
Frontiers in Oncology | www.frontiersin.org

Edited by:
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Nanoparticles (NPs) are novel platforms that can carry both cancer-targeting molecules
and drugs to avoid severe side effects due to nonspecific drug delivery in standard
chemotherapy treatments. Cancer cells are characterized by abnormal membranes,
metabolic changes, the presence of lectin receptors, glucose transporters (GLUT)
overexpression, and glycosylation of immune receptors of programmed death on cell
surfaces. These characteristics have led to the development of several strategies for
cancer therapy, including a large number of carbohydrate-modified NPs, which have
become desirable for use in cell-selective drug delivery systems because they increase
nanoparticle-cell interactions and uptake of carried drugs. Currently, the potential of NP
glycosylation to enhance the safety and efficacy of carried therapeutic antitumor agents
has been widely acknowledged, and much information is accumulating in this field. This
review seeks to highlight recent advances in NP stabilization, toxicity reduction, and
pharmacokinetic improvement and the promising potential of NP glycosylation from the
perspective of molecular mechanisms described for drug delivery systems for cancer
therapy. From preclinical proof-of-concept to demonstration of therapeutic value in the
clinic, the challenges and opportunities presented by glycosylated NPs, with a focus on
their applicability in the development of nanodrugs, are discussed in this review.
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INTRODUCTION

Nanoparticles have long been known as the foremost systems to improve drug delivery for
treatment of several diseases, especially cancer. However, development of effective, targeted, and
safe drug delivery systems remains challenging in many cancer types due to limited target sites (1).
Therefore, to develop strategies that facilitate specific delivery of therapeutic agents to the target site,
reducing access to nontarget sites is urgently needed (2, 3). One strategy for applying targeted
therapies is the use of carbohydrates and monosaccharides as ligands that represent crucial
structures on tumor cell membranes and have been shown to be effective for cell-selective drug
delivery (4).

Cancer metabolism is also a promising target for cancer therapy in the nanomedicine field.
According to the classic theory known as “the Warburg effect,” cancer cells require a much higher
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glucose flux than normal cells because their phenotype is
characterized by preferential dependence on glycolysis for
energy production in an oxygen-independent manner (5).
Hence, certain key proteins involved in this disruptive
metabolism, such as GLUT, hexokinase-2 (HK2) and
phosphoglycerate dehydrogenase (PHGDH), which are
overexpressed in cancer, have been examined as possible
targets (6). Additionally, energy source replacement with other
monosaccharides, such as mannose, could retard tumor
progression (7). Currently, repurposing of nanocarriers
conjugated with glycan-based molecules is an interesting field
of opportunity for cancer therapy and diagnosis. Hence, a wide
range of functional nanocarriers, including polymeric, metallic,
and metalorganic NPs, are being studied and developed in the
biomedical field (8). NPs possess unique physical, optical, and
electrical proprieties and can be conjugated with several
therapeutic and target molecules that modify their interactions
with cell membranes and biological systems, altering their
toxicity and pharmacokinetic profiles (9). Furthermore,
adsorption or conjugation of glycan structures can change the
intrinsic properties and mobility of NPs in biological systems.
Glycosylated nanomaterials interact differently with tumor-
associated glycoprotein receptors, and generally, binding can
be achieved through multivalent carbohydrates because both the
membrane and microenvironment of cancer cells have been well
studied (10–12). Therefore, this review aims to highlight the
current novel strategies that have been developed for cancer
therapy through the use of drug delivery systems that include
carbohydrate-based NP systems as dendrimers, micelles, silica,
and lipidic and metallic NPs, exploiting the modified metabolism
of cancer cells as a therapeutic approach.
GLUCOSE METABOLISM AND
TRANSPORTERS IN CANCER CELLS

The modified metabolism in cancer cells, which resorts to
preferential use of glycolysis as the main energy source for
ATP generation, promotes cancer cell growth, survival,
proliferation, and long-term maintenance (13). The ATP
production efficiency of glycolysis is much lower than that of
oxidative phosphorylation, and cancer cells adapt to this
disadvantage by increasing glucose uptake (Figure 1A) (5).
Indeed, in the clinic, it has been reported that a high blood
glucose level is associated with a poor prognosis in cancer
patients (15, 16). Therefore, glucose plays an important role in
cancer progression because it promotes cancer cell proliferation
in a dose-dependent manner (17, 18).

Glucose is a hydrophilic molecule that must be transported
and modified by specific proteins in the cell. Two classes of
transporters are present in cells: the family of GLUT proteins and
sodium-dependent glucose transporters (SGLTs) (19). These
molecules are overexpressed in cancer cells; therefore, their
inhibition can be a therapeutic strategy against cancer (20, 21).
The use of compounds that suppress the growth of cancer cells
through inhibition of glucose transporters has been widely
Frontiers in Oncology | www.frontiersin.org 2
explored in various types of cancer, including liver, colon,
ovary, prostate, brain, and breast cancer (21–26). For example,
in ovarian cancer cells, GLUT-1 and GLUT-3 protein levels are
increased 6.5 and 4.1 times, respectively, and a GLUT-1/-3
inhibitor prevents cell growth, targets metabolic plasticity, and
overcomes the cellular rescue mechanisms of cancer cells (22).
GLYCOSYLATION AFFECTS CANCER
CELL MEMBRANES AND THE
MICROENVIRONMENT

Cancer cells exhibit membranal structure changes via changes in
external monosaccharide-related target molecules, such as
proteins and lipids, that aid in tumorigenesis, malignant
transformation, and tumor dissemination (27). For example,
overexpression of sialic acid on the cell surface creates a negative
charge on membranes and repulsion between cells, which helps
cells enter the bloodstream (28). Changes in the intrinsic
glycosylation of cell surface adhesion molecules, such as selectin
ligands, integrins, and mucins, have been implicated in changes in
the tumor microenvironment that can contribute to drug
resistance and pH acidification (29), which lead to more
aggressive cancer cell phenotypes; thus, their implications in the
design of glycan-based therapies should be investigated (30).
Therefore, glycans, glycoproteins, glycan-binding proteins, and
proteoglycans are mechanistically implicated in cancer hallmarks
(31, 32). For instance, lowered tumor extracellular pH (pHe) and
upregulation of the membrane protein matrix metalloproteinase 2
(MMP2) in the tumor microenvironment has been exploited as a
strategy to improve the selectivity of plasmid DNA release. Hence,
DendriGraft poly-lysine, third-generation, (DGL-G3) conjugated
with a cell-penetrating peptide (CPP), quenched by a pH-sensitive
masking peptide, and linked by a metalloproteinase MMP2
substrate was a successful gene delivery system in a hepatoma
cell line (32, 33).

Furthermore, tumor-associated macrophages (TAMs) can
remodel the tumor microenvironment to reduce growth
barriers, such as the dense extracellular matrix, and shift tumors
towards an immunosuppressive microenvironment that protects
cancer cells from targeted immune responses, making it difficult to
deliver drugs with NPs larger than 100 nm (34). Glycoconjugates,
such as mesoporous silica NPs (MSNs), can interrupt these
biological interactions within tumors by altering TAM
phenotypes through a process called polarization. By treating
these MSNs with deglycosylases, the surface glycosylation of
these NPs can be modulated without altering the protein
coating. Reports indicate that increasing the size of silica
particles can reduce their cellular uptake and minimize their
M1-like macrophage polarizing capability, and surface
modification of MSNs can further control their cellular uptake
and modulate their polarization effects (28, 34, 35). Therefore,
further investigation is required to determine the complete effects
of carbohydrate changes in the external microenvironment and
their role in inhibition of tumorigenesis.
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CARBOHYDRATE-BASED CARRIER
MOLECULES FOR CANCER THERAPY

Specificity is a crucial aspect of drug administration in
treatments against cancer because nonspecific agents can
damage healthy tissues, causing adverse effects in patients (36).
Carbohydrate changes in the external microenvironment of
cancer cells also provide specific targets for carrier-based drug
delivery. Hence, these carriers must be composed of
biocompatible and biodegradable materials, which should be
well characterized and conjugated (37). Among these,
nanomaterials have been well accepted as nontoxic and
nonimmunogenic agents (38).
Frontiers in Oncology | www.frontiersin.org 3
NPs based on carbohydrates or conjugated to them have been
explored as vehicles for drug administration in cancer (39, 40).
Indeed, a wide variety of polysaccharides have been used,
including chitosan (41), cellulose (42), glycogen (40), chitin
(43), and dextran (44, 45), among others. There are two special
cases. The first is hyaluronic acid (HA), a natural polysaccharide
used in gene therapy and as a based-drug carrier. HA has shown
a high molecular interaction with the CD44 receptor protein, a
cell-surface glycoprotein involved in cell-cell interactions that is
overexpressed in several types of cancer cells (46, 47). The second
is the chitosan NPs, which are self-assembled, low-cost
nanostructures with high positive charges that have the ability
to encapsulate and deliver hydrophobic and negatively charged
A

B

D

C

FIGURE 1 | A graphical representation of Warburg effect in cancer and experimental demonstrations of the improvement of glycosylated drug delivery systems for
target cancer therapy (A) Metabolic differences between normal and cancer cells. In the presence of O2, normal cells metabolize glucose in pyruvate followed by
oxidative phosphorylation in the mitochondria generating 36 ATP per glucose molecule. In the deficiency of O2, pyruvate is transformed to lactate via anaerobic
glycolysis generating 2 ATP per glucose molecule. In cancer cell, mutations in mtDNA, nDNA or absence of p53 gene, presence of oncogenes and ROS suppress
oxidative phosphorylation and enhances lactate production via glycolysis even in the presence of O2 (Warburg effect). (B) Glycosylated PAMAM dendrimers
conjugated with methotrexate as a strategy for breast cancer target therapy. (C) Comparison of viability between MDA-MB-231 and HaCaT cell lines. Cells were
exposed to OS-PAMAM-MTX-GLU and control treatments at the same concentration of free MTX and GLU was calculated in encapsulation assay for 4 h. Data
represent mean ± SD (n = 16). Statistical analysis was performed by two-way ANOVA followed by post hoc Tukey’s multiple comparisons test. ***P < 0.001, *<0.02.
(D) Confocal images of MDA-MB-231 cells incubated for 2 and 12 h with OS-PAMAM-FITC and OS-PAMAM-FITC-MTX-GLU. For each group, the images from left
to right showed the fluorescence of FITC (green), Hoechst 33342 (blue), and PI (red) stains. Images were acquired at 63×. Data has been contributed and modified
from Torres-Pérez (14).
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drugs to cancer cells (48). Chitosan can be accumulated
accurately by proving the interaction of charges and
permeability with the cancer cell membrane. Also, it has
shown a high biodegradability in sub-components of glutamic
acid (49). This type of NP can be preferentially internalized via
receptor-mediated endocytosis. Uptake studies have
demonstrated an increase in the endocytic pathway, with both
clathrin and caveolae activation, when receptors on the cellular
membrane were blocked. Therefore, the intrinsic properties of
NPs conjugated with ligand molecules, such as folic acid, can
significantly improve drug delivery in chemotherapy strategies
and reversion of multidrug resistance (50, 51).
CONJUGATION STRATEGIES FOR
GLYCOSYLATED NANOPARTICLES USED
IN CANCER THERAPY

Setting up a conjugation method requires several considerations,
starting from an understanding of the chemical composition of
both the cargo and the carrier molecule. The chemical
composition of cargo molecules influences the physicochemical
properties of nano systems including size, surface charge, and
shape, but also, modifying biological effects. For therapeutic
purposes, glycosylated nanoparticles (G-NPs) should be
biocompatible, biodegradable, and soluble in biological fluids,
and most importantly, they must have receptor-targeting
properties (4, 8).

The most common monosaccharides, including glucose,
mannose, fructose, and galactose, have usually been applied in
the synthesis of glycoconjugates because of the ease of
conjugation and their specific effect as a targeting ligand to
some key receptors found in cancer cells (4). Monosaccharide
molecules possess several groups, such as hydroxyl groups, which
can be highly reactive to generate stable conjugation with carrier
NPs through various linkage approaches, such as reductive
amination (52, 53). Drug carriers usually have amino-terminal
groups that allow hydroxyl groups to be linked directly to both
NPs and/or drugs through the following strategies (54, 55):

1. Direct amide linkages with sugar-bearing carboxylated or
activated ester derivatives. This is beneficial for conjugation
of monosaccharides, for example, in surface-amino
dendrimers modified with chemo drugs against breast
cancer and glioma (14, 56), including antitumor
immunotherapy using chitosan NPs and TCL vaccines
coupled with mannose to target specific moieties in
dendritic cells (DC) (57).

2. Introduction of thiourea linkages formed by treatment of NP-
amino groups with isothiocyanate saccharide derivatives.
This coupling is helpful for theragnostics when different
linkage strategies must be employed for different cargo
molecules or NP systems and has been used in dendrimers
premodified with fluorescein isothiocyanate but also linked to
gold NPs (58).
Frontiers in Oncology | www.frontiersin.org 4
3. Monosaccharides can also be found in the derivate version
containing amino groups, which are frequently used for
carriers with peripheral carboxyl groups, for example, D-
mannosamine conjugated to solid lipid nanoparticles (SLNs)
through amidization. The resulting p-aminophenyl-a-D-
mannopyranoside-modified SLNs (MAN-SLNs) effectively
delivered docetaxel to the brain (59).

The advantages of these strategies include the following: i) the
reactions are conducted at room temperature and are compatible
with most drugs and degradable linkers; ii) the resulting
products, such as poly(monochlorotriazine), can be
conveniently derivatized (i.e. PEGylated). However, direct
sacrifice of the reducing sugars, formers of extended linkers via
amide-bond formation starting from sugar lactones described in
the first syntheses, should be avoided, and the NP must have a
spherical architecture to avoid a chelating effect (60).
PHYSICAL PROPERTIES OF
GLYCOSYLATED NANOPARTICLES

The performance of drug delivery systems based on NPs in
cancer therapy is affected by several physical properties, mainly
size, shape, and surface electric charge, which modulate NP
toxicity and stability. Also, these characteristics should be
considered for glycoconjugates because most interactions with
altered membrane molecules are closely related to the
aforementioned parameters (61). In NPs, small changes in
structure can lead to significant changes in properties and
reactivity. Additionally, the directional organization of
molecules on the nanoparticle periphery can help by increasing
the electrophile affinity to target molecules due to the high
surface area to volume ratio of NPs (62, 63). Therefore, the
optimum drug dispersion and homogeneity in a nanoparticle
system and the linkage to cargo molecules should be well
controlled and reproducible to obtain the desired therapeutic
effect (64).

Regarding size, reports on organic and inorganic NPs indicate
that glycosylation increases the size and molecular weight of NPs
(14, 64, 65). Additionally, glycoconjugates exhibit a
neutralization of zeta potential without significant alterations
in colloidal stability (34, 66). Furthermore, depending on the
drug conjugation approach and the therapeutic strategy, cationic
saccharide molecules, such as dextran spermine and aminated
pullulan, or anionic molecules, such as pectin, heparin, and
hyaluronic acid, can be modulated to obtain the desired
therapeutic effect (67).

Regarding cancer therapy with drugs, it is crucial to avoid
side effects due to the toxicity of NPs. Nonspecific toxicity is
primarily influenced by surface chemistry, functionality, size,
chemical composition, and zeta potential (65, 68). Organic
glycoconjugates are natural products of living systems also
upshot as multifaceted drug delivery vehicles that can reduce
the toxicity associated with unmodified drug carriers and
November 2020 | Volume 10 | Article 605037
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therapeutic agents. An additional attribute of these carriers is
their ability to positively alter the pharmacokinetic profile of
drugs through stabilization (2, 38, 69). Furthermore, glycans and
carbohydrates can neutralize the very positive or very negative
charges of NPs, such as dendrimers or gold NPs, which can
compromise the integrity of the plasma membrane, causing
necrotic cell death (70, 71). Therefore, attached glycans play a
critical role in maintaining NP stability and conformation and
can define many of the physical properties of NP systems, which
positively influences the safety of the proposed nanosystems
through improvement of pharmacokinetic and biocompatibility
(35, 72, 73).
APPLICATIONS OF GLYCAN-BASED
NANOPARTICLES

Glycan changes in malignant cells, a hallmark of cancer, take a
variety of forms: increase in incomplete or truncated glycan
expression, loss of expression or excessive expression of certain
glycans, and, less frequently, the appearance of novel glycans (26,
74). Furthermore, G-NPs have been studied to improve specific
delivery of known and reassigned drugs as well as DNA, proteins,
and peptides like vaccines. A database search was carried out
with the words “glycoconjugates,” “glycopolymers,”
“glycodendrimers,” and “glycol AND drugs” “glycosylation
AND nanoparticles AND cancer” in the Scopus server and
Integrity (www.integrity.clarivate.com). The search revealed the
increasing amount of research on G-NPs during the last 20 years
(approximately 3,500 patents), especially because the number of
technology patents around the world has doubled in the last 10
years. Therefore, these types of nanosystems have the potential to
be used in cancer therapy and prevention, pathological imaging
diagnosis, and theragnostics.

Glycosylated Nanoparticles as Carriers of
Drugs and Small Molecules
The most common strategies for cancer therapy include the use
of small molecular drugs, and NP systems improve the
pharmacokinetic and pharmacodynamic profiles of these drugs
due to the ability of NPs to remain in prolonged circulation in
systemic models, increasing drug biodistribution and circulation,
and reducing in vivo side effects (75, 76). For instance,
overexpression of GLUT in breast cancer cells can enhance
drug uptake (77). Moreover, our group performed a
therapeutic strategy that included glycosylation of a one-step
PAMAM dendrimer loaded with methotrexate (OS-PAMAM-
MTX-GLU) (Figure 1B). This study showed that glucose
conjugation led to a 150% increase in the internalization of
OS-PAMAM conjugates in MDA-MB-231 breast cancer cells
and reduced cell viability by up to 20%. Cancer cell death was
significantly higher with the nanosystem than with free MTX,
and the system displayed specificity because no effects were
observed in noncancer cells (Figures 1C, D) (14).

Gold glyconanoparticles coupled to listeriolysin O 91–99
peptide (GNP-LLO91–99) have been used as a novel adjuvant
Frontiers in Oncology | www.frontiersin.org 5
for cancer therapy. GNP-LLO91–99 exhibited antitumor activity
by inhibiting tumor growth and migration in melanoma cells and
generated an immune response by recruiting and activating DC
(78). In addition, other strategies, including two glycosylated
systems to deliver cisplatin (CDDP), mannose-decorated tobacco
mosaic virus (CDDP@TMV-Man) and lactose-decorated
tobacco mosaic virus (CDDP@TMV-Lac), have been reported.
CDDP@TMV-Man induced enhanced endocytosis and
apoptosis in galectin-rich MCF-7 cells, whereas CDDP@TMV-
Lac showed superiority in endocytosis and apoptosis in HepG2
cells with overexpression of asialoglycoprotein receptors
(ASGPR) (79). Currently, other strategies for cancer drug
delivery using glycosylated carriers have shown a high
antitumoral effect, reaching up to 95% cell death. In particular,
the high affinity of galactose for the asialoglycoprotein receptor
in cancer cells has provided outstanding therapeutic strategies,
with special benefits in liver cancer (Table 1).

G-NP Carriers of Nucleic Acids
Due to recent developments in gene therapy, G-NPs have been
employed for specific and higher nucleic acid (siRNA, DNA, and
miRNA) transfection. A series of cationic block copolymers
(PHML-b-PMAGal) and the statistical copolymers P(HML-st-
MAGal) with pendant natural galactose and (L-)-lysine moieties
were exposed to a human non-small cell lung carcinoma cell line.
P(HML40-st-MAGal4) with 4.8% galactose content showed the
highest gene transfection efficiency among the synthesized
cationic polymers, 6.8-fold higher than the “gold standard”
bPEI-25k (87). Combined treatments, such as using targeted
NPs to deliver chemopeptides and gene therapeutics, have been
delivered efficiently to cancer cells and tissues to avoid
transfection cytotoxicity, overcome drug resistance, and stop
tumor development. In one study, a novel mannosylated
copolymer with a CPP grafted into Polyethylenimine (PEI) was
prepared to target antigen-presenting cells (APCs) with mannose
receptors. The gene transfection was significantly higher by the
grafted CPP mannosylated than in control cells (88, 89).

G-NP Applications in Immunotherapy
and Vaccines
The presence of altered glycans on cancer cells has been used as a
diagnostic marker and tumor cell marker (90). Glycan
aberrations have not only been used as markers but can also
be linked to endogenous lectins, such as galectins, sialic acid-
binding immunoglobulin type lectins, and selectins (91). For
example, type C lectin receptors are widely expressed on myeloid
cells, such as macrophages, neutrophils, and DC. Consequently,
they can mediate specific interactions with tumor antigens and
facilitate tumor rejection (92, 93).

Due to their relevance, incomplete or truncated glycan
structures, often covered by sialic acid and commonly known
as tumor-associated carbohydrate antigens (TACA), have been
studied (94). These antigens have already been seen to be
overexpressed in different cancer types, such as breast,
pancreas, bladder, and colon cancer (95–98). For example,
glycodendrimers were evaluated due to their dual properties as
November 2020 | Volume 10 | Article 605037
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TABLE 1 | Applications of the recent glycosylated nanoparticles for drug delivery in cancer cells.
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targeting agents using a CD4- and CD8-directed melanoma
antigen (gp100) and a glycan (LeY) recognized by the type C
lectin receptors DC-SIGN and Langerin. Thus, the first
glycovaccine with dual C-type lectin receptors (CLR) targeting
properties was designed with glycosylated dendrimers, which
reached multiple human skin DC and improved antitumor
CD8+ T cell responses (99). These investigations demonstrate
that glycans can be applied both in the construction of systems to
detect biomarkers for tumor diagnosis and prognosis
determination, as well as in the development of vaccines
targeting carbohydrate antigens (91).

G-NPs Used in Theragnostics
The Warburg effect is a hallmark of cancer and serves as a target
for both diagnosis and therapeutic strategies (100). Several
glycoconjugates, such as 99mTc-labeled deoxyglucose derivates
and glucosamine functionalized with multiwalled carbon
nanotubes, have been employed as diagnostic agents for heart
and brain cancer and showed superior accuracy over current
diagnostic methods (101, 102). However, in recent years,
theragnostic systems, such as silica and hyaluronic acid-based
NPs that can be used to image cancer cells and at the same time
can suppress tumor growth, have been designed by improving
the solubility of hydrophobic drugs and glycosylation-mediated
drugs and the tumor cell targeting efficiency, with minimum
toxicity (103–105).
CONCLUSIONS AND PERSPECTIVES

Current evidence indicates that glycosylation strategies
combined with drug delivery systems and immunological
therapy present potential opportunities for cancer therapy and
theragnostics. In particular, nanosystems proposed for lipidic
NPs with galactose are the most well studied and promising
strategy against several cancer types. However, targeted G-NPs
for cancer treatment involving novel nanotechnologies and
medical strategies have numerous challenges and issues. One
of the challenges of targeted NPs is to induce a beneficial
alteration in the solubility, stability, and pharmacokinetic
features of the drug carried. Other challenges are related to
Frontiers in Oncology | www.frontiersin.org 7
control the diverse alterations in the tumoral microenvironment
and the clinical safety and repeatability concerns.

Further nanomedicine innovations and basic research are
crucial for the discovery of more specific cancer receptors and
new glycan-based ligands or repurposed drugs against these
receptors. Although the majority of carbohydrates and chemo
drugs used in these experimental therapies are low-cost
molecules, the sum of all the components and synthesis steps
necessary to obtain the nanoconjugate can be expensive, and
researchers have not fully examined the cost-effectiveness issues.
Apart from accumulation of nonmetabolizable nanocomponents
like gold, leakage of shelf life, toxicity of some substances
employed for making NPs is another restriction. Therefore it is
recommended to use organic NPs for therapeutic applications.
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