely disappointing. This is partially due to
inappropriate preclinical model systems, which do not reflect the complexity of patient
tumors. Furthermore, clinically relevant patient-derived models recapitulating the immune
compartment are lacking, which represents a bottleneck for adequate immunotherapy
testing. Emerging 3D organoid cultures offer innovative possibilities for cancer modeling.
Here, we review available GBM organoid models amenable to a large variety of pre-clinical
applications including functional bioassays such as proliferation and invasion, drug
screening, and the generation of patient-derived orthotopic xenografts (PDOX) for
validation of biological responses in vivo. We emphasize advantages and technical
challenges in establishing immunocompetent ex vivo models based on co-cultures of
GBM organoids and human immune cells. The latter can be isolated either from the tumor
or from patient or donor blood as peripheral blood mononuclear cells (PBMCs). We also
discuss the challenges to generate GBM PDOXs based on humanized mouse models to
validate efficacy of immunotherapies in vivo. A detailed characterization of such models at
the cellular and molecular level is needed to understand the potential and limitations for
various immune activating strategies. Increasing the availability of immunocompetent
GBM models will improve research on emerging immune therapeutic approaches against
aggressive brain cancer.

Keywords: brain tumors, glioblastoma, glioma, immunotherapy, preclinical models, organoids, patient-derived
xenografts, tumor microenvironment
INTRODUCTION

Among primary malignant tumors of the central nervous system (CNS) the most common and
aggressive form is glioblastoma (GBM) with a median survival of 12–15 months (1). Standard
treatment of care remained unchanged since 2005, consisting of maximal surgical resection followed
by concomitant radiotherapy and chemotherapy with the alkylating agent temozolomide (TMZ) (2).
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In the last 15 years, novel experimental approaches have shown
limited success to improve patient survival and the development of
more efficacious therapies remains challenging (3). Several
underlying factors, such as aggressive and highly infiltrative
growth, inter-patient and intra-tumoral heterogeneity and
multiple resistance mechanisms, contribute to the poor outcome
(4). More recently, high phenotypic plasticity of GBM has been
recognized as an additional hurdle, in particular for precision
medicine strategies (5, 6). Improved therapies are desperately
needed and novel approaches need to be investigated in
adequate preclinical models followed by innovative clinical trials.

Immunotherapy has emerged in recent years as an important
success story in oncology,withunprecedented results in various tumor
types, e.g., melanoma and breast cancer (7). Rather than targeting
tumorcellsdirectly, immunotherapyaims toactivate andmodulate the
immunesystem inorder to stimulate anti-tumor immunity.Currently,
numerous clinical trials assess various immunotherapeutic approaches
in GBM patients (8). Unfortunately, phase III clinical trials testing
immune-checkpoint inhibitors and vaccines have shown so far
discouraging results (9, 10). Importantly, GBM is classified as an
immunologically ‘cold’ tumor, with limited lymphocyte infiltration,
sequestration within the bone marrow and exhaustion of T
lymphocytes (11–13). In parallel, GBM induces a highly
immunosuppressive microenvironment and features
multidimensional immune escape mechanisms. These include the
downregulation of MHC Class I molecules, overexpression of
immunosuppressive cytokines, activation and recruitment of
immunosuppressive cell types, such as myeloid-derived suppressor
cells and regulatory T cells (14–16). Although the exact role of resident
microglia and blood-derived monocytes remains elusive, tumor
associated microglia/macrophages (TAMs) derived thereof largely
present a tumor supportive phenotype, which promotes tumor
growth, proliferation, and migration (17). This unique GBM tumor
microenvironment (TME) will therefore require tailored
immunotherapies targeting the immunosuppressive crosstalk
within the brain ecosystem, while at the same time stimulating
active immunity (18). Currently, a major limitation for the
successful development of immunotherapies in GBM is the lack of
appropriate pre-clinical models, which recapitulate an adequate
immunocompetent environment, along with the accurate molecular
and cellular heterogeneity at the tumor and TME level.

For many years, GBM research relied on conventional in vitro
cell culture systems based on long-term 2D monolayer cell lines
grown in serum-containing medium. However, such cell lines do
not reflect the heterogeneity of patient tumors, undergo massive
clonal selection and genetic drift, resulting in cells that bear little
resemblance with clinical tumors (19–21). Hence, translation of in
vitro studies into the clinic has been challenging, contributing to the
failure of clinical trials (22).The adaptationofpatient-derivedGBM
cultures to 3D spheres grown under serum-free conditions,
originally developed for neural stem cells, represented a major
step forward. In the literature these cultures are also referred to as
GBM neurospheres, brain tumor-initiating cells (BTICs) or glioma
stem-like cells (GSCs) (term applied in this review). GSCs were
shown to better preserve the genetic background of tumors, to
maintain a certain degree of phenotypic heterogeneity and
Frontiers in Oncology | www.frontiersin.org 2
molecular gradients (22–24). When implanted intracranially into
immunodeficient rodents, they retain invasive growth patterns in
vivo (25), a feature lost in conventional cell lines. GSCs do not,
however, preserve a complex structural tissue architecture
including extracellular matrix (ECM) and TME and can be highly
proliferative. Since GSCs are generally maintained as long-term
cultures, they also suffer to some extent from clonal selection and
genetic drift.

Remodeling of GBM tissue architecture and interactions with
TME is possible in vivo thanks to patient-derived orthotopic
xenografts (PDOXs), where patient tumor cells can grow in the
rodent brain (26, 27). These are, however, laborious, time
consuming and require the use of immunodeficient strains. Since
theTME is of rodent origin,molecular andanatomical inter-species
differences need to be taken into account. The recent development
of 3Dorganoid cultures has thus emerged as a promising preclinical
tool allowing tomodel complex tumor architecture ex vivowhilst at
the same time decreasing the use of animals (28). However
preclinical drug testing remains challenging for agents aiming at
modulating GBM TME, such as anti-angiogenic compounds or
immunotherapeutics. Currently,most immunotherapy approaches
against GBM are tested in vivo using a single syngeneic
immunocompetent mouse model (GL261). This murine model
displays a hypermutated genome, develops a ‘hot tumor’-like TME
and responses to immunotherapies which are of limited clinical
value (29–31). In this context tumor organoids integrating immune
components along with PDOXs developed in humanized mice
emerge as powerful tools for new preclinical studies (32, 33).

In this review we will discuss different protocols for GBM
organoid derivation and maintenance, as well as a wide range of
organoid-based applications for GBM research and precision
oncology. We further review recent attempts in the development
of immunocompetent organoids for evaluating immunotherapies
and discuss emerging limitations. Finally, we present opportunities
and challenges of immunocompetent xenograft models based on
orthotopic implantation of GBM organoids in mice with a
functional human immune system for studying immunotherapies
in vivo.
ORGANOID TECHNOLOGY FOR CANCER
MODELING

Healthy Tissue Organoids
During the past decade, growing tissue as organoids in vitro has been
spearheaded in developmental biology and the technology has been
further developed to encompassmature organ tissue (34). Organoids
are defined as self-organized, three dimensional (3D) organotypic
structures, recapitulating the original organ-like composition in vitro.
Pioneering work by the Clevers lab successfully established intestinal
organoids derived from murine Lgr5+ stem cells, which formed 3D
crypt villus structures similar to the in vivo organ (35). Nowadays, by
applying defined developmental signaling programs, organoids of
different organs can be developed. Organoids can be initiated from
singleormultipleorgan-restrictedadult stemcells butalso embryonic
stem cells (ESC) and induced pluripotent stem cells (iPSCs). The
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denomination of healthy tissue organoids implies several basic
features, including the presence of multiple cell types and a
morphological organization similar to the parental tissue. They are
widely used tomodel in vitronormal organ anddisease development,
such as infectious, immunological or hereditary disorders (for
detailed reviews see (32, 34). Healthy tissue organoids exposed to
potential carcinogenic agents, including viral andbacterial infections,
are also an excellentmodel to study early stages of tumorigenesis (36,
37). On the other hand, CRISPR-Cas9 based genetic engineering
opened possibilities to assess precise mutational processes at early
stages of tumor development (38).

Human cerebral organoids, also called ‘mini-brains’, were
established by Lancaster and Knoblich from pluripotent stem
cell-derived embryonic bodies (39). Mini-brains developed in
ECM (e.g., matrigel) showed characteristics of human cerebral
cortex and recapitulated features of different brain regions.
Currently, numerous methods are available for the generation of
mini-brains, e.g., from pluripotent stem cells (40), from lineage-
restricted neural progenitors (41, 42) or from fetal brain tissue (42).
Such organoids can also be established to recapitulate region-
specific brain structures such as the midbrain (41, 43). Although
the presence of different cell subtypes and the maturation stage of
brain organoids are limited, they proved to be instrumental in
studies of human development and disease (44). They can also be
applied forGBMmodeling andGBMco-cultures (reviewed below).

Tumor Organoids
In analogy to healthy tissue organoids, organoid cultures canmimic
tumor tissue structure. Several strategies exist to develop tumor
organoids: they are generally established directly from resected
patient tumors, or can be generated by genetic engineering of stem
cells and/or healthy tissue organoids (28). Noteworthy, organoids
derived frompatient tumor tissue have been used formany years in
cancer research and were initially referred to as ‘organotypic tumor
spheroids’ (45). At present, the terminology has been updated and
terms such as ‘tumor organoids’ or ‘tumoroids’ are in wide use, in
analogy to healthy tissue organoids. Instead the term spheroids is
now sometimes applied to 3D serum-free sphere cultures, such as
GSCs. Protocols and culture conditions for generating patient-
derived tumor organoids vary depending on the tumor type. The
initial organotypic cultures were derived in serum-containing
medium, while more recent protocols apply defined serum-free
media similar to healthy organoids. E.g., colon cancer organoids
develop in similar conditions as healthy intestinal organoids;
however, depletion of Wnt and R-spondins is needed to select for
tumor cells (46).Although certain organoids can bedeveloped from
single tumor cells after tissue dissociation, the application of intact
tumor fragments ormultiple cells is recommended to retain genetic
and phenotypic heterogeneity. Tumor organoids have been
successfully established for many tumor types, including brain
(26), breast (47), kidney (48), and liver (49). Interestingly, the
success rate of tumor organoid derivation is generally higher than
for cell lines and allows to propagate tumors such as prostate cancer
(50), less aggressive pancreatic cancer (51) and lower grade gliomas
(27), of which cell lines cannot be easily established. This is likely
due tominimal clonal selection and a better recapitulation of niche-
dependent signals. Compared to previous more simplified in vitro
Frontiers in Oncology | www.frontiersin.org 3
models, tumor organoids display a better resemblance with the
original patient tumor and retain to a certain extent an in vivo-like
structural organization (52, 53). If sufficiently proliferative ex vivo,
organoids can also be successfully expanded into organoid lines
with limited clonal evolution, and cryopreserved allowing for
efficient and high throughput biobanking (28, 47, 48, 54, 55). This
is particularly valuable if combined with corresponding healthy
tissue organoids.
GLIOBLASTOMA ORGANOIDS

Generation ofGBMorganoids can be traced back to the pioneering
work of Rolf Bjerkvig and colleagues in the 1980ties, who
demonstrated the use of patient-derived GBM tissue obtained
from needle biopsies or tumor resections to generate multicellular
organoids that could be maintained under specific non-adherent
culture conditions (45, 56). Although initially termed ‘organotypic
tumor spheroids’, these cultures fulfill the criteria of self-organizing
organoids. In contrast to 2D or 3D cell lines, these organoids have
been shown to closely maintain the genomic profile of the parental
tumor, conserve the cellular and molecular phenotype of the
original tumor and recapitulate inter- and intra-tumoral
heterogeneity (19, 45, 56). In recent years, several research groups
have directed their efforts in generating GBM organoids and
progress has been made in developing different technical
approaches. Here we provide an overview of different available
methods and discuss relevant advantages and limitations (Table 1).
Patient-Based Glioblastoma Organoids
The Bjerkvigmethod has been optimized and is still used bymultiple
labs including ours (25, 27, 63–67) (Figure 1). Fresh tumor tissue
resected during surgery is mechanically cut in small pieces using
scalpels to avoid enzymatic digestion. Tumor fragments are cultured
in non-adherent conditions in medium supplemented with serum
andnon-essential aminoacids, butwithout additional growth factors.
During thefirst daysof culture, tissue fragments self-organize into3D
organoids while damaged/necrotic cells are dying. This ensures the
preservation of healthy tumor cells within a heterogeneous 3D
structure including intact cell-cell interactions and ECM
components. GBM organoids generally reach a diameter of 300–
1000 µm, thereby recapitulating hypoxic gradients and phenotypic
heterogeneity. To a certain extent blood vessels and other TME cells
are also retained (25, 66). The success rate of GBM organoid
derivation is high (approximately 80%), failure is typically due to
excessive necrosis or tissue damage during the surgical procedure
(27). To avoid selection processes and genetic drift, we avoid long-
termexpansionandpassaging invitro. Insteadweusepatient-derived
organoids for downstream applications within 1–2 weeks of
establishment. The same protocol also allows the derivation of
organoids from lower grade gliomas (success rate approximately
70%), recurrent gliomas (27),meningiomas (unpublished) and other
brain tumors including metastases (68), but not normal adult brain.
Over the last decade we have established a living biobank of over 500
successfully generated patient organoids with an effective
cryopreservation protocol.
December 2020 | Volume 10 | Article 604121
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Our protocol is limited by the availability and the quality of the
original patient material, i.e., the resected tumor tissue from surgery
orbiopsy.Resectionof viable tumor tissue followedby fastprocessing
of the sample is essential to maximize viability and to ensure a good
organoid quality. GBM organoid growth is limited and variable
across patients, where most organoids do not expand beyond the 2-
week-culture.Theydoremainviable for longer timeperiodsandhave
a tendency to fuse with each other into bigger structures. While for
Frontiers in Oncology | www.frontiersin.org 4
certain patient tumors further expansion and in vitro passagingmay
be possible, we generally do not attempt it in order to limit in vitro
selection processes. Instead, we apply expansion in vivo by
implantation of organoids into the brain of immunodeficient
rodents. These so called patient-derived orthotopic xenografts
(PDOXs, Figure 1) enable the propagation of human tumor tissue
in a brain microenvironment without relying on in vitro expansion.
Generally, high quality GBM organoids will efficiently generate
tumors in the brain of mice. Serial transplantation, which implies
cycles of in vivo growth and derivation of organoids from
xenotransplanted tumors, allows for extended expansion of patient
tumors for large studies, where higher amounts of biologicalmaterial
and/or of xenografted mice are required (27). Similar to patient-
derived organoids, organoids derived from PDOXs retain well GBM
tissue architecture, ECMand to a certain extentmouse-derivedTME
(25). We have shown that this procedure preserves genetic and
epigenetic profiles of parental tumors, includingmutational profiles,
copy number aberrations, gene amplifications and DNA ploidy,
which are regularly altered in long-term cultures (69). The main
challenges to this approach are the costs, the time that is necessary to
grow the tumors in the rodent brain and the logistics in planning
experiments based on PDOX material. Our model can also be
adapted towards growth in serum-free conditions (27, 66) and
allows for further derivation of GSC lines. In contrast however to
our organoids, we have detected marked changes at different
molecular levels during first GSC passages (27).

In recent years, alternative approaches to establish GBM
organoids have been published based on serum-free conditions.
By combining the protocol of GSC cultures with that used for
cerebral organoids, the Jeremy Rich lab successfully established
GBM organoids by embedding either dissociated GSCs or intact
GSC spheres in ECM (Matrigel) (59). The media composition
corresponds to GSC lines and is based on Neurobasal medium
supplemented with B27 and the growth factors bFGF and EGF. In
contrast toGSC spheres that reach amaximum size of 300 µm after
FIGURE 1 | Preclinical applications of GBM organoids. GBM organoids
derived from patient tumors or from genetically engineered cerebral organoids
can be applied for numerous functional assays such as: tumor cell survival,
proliferation and self-renewal, drug screening, ex vivo invasion assays, and
derivation of orthotopic xenografts. All experimental images were acquired by
the authors. Illustration created with Biorender.com.
TABLE 1 | Overview and comparison of GBM culture models.

Culture
model

Description Advantages Disadvantages References

Cell lines 2D Long-term adherent GBM
cells cultivated in serum-
containing medium

Rapid expansion, low cost, easy maintenance,
available for genetic manipulations

Loss of intratumoral heterogeneity, no
TME components, clonal selection,
genetic drift, in vivo phenotype does not
reflect human GBM, Low derivation
success rate

(20, 21, 24,
57)

3D GSC cultures (also termed
BTICs), grown as
neuropheres in serum-free,
growth factor –
supplemented conditions

3D growth, moderate expansion, moderate cost, easy
maintenance, invasive phenotype in vivo, limited
recapitulation of molecular gradients, enhanced stem-
like features

Clonal selection, some genetic drift,
limited intra-tumoral heterogeneity, no
TME components, tedious genetic
manipulations

(22–24, 58)

Organoids Patient-
derived
GBM
organoids

Organoids established as
primary cultures from
resected tumor tissue

High derivation success rate, retention of genetic
features and inter- and intra-tumoral heterogeneity,
contain some TME components, feasibility of co-
culture with autologous immune cells, clinically-
relevant drug responses

Costly and labor intensive, lack of
vascularization and limited immune
component, requires access to fresh
patient material and limited by availability
of biological material

(25, 27, 59,
60)

Genetically
modified
GBM
organoids

Gene-edited hESC-derived
cerebral organoids initiating
tumorigenesis

Recapitulation of early stages of tumorigenesis,
defined genetic background, natural development in
human brain-like structures, largely recapitulating TME

Time consuming, costly and laborious
protocol to generate cerebral organoids,
lack of vascularization and immune
components

(61, 62)
December 2020 | Volume 10 | A
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2 weeks, these organoids can grow up to 3–4 mm in 2 months.
Although beyond this point proliferation is limited, organoids
remained intact and viable for over one year without passaging.
These GBM organoids recapitulated hypoxic gradients,
proliferation rates and phenotypic heterogeneity, but do not
contain TME components. The organoids give rise to tumors
after xenotransplantation, with a longer latency compared to
GSCs (59). The protocol can also be applied for fresh
mechanically minced tumor tissue or tumors developed in
engineered mouse models. No information is available regarding
success rate, recapitulationof genetic/epigenetic features of parental
tumors and retention of TME when fresh patient material is used.

Another protocol for GBM organoid derivation based on
mechanically dissociated GBM tissue was recently reported (60).
Small GBM fragments of 0.5–1 mm were cultured in serum-free
medium containing mixed Neurobasal/DMEM:F12 supplemented
with B27 and N2 and human insulin. Here, growth factors (EGF,
bFGF) were not added to themedium. GBM tissue fragments were
grown in non-adherent conditions on an orbital shaker without
ECM. Under these conditions organoids self-organize within 1–2
weeks and continuously proliferate for over 1 month. To avoid
necrosis in the core and to propagate organoids in vitro, larger
organoids can be regularly cut into small pieces of approximately
0.2–0.5 mm. This allows to preserve cell-cell interactions and
natural ECM. These organoids were shown to recapitulate well
genetic and molecular traits of original tumors, including inter-
patient and intra-tumoral heterogeneity. Phenotypic heterogeneity
and a hypoxic gradientwere regularly present. Interestingly, despite
culture conditions selecting for neural cell lineages, TME
components, such as vasculature, TAMs and T cells, were
partially preserved within these organoids, at least at early stages.
The authors report high success rates of organoid generation from
primary GBM (>90%). Recurrent tumors and IDH-mutated
astrocytomas also gave rise to organoids, albeit at a slightly lower
success rate (75 and 67%, respectively). To create a biobank,
primary organoids of approximately 1 month were cut into 100
µm and cryopreserved. Recovered organoids display good viability
and continuous growth. These organoids also give rise to tumors
upon xenotransplantation with high success rate.

Glioblastoma Organoid Derivation via
Genetic Engineering of Cerebral Organoids
GBM organoids can also be generated through genetic engineering
of healthy tissue stem cells or cerebral organoids to induce tumor
formation. Bian et al. developed an efficient system to introduce
simultaneously gain and/or loss of function of tumorigenic genes via
Sleeping Beauty transposon-mediated gene insertion and CRISPR-
Cas9–based mutagenesis of tumor suppressor genes respectively
(61). The authors modified the protocol of human ESC-based
cerebral organoids (39), where a combination of plasmids is
introduced via electroporation at the neural stem/progenitor cell
stage, before full organoid maturation is accomplished in an ECM.
By applying combinations of clinically relevant genetic aberrations
they identified sets of genetic cooperations leading to the
development of tumor organoids, termed neoplastic cerebral
organoids or neoCORs, resembling GBMs and pediatric CNS-
PNET. CNS-PNET-like tumors were linked to the overexpression
Frontiers in Oncology | www.frontiersin.org 5
of the oncogene MYC, whereas GBM-like cells developed from 3
different sets of genotypes: CDKN2A–/–/CDKN2B–/–/EGFROE/
EGFRvIIIOE, NF1–/–/PTEN–/–/TP53–/–, and EGFRvIIIOE/
CDKN2A–/–/PTEN–/–. Emerging GBM-like cells, traced by GFP
expression, are proliferative and display classical astrocytic
markers. Tumor regions within organoids are visible within one
month and show a disorganized structure with marked invasion of
GBM-like cells into adjacent normal organoid structures. On the
other hand, perivascular palisading necrosis is not present, probably
due to the small size and/or the overall lack of vasculature in
brain organoids.

Human ESC-derived cerebral organoids were also applied by
Ogawa et al. to induce GBM tumors by CRISPR-Cas9–based
expression of oncogenic HRAS (HRASG12V) with simultaneous
disruption of the tumor suppressor TP53 (62). The authors used
mature 4-months-old brain organoids and introduced plasmids via
electroporation to the cortical structures, close to the surface. At 2
weeks after electroporation, first tdTomato-positive transformed
cells were visible. At 8 weeks, GBM-like cells encompassed <5% of
the organoid; however, onset of fast proliferation leads to complete
take over by GBM-like cells by 16 weeks, with the tumor mass
growing beyond the boundaries of the organoids. The developed
GBM-like cells can be further cultured as adherent GBM cell lines,
GSCs, and also form tumors upon xenotransplantation.

Challenges and Opportunities
Although organoids have gained significant attention in recent
years, the technology is still immature. The term ‘organoid’ is broad
and encompasses different biological entities based on different
underlying procedures. While patient-derived GBM organoid
protocols largely converge, they exhibit significant differences,
which carry their own advantages and pitfalls. Organoids derived
from mechanically minced tissues preserve best cell-to-cell
interactions and TME components, whereas organoids derived
from dissociated GBM cells may give higher flexibility and
reproducibility. Although serum-containing medium is often
criticized for inducing differentiation processes, we have not
observed this in our short term organoid cultures. Moreover,
while serum is known to cause differentiation in normal stem
cells, this differentiation process is incomplete and fully reversible
in cancer stem cells (5). GBM organoids exposed to serum retain in
vivo tumorigenicity and heterogeneous expression of stem cell
markers similar to patient tumors (5, 27, 66). Moreover limited in
vitro expansion reduces clonal selection processes and maintains
increased tumor heterogeneity. Serum-containing medium
however limits proliferation in vitro and requires amplification of
the tumor material in vivo. On the other hand serum-free
conditions supplemented with growth factors allow for faster in
vitro growth, enabling biobanking without the use of animal
components, but risk increased tumor cell selection and
adaptation of cultures. In general, serum-containing medium
better maintains TME components, including glial and immune
cells. However such cells were also detected in organoids grown in
serum-free medium adjusted for neural cell cultures. More data is
needed to fully comprehend the influence of medium components
and passaging on the maintenance of tumor and TME populations
in organoid cultures. Importantly, both serum-grown and serum-
December 2020 | Volume 10 | Article 604121
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free patient-derived GBM organoids were reported to recapitulate
well molecular gradients and phenotypic heterogeneity, which
represents a major drawback of GBM cell lines (Table 1). In
addition, patient-derived GBM organoids largely maintain
genetic signatures of their parental tumors, including gene
amplifications often lost in GBM cell lines. Still, it remains to be
seen to what extent long-term culture of organoid lines may lead to
adaptation of tumor cells including clonal selection and further
genetic drift, as well as loss of patient-specific genetic and
phenotypic heterogeneity. To ensure the accuracy and genetic
stability of organoids, the genetic status of organoid lines should
be regularly verified after a defined number of passages.

Genetically engineered organoids provide excellent and flexible
in vitromodels for the study of early stages of GBM: they allow for
the identification of driver mutations and downstream pathways
during the onset ofGBM.At present however, it remains unclear to
what extent the introduced driver mutations recapitulate the
complex genetic heterogeneity of human GBM within the
organoid. This has limitations in particular for personalized
treatment approaches. Cerebral organoids, particularly those
derived from pluripotent stem cells, do not reach complete post-
mitotic maturity, and thus represent rather a developing fetal
structure than an adult brain. Therefore, they may be more
valuable to interrogate tumorigenic potential of pediatric tumors,
rather than GBM in adults. Another drawback of this approach is
the long process for the establishment of cerebral organoids, which
takes months and needs a certain expertise along with a high costs.
APPLICATIONS OF GBM ORGANOIDS

Themajor asset of organoids is the close recapitulation of genetic and
phenotypic heterogeneity of the parental tumor. Hence they hold a
great potential for a wide range of pre-clinical applications. In
comparison to GBM cell lines, the common drawback of organoids
is the increased technical effort needed to perform functional assays
and drug testing, particularly in a high-throughput manner. In this
chapter, we describe fundamental applications established in the field
(Figure 1) and review the technical requirements that need
adaptation for successful applicationoforganoids topreclinical assays.

GBM Survival, Proliferation,
and Self-Renewal
Assessing GBM proliferation and survival in organoids is more
challenging thanwith conventionalGBMcell lines andGSCsdue to
a compact growth of GBM cells within complex 3D structures.
Direct counting of single GBM cells present within patient-derived
GBM organoids or after enzymatic dissociation is usually not
precise, thus measurement of growth is more often followed by
changes in the diameter of the organoids themselves over time
(Figure 1). To obtain reproducible results, this growth
(proliferation) assay should ideally be performed on smaller
organoids of similar size at the early development stage to avoid
halted proliferation in organoids at later stages. Two options are
possible (i): mechanical cutting followed by manual collection of
smaller organoids of similar size (60), or (ii) reformation of
organoids from dissociated single cells (59). Although our
Frontiers in Oncology | www.frontiersin.org 6
organoid protocol relies on mechanical dissociation of tumor
tissue, we showed that the organoid preparation can be adapted
for one-off experiments if size standardization is required (25, 27):
Organoids can be recreated from enzymatically dissociated patient
or PDOX-derived tumor tissue, where single cells self-assemble
back into organoid structures. This protocol allows for purification
of subpopulations and/or standardization of organoid size and
shape for specific functional studies (25, 27, 69–72). This
dissociation step should be avoided for serial transplantations and
long-term maintenance and propagation of the patient derived
tumor material. Self-renewal can be followed by growth of
organoids from single cells or via serial dilution assay, but these
protocols are applicablemostly to the proliferative organoidmodels
based on GSCs (59). Organoid formation and growth can be
monitored during a limited period of time in a live cell analysis
system or simply by microscopy. Immunohistochemistry-based
antibody stainings, classically applied to tumor tissue sections, are a
valuable source of information with regard to organoid structure
and phenotypic organization. E.g., Ki67 staining can be used to
identify proliferating tumor cells. EdU (5-ethynyl-2-deoxyuridine)
or BrdU (bromo-deoxyuridine) based DNA labeling assays can be
used for the qualitative and quantitative evaluation of proliferation
inside organoids (73, 74). Additionally, the estimation of cell death
within the organoid can be performed by fluorescent labeling of the
cells with viability and cytotoxicitymarkers allowing for calculation
of the ratio between viable and dead cells (70, 72). Proliferation of
tumor cells within genetically engineered organoids is possible by
detection and quantification of the fluorescence/bioluminescence
signal of the genetically modified GBM-like cells (61, 62). Viral
barcoding labeling can further enable tracing of clonal lineages and
proliferation capacities (75).

Drug Screening
2Dmonolayer cell cultures have beenwidely used for drug screening
purposes, mostly because of easy availability and low maintenance
costs (76), but unfortunately at the expense of minimal success rates
in clinical trials due to lack of efficacy or toxicity. They have been
reported to show a disproportionate cellular response to anticancer
drugs, partially due to very high proliferation rates and profound
phenotypical changes. GSC cultures in combination with novel
biological and synthetic scaffolding techniques have shown a better
reflection of the patient tumors along with improved drug response
when compared to 2D models (22, 77). As these cultures select for
proliferative stem-like GBM cells, the drug responses may still be
restricted towards these specific phenotypic states. Thus drug
responses in heterogeneous organoids may better reflect clinical
reality. As all patient-derived GBM organoid models better
recapitulate oxygen and nutrient-based heterogeneity, the response
toheterogeneous statesmaybemeasured simultaneously (27, 59, 60).

Drug responses in GBM organoids can be followed by applying
similar technical adaptations as described for proliferation assays,
where organoid size and phenotypic/histological changes are
measured to determine drug responses. Accurate drug testing
requires standardization in terms of size and shape as well as
proliferation status. In theory, varying expansion capacities during
different stages of organoid development could be exploited to probe
drug responses at different proliferation stages of the tumor.
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Additional challenges need to be taken into account, while adapting
drug testing towards high-throughput screens. Classicalmicroscopy-
based evaluation is laborious and time-consuming andmeasurement
of organoid size can be limited due to cellular debris surrounding the
organoid. Immunohistochemistry for viability, proliferation (Ki67)
and apoptotic markers can give a detailed readout on heterogeneous
responses to chemo- and radiotherapy within organoid structures
(59, 60), but again is low-throughput. The old-fashioned cell viability
tests, such as MTT or WST, are not adapted towards non-adherent
organoidsbecauseof lowcellnumber.Developmentofmore sensitive
assays, such as CellTiter-Glo, combined with growth or organoids in
384-well plate format allows to scale up organoid-based drug screen
protocols (78) (Figure 1). Using GBM PDOX-derived organoids of
standardized size derived from 1000 tumor cells, we have applied a
similar medium-throughput protocol and showed patient-specific
and clinically relevant responses to TMZ and EGFR inhibitors (27).
In accordance with clinical outcome,MGMT promoter-methylated
GBM organoids showed higher sensitivity to TMZ in comparison to
MGMT promoter-unmethylated organoids, an effect that is not
always recapitulated in GBM cell lines (79). Similarly to short term
GBM cultures (80), patient-derived GBM organoids’ responses to
EGFR inhibitors were linked to EGFR expression and mutations
present in individual tumors. These associations cannot be easily
assessed in long-term adherent cell lines andGSCs due to the general
loss of EGFR amplification in these cultures (81). Clinically-relevant
heterogeneous responses were also observed in patient-derived
organoids cultured in serum-free medium (60), although more
models in (epi)genetically-defined groups will be needed for a
comprehensive evaluation. We were also able to reconstruct GBM
organoids in alginate using cell printing technology. Cell printing
combinedwith automatedhigh content imaging of viable cells allows
for a higher throughput automated drug library screening (77, 82).
Other detection techniques, such as optical metabolic imaging, not
requiring specific dyes for detection also arise as an interesting
option (83).

Although the organoid technology is very promising and
enables relatively fast drug testing in clinically relevant timing,
several challenges should be considered. Similarly to nutrients
and growth factors, drugs may not be able to fully penetrate
bigger 3D structures, thus organoids of smaller sizes should be
applied for drug testing. Both patient-derived organoids and
genetically-engineered organoids contain also normal non-
malignant cells to various degrees, thus more adequate read-
out techniques may be needed to distinguish effects on different
cell types. E.g., Brian et al. quantified the ratio between tumor
and normal cells via flow cytometry (61). Although fluorescence/
bioluminescence allows to distinguish GBM-like cells within
genetically-modified organoids, high throughput application
may require faster detection and precise calculation algorithms.
An additional drawback in GBM is the lack of equivalent patient-
derived normal brain organoids. This would allow to screen for
drugs that selectively kill tumor cells while leaving healthy cells
untouched. Although iPSCs could be derived from each GBM
patient and used for cerebral organoid development, the
technology is still immature and inefficient to be applied for
routine testing. This could be partially resolved by applying GBM
Frontiers in Oncology | www.frontiersin.org 7
organoids in co-cultures with cerebral organoids or organotypic
brain slices, as described for the invasion assays below (74).

GBM Invasion
Tumor cell invasion is a hallmark of GBM strongly contributing to
inevitable regrowthof tumors after surgery (84). Invasion capacities
of tumor cells are classically tested in vitro with Boyden chambers,
where single cells can invade membrane pores covered with
different combinations of ECM. Subjecting intact organoids to
Boyden chamber assays is not optimal as invasion from a 3D
structure through amembrane is irregular and difficult tomeasure.
Although single cells obtained from enzymatically dissociated
organoids can be applied (25), this may lead to an additional
stress of GBM cells not adjusted to survive as single cells. The
sprouting assay represents a more adapted approach as it simply
involves embedding organoids directly in the ECMand quantifying
cells invading out of the organoid into the matrix (65, 67). A more
advanced technique formeasuring invasion could take advantageof
adult organotypic brain slice cultures of rodent or human origin
(Figure 1), where organoids encounter the natural brain
microenvironment (85, 86). So far this technique was applied to
GBM cell lines andGSCs, injection of organoids into the brain slice
may be more challenging. Organoids may remain non-attached or
only adhere to the surface of the brain slice. Importantly,
this technique requires fluorescent labelling of tumor cells for
detection and quantification of invasion and single cell velocity
by microscopy.

Organotypic brain slice cultures can also be replaced by healthy
cerebral organoids. In this case, direct co-culture is possible, where
GBM cells can spontaneously fuse with brain organoids to form
hybrid organoids. Linkous et al. showed successful interactions
betweenGSCswith humanESC and iPSC-derived brain organoids,
creating a so called GLICO (cerebral organoid glioma) model (74).
The authors showed that GSCs were able to invade and proliferate
within the healthy brain organoid and to form interconnecting
microtubes. Another study confirmed that GSCs transcriptionally
adapted to mini-brain microenvironment in line with their in vivo
behavior (87). Although Linkous et al. showed similar invasion of
GSCs in cerebral organoids of different age, others reported GBM
cell invasion only in early stage cerebral organoids, whereas
invasion into fully mature organoids was halted (88). Similar co-
cultures of human cerebral organoids could be applied to patient-
derived GBM organoids in the future. Of note, the protocol is
tedious, as efficientGBMinvasion inside the cerebralorganoidoften
requires removal of the ECM embedding (87, 88). If ECM is
preserved, GBM cells primarily adhere to the matrix and grow on
top of the surface. Injection of GBM organoids inside the cerebral
organoids could also be envisaged, although this may destroy the
fragile mini-brain structure, particularly if still embedded in the
ECM. A similar co-culture approach is also feasible with mini-
brains derived from neural progenitors isolated from rat fetal brain
(42, 65). Patient-derived GBM organoids and GSCs spontaneously
fuse with rat brain organoids and progressively invade the healthy
brain tissue. The process is faster and more efficient in comparison
to human cerebral organoids, as rat brain organoids are not
embedded in ECM. Also other brain tumors were shown to
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interact with healthy rat brain organoids, but GBM cells showed
most prominent invasion, up to complete destructionof the healthy
tissue (89). Although species differences should be considered, rat
brainorganoids derived fromfetal tissue are faster togenerate,more
reproducible and appear to reach better maturation status
compared to human cerebral organoids derived from iPSCs or
ESCs. Again, fluorescent or bioluminescent labelling is needed to
efficiently measure GBM invasion into brain organoid structures.
Similarly, invasion can also be followed directly in genetically-
engineered organoids as GBM-like cells develop naturally within
the intact cerebral organoids (61, 62). Although cerebral organoids
allow for easier access to human brain structures, they miss critical
structures required for invasion. In particular, it is well known that
GBM cells preferentially infiltrate along vascular structures (90),
which are not present in cerebral organoids. The inclusion of
vascular elements into cerebral organoids (91, 92) in co-cultures
with GBM organoids, as well as directly into genetically engineered
GBMorganoids, could therefore be a valuable tool for future studies
on the dynamics of GBM invasion along blood vessels and
developing invasion inhibiting treatment strategies.

Patient-Derived Orthotropic Xenografts
Patient-derived xenografts (PDXs) represent a well-established
preclinical cancer model allowing for propagation and
investigation of human tumors in immunodeficient rodents.
Classically PDXs are derived by subcutaneous implantation of
patient tumor tissue fragments, with a take rate of around 50%
for GBM tumors (93). In case of specific organs, such as brain,
patient-derived orthotopic xenografts (PDOXs) better recapitulate
tumor histopathological features and TME. Implantation of tissue
fragments directly into the brain is technically challenging and
may lead to unreproducible tumor growth. Thus application of
patient-derivedGBMorganoids for implantation ensures technical
feasibility and standardization, while avoiding GBM selection and
adaptation. In general, the majority of GBM organoids of different
culture models give rise to tumors upon xenotransplantation in the
brain and recapitulate well histopathological features of patient
GBMs such as invasion and angiogenesis. To obtain consistent
tumor take and growth rates, we implant six to ten intact GBM
patient-derived organoids into the brain of immunodeficient mice
or rats respectively (25, 27, 94, 95). We have shown that organoids
derived from high grade gliomas, including IDH mutant
astrocytomas and GBM, are able to grow in the brain with very
high rate of tumor take (27).. Successful engraftment and PDOX
propagation for > 3 in vivo passages was obtained for 86% ofGBMs
(35/41) and 25% grade III gliomas (2/8). Failure of GBM organoid
engraftmentwas attributed to initial poororganoidquality,whereas
no association between organoid quality and tumor take was seen
for grade III gliomas.The in vivo tumor latency strongly dependson
the parental tumor and can vary from several weeks to several
months. Organoids from treatment naïve and treated GBMs can
develop and give rise to tumors in vivo. We have been also able to
generate paired longitudinal models from tumor samples collected
at different timepoints from the same patient, thus recapitulating
disease progression over time (27). Suchmodels are invaluable tools
to study tumor evolution and treatment resistance in a personalized
Frontiers in Oncology | www.frontiersin.org 8
in vivo setting. In case of more proliferative GBM organoids
cultured in serum-free conditions, implantation of a lower
number of intact organoids (down to 1 organoid/implantation)
was sufficient to develop tumors in vivo (60). The authors reported
successful engraftment of 8 organoid cultures derived from 7
patients and tumors were visible 1–3 months after implantation.
Hubert et al., applied enzymatic dissociation of organoids prior to
implantation (59). Although no exact tumor take rates were
reported, implantation of GSC-derived organoids should be
highly efficient. Interestingly, despite containing a similar number
of self-renewing cells GBM organoids showed longer latency than
implanted GSCs of the same patient (59). Genetically-engineered
GBMorganoidswere also shown to give rise to intra-cranial tumors
in vivo (no tumor take reported, mean survival 90–100 days after
implantation of 3*105 cells) (62) or expand in renal capsules (17/20
neoCORs, 85%) (61).

PDOXs allow for the propagation of tumormaterial in vivo (live
biobanking)within anadequate brainmicroenvironment including
structural (vasculature, blood brain barrier), cellular (neurons, glia,
microglia/macrophages) andmetabolic components (cerebrospinal
fluid, brain interstitial fluid). This procedure allows also to avoid
long-term culture and expansion of organoids in vitro. GBM
organoids can be further obtained from established PDOXs and
serially transplanted to maintain the patient tumors over multiple
generations (27).We showed thatorganoid-derivedPDOXs remain
stable across generations in mice, recapitulate histopathological
features ofhumanGBM,withvarious level of angiogenesis, necrosis
and invasiveness (25). Such PDOXs represent invaluable patient
‘avatars’ for downstream experimental needs and applications
(Figure 1). Applications range from in vivo drug validation
studies, protocol optimization for magnetic resonance imaging
(MRI), the use of isotopic tracers for dynamic profiling of tumor
metabolism in vivo, genetic and phenotypic analysis, to
identification of novel biomarkers and therapeutic targets (5, 95–
100). We showed that anti-angiogenic treatment in organoid-
derived GBM PDOXs leads to clinically relevant responses with
no survival benefit (70, 95). This is in contrast to observedGBMcell
line-derived xenografts, which show strong dependence on
angiogenesis to survive in vivo (101). Monitoring of PDOX by
MRI allows to follow ‘patient avatars’ in a similar fashion as in the
clinical setting and to complement drug testing on organoids (27,
70). This includes the visualization of an intact or disrupted blood
brain barrier (BBB) in the various tumor compartments, an
essential component of the GBM TME. Because of the selective
permeability of the BBB regarding blood derived molecules (102),
PDOXs are essential to validate the therapeutic effect of novel
treatment strategies in a meaningful preclinical in vivo setting to
avoid failure in the clinical phases.

Because human tumors need to be engrafted in immunodeficient
rodents, limitationsofPDOXs include the lackof a complete immune
system and potential interspecies incompatibilities at the molecular
level. Importantly, our previous studies showed that human tumor
cells can functionally interact with cells from the TME in PDOX
despite interspecies differences, e.g., rodent endothelial cells form
aberrant blood vessels (25) and are affected by anti-human VEGF
treatment (70, 95). Similarly,myeloid cells are present in PDOXs and
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are modulated by the tumor graft (27). Since they represent the
major immune cell type of the brain TME, targeting the
immunosuppressive nature of myeloid cells can be tested in PDOX
(17, 103). Nevertheless, while the innate immune system is largely
intact in nude mice, the lack of lymphocytes prevents certain
applications for modern immunotherapy. This can be overcome on
the one hand by the generation of immunocompetent GBM
organoids for ex vivo studies and on the other hand, by the
establishment of PDOX models in humanized mice for in
vivo studies.
IMMUNOCOMPETENT ORGANOID
CULTURE—WHICH IMMUNE CELLS
TO USE?

The interactionsbetween immuneand tumorcells critically influence
the onset, progression and treatment of human malignancies.
Although the brain has been for long considered as an immune
privileged organ, it is clear that the immune systemplays a key role in
development and surveillance of brain homeostasis (104).
Nevertheless, the brain remains an immunologically distinct site,
which is also reflected in the TME of brain tumors (105). TME
includes brain resident and infiltrating myeloid cells, natural killer
cells, dendritic cells and regulatory T cells, classifying GBM as
strongly lymphocyte depleted tumors (13). A major challenge of all
currentGBMorganoidmodels remains theestablishmentof an intact
TME including the immune cell compartment.

The establishment of immunocompetent cancer organoids is an
active field of research and an urgent need. Such novel models fill a
gap in pre-clinical research, allowing for functional and translational
studies for immunotherapies and promoting the investigation of
tumor-immune cell interactions (106).Considering thehighdemand
forpersonalized immunotherapy, immunocompetent ex vivomodels
present a promising platform for individual patients, by advancing
the development of new immunotherapeutic strategies. Here we
provide an overview of protocols employing various immune cell
populations for the setup of immunocompetent tumor organoids
that couldbeapplied toGBMmodelling.Tumororganoids canbeco-
cultured with different immune cell populations depending on the
origin of the immune compartment. Immune cells can be isolated
from the periphery or directly from the tumor site (Figure 2).
Opportunities and limitations of both are discussed below.

Peripheral Mononuclear Cells
To mimic the immune microenvironment, immunocompetent
organoids can incorporate autologous or allogeneic immune
components in the culture. In the case of autologous immune
components, cells are isolated from the same patient who provided
the tumor tissue to generate tumor organoids. Allogeneic immune
cells imply a non-self-source, such as healthy blood donors. The
main source of relevant immune cells are peripheral mononuclear
cells (PBMCs), which comprise lymphocytes (T cells, B cells, and
NK cells) and monocytes. Isolated PBMCs should not contain
neither granulocytes (neutrophils, basophils, and eosinophils) with
multi-lobulated nuclei, nor nuclei-free erythrocytes and platelets.
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PBMCs can be cultured as a bulk population or individual immune
cell populations can be further isolated through magnetic
separation or FACS, cultivated and expanded as monocultures.

Autologous Peripheral Mononuclear Cells
Patient blood presents a valuable source to obtain patient’s own
immune cells in the form of autologous PBMCs. PBMCs are easily
accessible and can be obtained through a simple blood withdrawal
prior to surgery when the tumor tissue is removed. This allows to
establish matched immunocompetent organoids for individual
patients. Promising results with ex vivo co-cultures of organoids
with autologous PBMCshave been reported for non-small cell lung
cancer and colorectal cancer (107, 108).Aproportionof co-cultures
with organoids positive for MHC class I led to the activation of T
cells, which were able to eliminate tumor organoids, but left non-
neoplastic organoids from the same patient unaffected. No
responses were observed for MHC class I deficient tumors. In this
protocol organoids were dissociated into single cells and adapted to
lymphocyte medium prior to the co-culture (107, 108). This proof
of concept study suggests that tumor reactive T cells can be
expanded from peripheral blood and activated by matched tumor
organoids. Activated T cell populations can thus be used
subsequently to test cytotoxic properties ex vivo and/or to analyze
the T cell receptor repertoire. Ultimately, effector T cells displaying
immune reactivity after co-culture with tumor organoids could also
be applied for adoptive cell transfer, if a sufficient number of T cells
is generated.

Such systems have not yet been reported for GBM and it remains
to be seen whether GBM cells will trigger an immune response and
immunogenic properties in autologous PBMC-based organoids,
particularly in case of MHC I deficiency. Multiple studies have
shown that GBM patients’ blood presents peripheral T cell
lymphopenia (low T cell counts) and a high number of myeloid-
derived suppressor cells (12, 15, 109). This is further exacerbated by
corticosteroids (dexamethasone), a treatment often providedupfront
to reduce tumor-associated edema and improve clinical symptoms.
Therefore the timingofbloodwithdrawal is crucial and should ideally
be conducted before surgery and before any other treatment is given.
Additional technical issues need to be taken into account (i): pre-
stimulation of tumor organoids with interferon g (IFNg) may be
needed toenhanceantigenpresentation (ii), pre-stimulationofTcells
with anti-CD28 and interleukin-2 (IL-2) may be required to support
proliferation and expression of anti-Programmed cell death 1 (anti-
PD1) thereby counteracting Programmed cell death ligand 1 (PDL1)
inhibitory effects on tumor cells (107).

Allogeneic Peripheral Mononuclear Cells
Allogeneic PBMCsare isolated from the blood of healthy donors. In
contrast to autologous PBMCs, they represent normal blood with
appropriate cell counts andwerenever exposed to tumor-associated
stimuli released into the peripheral system. Allogenic PBMCs have
beenextensively used toobtainpurified immunecell populations (T
cells, NK cells, monocytes), which were applied to co-cultures with
conventional tumor cell lines. Although activation of immune cells
in 2D cultures appears rather straightforward, patient-derived 3D
systems add additional challenges linked to immunosuppressive
factors such as hypoxia and high lactate levels (110) as well as
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potential HLA incompatibilities. Co-cultures of allogenic blood
components have not yet been reported for GBM organoids. Tang
et al., developed sophisticated co-cultures of macrophages with
GSCs using a bioprintingmethod (111).Macrophage cultures were
obtained from a monocytic cell line (THP-1), human iPSCs or
PBMCs from healthy donors. Co-cultures were embedded in
hyaluronic acid rich hydrogels, representing a main component
of GBM ECM. Additional cellular components such as astrocytes
and neural stem cells, could be incorporated to the embedded co-
cultures. Of note, unpolarized M0 macrophages successfully
interacted with GSCs and polarized towards a protumoral M2-
like macrophage phenotype.

Tumor Derived Immune Cell Populations
Tumor Infiltrating Lymphocytes
Tumor infiltrating lymphocytes (TILs) present within resected
tumor fragments represent another source of lymphocytes.
Isolation of TILs can be performed simultaneously during tumor
tissue processing, which facilitates biobanking regulations and
protocols, e.g., no additional blood withdrawal from the patient is
necessary. In contrast to systems using peripheral immune cells,
TILs allow for the ex vivomodeling of the TME-intrinsic immune
responses. Cells present within the TME are enriched for
populations already instructed by the tumor, hence they may not
need further activation to produce the desired tumor-intrinsic
phenotype. Co-cultures with TILs are particularly important for
interrogating immune checkpoint expression on tumor cells and
TILs and determining tumor-specific efficacy of checkpoint
inhibitors. The main disadvantage lies in low number of TILs
obtained from most tumors. Compared to metastatic melanoma
where TILs are frequently isolated in high numbers and applied in
adoptive T cell transfer, enrichment of tumor-reactive T cells in
gastrointestinal cancers was more challenging (112). These
Frontiers in Oncology | www.frontiersin.org 10
limitations can be partially overcome by using organoids derived
frommechanically processed tumor tissue,whereTILs arenaturally
preserved. E.g., Neal et al. showed that patient-derived tumor
organoids from different type of cancers, including melanoma,
renal and non-small cell lung cancer preserve endogenous TILs
and other TME components (113). Here tumor organoids were
embedded in a collagen matrix and subjected to an air-liquid
interface set-up. TILs and other TME components were present
for up to 2 months within tumor organoids. TILs remained
functional and triggered a cytotoxic response upon PD1/PDL1
checkpointblockades.AlthoughTIL survivalwasprolongedby IL-2
or anti-CD3/anti-CD28, further optimization will be needed for
long-termpreservation.Another study reported themaintenanceof
CD45+ immune cells for up to 8 days within epithelial tumor
organoids (114). A protocol applying co-cultures of tumor
organoids and separately isolated TILs was reported for rectal
cancer, where TILs were able to interact with tumor organoids
embedded in the ECM and to partially restore cytotoxic activity
upon (anti-PD1) treatment (115).

Establishing a co-culture system for GBM organoids and TILs will
be technically challenging due to the low number of infiltrating
lymphocytes in GBM. TME components were reported to be present
within patient-derived GBM organoids derived from tissue fragments
including a small fraction of T cells and TAMs (60, 66). However,
similar to epithelial cancer organoids, the TME compartment is
progressively lost over time and separate TILs may be needed for
long-term experiments. The situation in GBM is further complicated
by the fact that a large fraction of infiltrative T lymphocytes represent
regulatoryT cells rather than tumor-directed cytotoxicT lymphocytes,
promoting an immunosuppressive TME (116). Thus co-cultures and
manipulation of TILs towards a different phenotype will be of
particular importance for GBM-specific immunotherapies. Finally,
since isolation of TILs from tumor tissue requires enzymatic
FIGURE 2 | Strategies for immunocompetent GBM organoid development. Immunocompetent organoids can be set up as co-cultures of tumor organoids with
immune cells derived either from the tumor itself or from peripheral blood of patients or healthy donors. Immunocompetent organoids are applicable to functional
assays and therapeutic intervention studies, which implicate assessment of tumor-immune cell interactions. Illustration created with Biorender.com.
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dissociation, it interferes with the derivation of GBM organoids from
mechanically cut tissue fragments. In this caseGBM tissue will have to
be sub-divided for TIL isolation and GMB organoid derivation,
compromising the number of T cells and organoids obtained
per patient.

Tumor-Associated Microglia/Macrophages
TAMs play an important role in GBM biology and are known to
facilitate tumor growth and invasion. TAMs originate from both
microglia and blood-derived monocytes, and acquire a strong
immunosuppressive phenotype in GBM (17, 117). GBM display a
prominent infiltration of TAMs which represent the majority
population of non-neoplastic cells (40–50% of the non-tumor cell
mass), thus they can be isolated from tumor tissue resected during
surgery. This is generally based on selection of CD11b positive cells
with FACS or MACS followed by subsequent cultivation. This is a
laborious method which generally results in low yields, which is
complicated by the fact that TAMs do not generally proliferate in
culture. Culture and freezing conditions should be optimized in
order to keep the viability at a high level. Similar to TILs, TAMs are
also partially preserved in GBM organoids, allowing for direct
investigation of tumor-TME crosstalk during early stages of
organoid culture.

Modified Immune Cells (CAR-T Cells,
CAR-NK Cells)
CAR-T cells are genetically modified T cells expressing a
chimeric antigen receptor (CAR) on their surface, which
results in the binding to specific antigens on tumor cells
leading to tumor cell killing. As patient-derived tumor
organoids retain well specific antigens and heterogeneity, they
appear as an advantageous model for ex vivo testing of CAR-T
cell therapies. Jacob et al. demonstrated the utility of patient-
derived GBM organoids to test adoptive T cell therapy ex vivo
(60). EGFRvIII is a constitutively activated EGF receptor mutant
that is overexpressed in a large number of GBM. CAR-T cells
engineered to react with EGFRvIII expressing cells were co-
cultured with GBM organoids with differential EGFRvIII
expression levels. CAR-T cells were able to invade GBM
organoids and expansion of EGFRvIII-specific T cells was
observed within organoids with high EGFRvIII levels. Specific
CAR-T cell mediated toxicity was further observed towards
EGFRvIII positive cells, as evidenced by an increased cleaved-
caspase 3 signal and increased presence of granulated T cells in
close proximity of EGFRvIII positive apoptotic cells. This proof-
of-concept study demonstrated the capacity of patient-derived
organoids as an ex vivo test bed for immunotherapy.
Unfortunately the clinical situation remains more complex and
a recent pilot trial with EGFR-targeting CAR-T cells did not
achieve a meaningful clinical effect (118).

In addition to T cells, NK cells can also be engineered to
express CARs. In a study with patient-derived colorectal cancer
organoids, CAR-mediated cytotoxicity was investigated using a
CAR-NK cell line (CAR-NK-92 cells), which represents a less
laborious source for CAR-engineered immune cells. CAR-NK-92
mediated cytotoxicity against tumor organoids was observed at
Frontiers in Oncology | www.frontiersin.org 11
low levels of tumor associated antigen expression, whereas it was
absent against healthy colon organoids (119).

Important Considerations
and Optimization Steps
An increasing number of reports present protocols for derivation
and maintenance of immunocompetent tumor organoids,
demonstra t ing the ir u t i l i ty to model the immune
microenvironment and study the effects of immunotherapies
(32). Although initial promising studies of immunocompetent
GBM organoids were reported, further development and
optimization of protocols is needed. The experimental settings for
the establishment of immunocompetent GBM organoids may
depend on several factors, including the research question at
hand, the availability of autologous blood and the amount of
available tumor tissue. Limited or unviable tumor tissue obtained
from surgery is a common problem, which limits the amount of
tumor organoids and TME cells that can be isolated. This is
particularly challenging if tumor organoid and TIL isolation
requires dedicated tissue pieces and preparation protocols.
Another challenge is the timing of the co-culture set up with cells
fromthe samepatient.While establishingGBMorganoids takes1–2
weeks, blood or tumor derived immune cells are ready on the day of
collection. Since the expansion of these cells is either limited
(TAMs) or should be avoided (lymphocytes) and/or the cells
cannot be easily maintained in culture, a proper cryopreservation
and thawing process is critical for the use of viable immune cells at
later timepoints. Furthermore, as indicated above, the recovery ofT
cells from GBM patients either from the tumor tissue or from
PBMCs is expected to be low because of limited T cell infiltration
and peripheral T cell lymphopenia, respectively, characteristic of
GBM patients (12, 109).

Another challenge is to establish optimal culture conditions for
all co-cultured cell types. This includes medium composition,
duration of the co-culture, the immune-tumor cell ratio, and the
read-out for cytotoxic responses. Co-cultures are generally
performed in the immune cell-specific medium which may
compromise GBM organoid viability and may not reflect brain
physiology. Culture conditions need to be adapted to different
GBM organoids and immune cells under investigation. The ratio
between tumor and immune cells depends on the effector cells
applied in the study. Generally, a target to effector ratio of 1:10 to
1:20 is reported for PBMCs (108). With specific subset of immune
cells, such as CAR cells, less effector cells are required (60, 119).
Whether or not the organoid is dissociated prior to co-culture also
impacts tumor-immune cell interactions. Spontaneous infiltration
of immune cells into intact tumor organoids may be particularly
challenging if ECM is applied for organoid derivation (107). In
addition, the use of a rodent-derived matrix may lead to unspecific
activation of immune cells against foreign antigens. Finally, it
remains to be seen whether GBM cells display sufficient
immunogenicity, which requires large numbers of neo-antigens
and appropriate antigen presentation capacity to induce an active
immune responses. Antigen presenting cells, such as dendritic
cells or TAMs are potentially needed to enhance the tumor-T cell
interactions in the culture.
December 2020 | Volume 10 | Article 604121

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Klein et al. GBM Organoids
IMMUNOCOMPETENT IN VIVO TUMOR
MODELS IN HUMANIZED MICE

PDOXs derived in immunodeficient rodents are gold standard
preclinical models for drug efficacy in vivo studies in oncology
(120). Yet, the lack of a fully functional immune system limits their
use for testing immunotherapies.Hence, the generation of PDOXs in
humanized mice appears as a promising immunocompetent in vivo
system recapitulating patient-derived tumors and immune
compartment (33). Since the first description of humanized mice in
1988, a plethora of protocols has been developed (121, 122).
Generation of humanized mice requires a highly immunodeficient
mousebackground toobtain efficient engraftmentof ahematopoietic
human system. Thus, the NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG)
strain is frequently applied. NSG mice lack mature T, B cells and
hemolytic complement, the Il2rgtm1Wjl mutation prevents cell
signaling through multiple cytokines leading to a lack of NK cell
activity.Moreover, the polymorphismof the signal regulatory protein
a (sirpa) allele in the NOD background allows a functional ‘do-not-
eat-me-signal’betweenmousemyeloid cells andhumanCD47,while
the deficiency in Prkdcscid confers sensitivity to radiation (123, 124).
Currently twomain approaches are in use to reconstitute the human
immune system (i): HU-PBMC model applying PBMCs isolated
from human adult blood or (ii) HU-CD34 model based on human
CD34+ hematopoietic stem cells (HSCs).

HU-PBMC Model
The HU-PBMC model can be derived by intravenous,
intraperitoneal or intrasplenic injection of human PBMCs from
adult donors into adultNSGmice (>8weeks old).Thismodel allows
a fast and efficient engraftment rate with approximately 15% of
human CD45+ cells constituting blood in mice after one week and
up to 50% of human CD45+ cells 4 weeks after inoculation. The
human CD45+ fraction is mainly composed of mature human T
cellswith ahigher level ofCD4+rather thanCD8+cells (125).Thus,
this model is specific to T lymphocytes and is not suited for
investigating monocytes, which remain mostly mouse-derived.
The main advantages are the fast engraftment of human cells and
the possibility to implant PBMCs and tumor cells from the same
patient, avoiding HLA mismatch. Unfortunately, the model can
only be applied short-term, as PBMCs undergo human thymic
education andpresent humanMHC leading to an immune reaction
against mouseMHC, known as Graft versusHost Disease (GvHD),
and death of themice after approximately 4weeks (125). Because of
the short experimental window (3 weeks) the HU-PBMCmodel is
generally difficult to adapt to in vivo tumor development protocols.
NSG mice with a double knock out for MHC Class I and II
(NOD.Cg-Prkdcscid H2-Ab1em1Mvw H2-K1tm1Bpe H2-D1tm1Bpe

Il2rgtm1Wjl/SzJ) can be applied to extend the experimental
window. In the absence of mouse MHC, this transgenic strain
allows up to 100 days for tumor development monitoring (126,
127). Ashizawa et al., took advantage of NSGMHC I/II KOmice to
develop subcutaneousGBMxenografts in aHU-PBMCmodelwith
PBMCs obtained from the HLA-partially matched donor (126).
One day after X-ray irradiation of mice and PBMC injection, the
U87 GBM cell line was implanted subcutaneously, which allowed
tumor development in the experimental time frame of the
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humanized model. The authors report a successful response to
anti-PD1 treatment. It should be noted that MHC knock out may
impact mouse microglia functionality, which was not investigated
in this study. As described in this study, preconditioning irradiation
can be applied in these mice to increase the percentage of human
cell engraftment. This is not recommended in the NSG strain,
where it will lead to a faster development of GvHD.

So far no GBM PDOXmodel was reported in HU-PBMCmice
and it is currently not clear to what extent HU-PBMCs will
translocate to the mouse brain. PDOX development in the mouse
brain can take from several weeks to severalmonths, often going far
beyond the 4–10 weeks before the GvHD. To overcome this issue,
PBMCs could be injected after the tumor is well established which
would also avoid potential tumor cell rejection due to the brain
surgery-induced inflammation (Figure 3). In this case, X-ray
irradiation should be avoided not only because of increased
GvHD, but also because of its impact on tumor growth. The
implantation protocol requires 10x106 human PBMCs per mouse,
which may be challenging to obtain from GBM patients, which
display severe lymphopenia. Ex vivo expansion of T cells/PBMCs
from patients or healthy donors with partial HLA match could
overcome the T cell limitation. The application of HLA-partially
matched PBMCs from healthy donors would also allow to expand
humanized studies to previously established GBM PDOXs, for
which patient blood is not available.

HU-CD34 Model
HU-CD34 mice are created from human CD34+ hematopoietic
stem cells (HSC) isolated from umbilical cord blood, bonemarrow,
fetal liver or mobilized PBMCs. HSCs are injected intravenously,
intrafemoraly, or intrahepatically into freshly irradiated new born
oryoungNSGmice (<3–4weeks old).After 12–16weeks, up to25%
of CD45+ cells inmouse blood represent human cells andmice can
be used for experiments (Figure 3). This provides a much wider
experimental window for implantation of tumor cells. The
reconstitution of the human hematopoietic system (human/
mouse ratio and maturation level) differs depending on the
mouse strain and the organ (128–130). HU-CD34 NSG mice
reconstitute well B and T cells but a low level of myeloid lineage
cells is seen in the blood. These mice are able to survive for more
thana year,with a relatively stable ratio ofhuman/mouse cells in the
blood. The partial incompatibility of growth factor signaling
required for hematopoiesis explains some developmental or
functional defects observed in myeloid cell differentiation or
maturation of T cells (128, 131, 132). Additional injection of
human growth factors (133) or application of transgenic strains
expressing several human growth factors can improve maturation
of human immune cells (125). For example, the NSG-SGM3
(NOD.Cg-PrkdcscidIl2rgtm1WjlTg(CMV-IL3,CSF2,KITLG)
1Eav/MloySzJ) triple transgenic mice expressing human Stem cell
factor (SCF), Interleukin-3 (IL-3) and Granulocyte/macrophage
stimulating factor (GM-CSF), enhance the number of T cells and
myeloid cells (134). It is currently unclear if sublethal irradiation,
necessary prior to CD34+ HSC implantation, can affect microglia
functionality in the mouse brain. Interestingly, it has been reported
that HU-CD34 NSG mice can present human HSC-derived
microglia/macrophage-like cells integrated with mouse microglia
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in the brain (135). A specific transgenic strain producing human
IL-34 (NOG-hIL34mice) further improveddevelopmentof human
microglia/macrophage-like cells in the brain (136).

The HU-CD34 model has been successfully combined
with several cell line-derived xenografts and PDXs of different
cancer types (137–139). Although a perfect HLA match between
CD34+ HSC donor and tumor patient is impossible, a partial
HLA match did not negatively affect tumor growth in recent
reports on PDXs (139, 140). HLA loss is a well described escape
mechanism in many tumors, including GBM, which may
compensate the possible HLA mismatch (141, 142). Moreover,
as human immune cells mature through the mouse thymus
according to the mouse MHC I and II, human T cells are not
fully functional and do not reject human tumor cells with
different HLA (143). An alternative BLT (Bone marrow, Liver,
Thymus) model, which applies the co-transplantation of fetal
liver and thymus from autologous CD34+ HSCs donors, allows
for improved development of HSCs and their positive selection
through human MHC. The functionality of T cells is improved,
yet in this situation the partial HLA match leads to higher
incidence of GvHD (144, 145).

For GBM PDOXs the HU-CD34 model appears as a preferred
model than HU-PBMC, because of the improved reconstitution of
human immune cells and the longer experimental window. GBM
PDOX developed in HU-CD34 mice would recreate most
comprehensively a functional human immune system, allowing
for in vivo therapeutic interventions targeting tumor-immune cell
Frontiers in Oncology | www.frontiersin.org 13
crosstalk. So far only one study described GBM orthotopic
xenografts developed in HU-CD34 model. Zhai et al., have
successfully implanted U87 cells and GBM cells derived from two
subcutaneous PDXmodels into the brain of HU-CD34 BTL (146).
The presence of human T and myeloid cells was confirmed in the
blood, lymph nodes, spleen, as well as within the tumors developed
in thebrain, butnot innormal adjacentbrain. It remains tobe seen if
a similar reconstitution of the human hematopoietic system is
present in GBM PDOXs that develop over longer time periods
and if these humanized PDOXs recapitulate clinical features of
GBM patients, such as lymphopenia, leading to decreased amount
of human T cells in the blood.
CONCLUSION AND PERSPECTIVES

In recent years notmuchprogress has beenmade to improve survival
of GBM patients and treatment options are still very limited. The
technology of tumor-treating fields is the only recent treatment
modality, which provided a positive outcome in a phase III clinical
trial, but has its own inherent drawbacks that are debated in the
community (147). SinceTMZ,nonovel drughasbeendeveloped that
led to prolonged patient survival (148). This failure can at least be
partiallyattributed to inappropriatepre-clinicalmodels,whichdonot
fully recapitulate GBM, hence novel physiologically relevant models
are urgently needed. Organoid culture models have emerged to
complete the scientific toolbox. Patient-derived GBM organoids
A

B

FIGURE 3 | Strategies for immunocompetent GBM PDOXs development in humanized mice. Immunocompetent GBM PDOXs can be generated in HU-PBMC or
HU-CD34 mice. The experimental schedule and therapeutic window depends on the humanized model applied and tumor development time (A). Due to the short
survival of HU-PBMC mice, tumor implantation should precede the PBMC injection. The best time point will depend on tumor latency. The experimental window is
limited due to development of Graft versus Host Disease (GvHD) within 4 weeks, depending on the genetic background of the NSG mice (B). HU-CD34 model
requires more time for the generation of humanized blood which is counterbalanced by the longer survival of the mice (>1 year). The tumor implantation timepoint
and experimental window depend on the tumor latency and need to be synchronized according to the required readout. Illustration created with Biorender.com.
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and GBM organoids derived from genetically engineered human
brain organoids have been successfully established and have been
shown to better recapitulate GBM genetic and phenotypic
characteristics in comparison to 2D GBM cell lines and 3D GSCs.
Although technologically more challenging, GBM organoids
represent a promising and exciting pre-clinical model and are a
powerful tool to foster our understanding of GBM biology and an
emerging platform for drug screening. If established from a patient-
derived system, these organoids offer an approach for personalized
medicine, prompting to better predict treatment responses for
patients. Due to the relatively quick generation time of patient-
derived organoids, ex vivo studies are being conducted in a
reasonable and clinically relevant time frame and could ultimately
guide clinical decisions. Technical challenges need to be addressed in
future studies and further improvements to incorporate an adequate
TME are warranted. Immunocompetent GBM organoids, based on
co-culture with either tumor or blood-derived immune cells, will be
crucial to bring forward novel immunotherapeutic approaches. We
anticipate that future studies will incorporate immunocompetent
organoid cultures in their experimental design to investigate not only
immune-tumor interactions, but also to investigate current andnovel
immunotherapies, such as adoptive T cell transfer, immune
Frontiers in Oncology | www.frontiersin.org 14
checkpoint inhibitors or oncolytic viruses. Moreover, PDOX
generated in humanized mice will provide another important tool
essential to improve drugdevelopment andpreclinical testing in vivo.
Such developments and improvements of pre-clinicalmodels should
have a major impact on preclinical research and clinical studies and
eventually on patient care.
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