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The Lipid Metabolic Landscape
of Cancers and New Therapeutic
Perspectives
Wenjun Wang†‡, Ling Bai†‡, Wei Li† and Jiuwei Cui*†

Cancer Center, The First Hospital of Jilin University, Changchun, China

Lipid metabolism reprograming, as a hallmark of malignancy, has received renewed
interest in recent years in such areas as energy sources, cell membrane components, and
signaling molecules involved in the rapid tumor growth and the adaptation to the tumor
microenvironment. Lipid metabolism deregulation in cancer involves multiple aspects,
including an increased lipid uptake, endogenous de novo fatty acid synthesis, fatty acid
oxidation, and cholesterol accumulation, thereby promoting tumor growth and
progression. Recent advances in the understanding of specific metabolic alterations in
cancer reveal novel pathogenesis mechanisms and a growing number of drugs targeting
lipid metabolism have been applied in anti-tumor therapy. Thus, this review discusses the
lipid metabolic landscape of cancers and the interplay with oncogenic signaling, and
summarizes potential therapeutic targets to improve the therapeutic efficiency in cancer
patients, in order to provide more reference and thinking for the treatment of lipid
metabolism of cancer patients.

Keywords: cancer, cancer metabolism, fatty acid catabolism, cholesterol, fatty acid synthesis, lipid uptake,
tumor microenvironment
BACKGROUND

Lipid metabolism reprograming is a hallmark of cancer and plays an important role in shaping the
tumor microenvironment and cancer cell phenotype, contributing to the occurrence and development
of tumors (1). Lipid metabolism of tumor cells can be used to store energy and act as a mediator for
cell signaling cascades by utilizing carbon-based precursors produced by aerobic glycolysis to
synthesize basic cell components necessary for proliferation (2). Thus, lipid metabolism
reprogramming is an essential link in tumor metabolism.
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Wang et al. Lipid Metabolic Landscape of Cancers
Lipids include triglycerides (TGs), phospholipids (PLs),
sphingolipids, and cholesterol, and can function as energy
sources, cell membrane components, and precursors of molecules
involved inmultiple biological processes (suchas steroidhormones,
vitamins, bile acids, and eicosanoids). Changes in lipid metabolism
can affect numerous cellular processes, including cell proliferation,
differentiation, and motility (3). In addition, since cancer cells
compete for oxygen and nutrients in a nutrient-limited
microenvironment, they maintain their malignant potential by
altering their metabolism and obtaining fatty acids (FAs).

Cancer cells rewire lipid metabolism through several
mechanisms, including increased de novo synthesis and
exogenous uptake of FAs, upregulated fatty acid oxidation
(FAO), cholesterol accumulation, and induced cancer-associated
adipose tissue. At the same time, cancer cells metabolic
reprograming can also influence immune cells in a variety of
ways, such as through metabolic competition, oncometabolites,
and exosomes (4, 5). With the gradual understanding of the
extensive roles of metabolism in cancer pathogenesis, the
specific metabolic preferences of cancer cells have been exploited
to limit cancer progression for clinical benefit, and some therapies
have been tested in clinical trials addressing their efficacy in
multiple cancers. Meanwhile, accumulating evidence indicates
that metabolism-targeting combination treatment or short-term
starvation can improve the immune therapy or chemotherapy
efficacy (6). Based on the studies on lipid metabolism in pan-
cancer, the most extensive changes in lipid metabolism pathways
are FA metabolism, cholesterol metabolism, arachidonic acid
metabolism, and peroxisome proliferator-activated receptor
(PPAR) signal transduction (1). Therefore, this review mainly
anchors new advances in FA metabolism and cholesterol
metabolism in tumor cells, aiming to provide potential targets
for novel cancer therapeutic options.
Abbreviations: ATP, adenosine triphosphate; ACLY, ATP-citrate lyase; ACC,
acetyl-CoA carboxylase; ACACA, CoA carboxylase; ATGL, adipose triglyceride
lipase; ApoA-I, apolipoprotein A-I; ABCA1, ATP-binding cassette transporter;
ACAT, acyl-CoA cholesterol acyltransferase; AR, androgen receptor; CSCs, cancer
stem-like cells; CEs, cholesteryl esters; CPT, carnitine palmitoyltransferase; CAT,
carnitine-acylcarnitine translocase; ccRCC, clear cell renal cell carcinoma; CRC,
colorectal cancer; CYP27A1, Cytochrome P450 Family 27 Subfamily A Member 1;
EMT, epithelial-mesenchymal transition; EGFR, epidermal growth factor
receptor; ERK, extracellular signal-regulated kinases; ER, estrogen receptor; FAs,
fatty acids; FAS, fatty acid synthesis; FASN, fatty acid synthase; FAO, fatty acid
oxidation; FATPs, fatty acid transport protein family; FABPpm, plasma
membrane fatty acid-binding proteins; HCC, hepatocellular carcinoma; HIF,
hypoxia inducible factor; HSL, hormone-sensitive lipase; HDL, high density
lipoprotein; HMGCR, 3-Hydroxy-3-methylglutarylcoenzyme A reductase;
HMG-CoA, 3-Hydroxy-3-methylglutarylcoenzyme A; HSF1, heat shock factor
1; IGF, insulinlike growth factor; LPCAT1, lysophosphatidylcholine-
acyltransferase 1; LPL, lipoprotein lipase; LDs, lipid droplets; LDL, low density
lipoprotein; LXR, liver-X-receptor; MUFA, mono-unsaturated fatty acids;
mCRPC, metastat ic castrat ion-res is tant prostate cancer ; MAGL,
monoacylglycerol lipase; NADPH, nicotinamide adenine dinucleotide
phosphate; NSCLC, non-small cell lung cancer; OXPHOS, oxidative
phosphorylation; PLs, phospholipids; PI3K, phosphoinositide 3-kinase; PCa,
prostate cancer; ROS, reactive oxygen species; SCD, stearoyl-CoA desaturase;
SREBP, sterol regulatory element binding proteins; SFAs, saturated fatty acids;
SCAP, SREBP cleavage activated protein; SR-B1, scavenger receptor class B type 1;
TME, tumor microenvironment; TG, triglyceride; VLDL, very-low-density
lipoprotein; 27-HC, 27-hydroxycholesterol.
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FA METABOLISM DEREGULATION
SUPPORTS CANCER PROGRESSION

FAs are the crucial building blocks of several lipid species, and
dysregulated FA metabolism is a vital component of lipid
metabolism reprograming in cancer. Due to the critical roles of
the FAs in the synthesis of the biological membrane, second
messengers to transduce signals as well as vital energy sources
(2). FA metabolism reprograming contributes to rapid
proliferation and invasiveness of the tumor. Lipid metabolic
reprograming in cancer cells includes several aspects, such as
increased lipid uptake, de novo fatty acid synthesis (FAS), and
FAO (Figure 1).

Increased Lipid Uptake Benefits From
Circulating FAs
Tumor cells can use circulating free FAs (FFAs) as an energy
supply by lipolysis for membrane biosynthesis or signaling
processes. Lipoprotein lipase (LPL), CD36 (also known as a
fatty acid translocase, FAT), fatty acid transport protein family
(FATPs), and plasma membrane fatty acid-binding proteins
(FABPpm) are used to acquire diet-derived FAs from the
bloodstream by lipolysis in specific cancer cells, such as non-
small cell lung cancer (NSCLC), triple-negative breast cancer,
liposarcoma, prostate cancer (PCa), etc. (7, 8). LPL is a crucial
enzyme secreted by extracellular lipolysis and bound to the
luminal surface of capillary endothelial cells, and it can
potentially be supplied by tumor cells or by nonmalignant cells
in the tumor microenvironment (8, 9). The enzyme is responsible
for the TGs hydrolysis from circulating chylomicrons and very-
low-density lipoprotein (VLDL). LPL is frequently overexpressed
in invasive cervical squamous cell carcinomas, and subsequently
increases its invasiveness (10).

FAs released by circulating TGs hydrolysis can be taken up by
cells via CD36 for exogenous FFAs uptake, and CD36 exhibits a
high affinity for transporting long-chain FAs (8, 11). Moreover, in
recent decades, numerous studies have concluded that CD36 plays
a role in accelerating tumor growth, metastasis, regulating
chemoresistance and radioresistance, modulating tumor
immunity, etc. (11–13). Oleic acid, the principal lipid in olive oil,
can upregulate the expression of CD36 and facilitate tumor
development by activating the Src kinase and the downstream
ERK1/2 pathway in a CD36-dependent manner (14). In gastric
cancer, CD36 promotes the uptake of exogenous palmitic acid to
induce metastasis via the AKT/GSK-3b/b-catenin signaling
pathway; therefore, targeting CD36 might constitute a promising
new therapeutical approach for peritoneal metastases (12).
Elevated CD36 levels and the consequent elevated FFAs uptake
may activate the Wnt and TGF-b signaling pathways, thereby
inducing epithelial-mesenchymal transition (EMT), which is
involved in cancer cell metastasis (15). In pancreatic ductal
adenocarcinoma, CD36 can also enhance the expression of
several anti-apoptotic proteins, contributing to the resistance to
gemcitabine and poor prognosis (13).

On other hand, tumor hypoxia constrains oxygen-dependent
stearoyl-CoA desaturase (SCD), resulting in an accumulation of
saturated FA precursors (16). While, in hypoxic condition,
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increased uptake of exogenous unsaturated lipids also plays a
vital role in bypassing the requirement for FA desaturation, thus
alleviating saturated FA-induced toxicity and maintaining
homeostasis in hypoxic cancer cells (16).

Upregulated Endogenous de Novo FAS
Formation Accommodates the Increased
Demand for Lipids
De novo FAS in the adult organism occurs mainly in the adipose
tissue, liver, and the lactating breast, and people consuming an
adequately balanced diet present little endogenous FAS (17).
However, several cancer cells show high rates of de novo
endogenous FAS (18). In addition, when tumors grow in
reduced blood vessel density areas, access to lipids in the
circulatory system is also reduced.

FAs are essential constituents of all biological membrane
lipids and are crucial substrates for energy metabolism. Since
tumor cell growth and division demand carbon, nitrogen, free
energy, and reducing equivalents from glucose and glutamine,
aerobic glycolysis can support the robust production of acetyl-
Frontiers in Oncology | www.frontiersin.org 3
CoA and nicotinamide adenine dinucleotide phosphate
(NADPH) needed for FAS (19). Long-chain saturated FAs can
be further modified by elongases or desaturases to form more
complex FAs, which are used to synthesize various cellular lipids
such as PLs, triglycerides, and cholesterol esters, or to acylate
proteins (18). Cancer cells develop capable de novo FAS
machinery with an increase in the activity of key lipogenic
enzymes such as adenosine triphosphate (ATP)-citrate lyase
(ACLY), acetyl-CoA carboxylase (ACC), CoA carboxylase
(ACACA), fatty acid synthase (FASN), and SCD (18).

In the cytosol, ACLY converts mitochondria-derived citrate
into acetyl-CoA, a vital building block for the endogenous
biosynthesis of FAs and cholesterol. ACLY presents elevated
levels of activity and expression in several types of cancers (20).
In contrast, ACLY knockdown may trigger the activation of p53,
thereby facilitating DNA damage-induced apoptosis in cancer
cells (20). Moreover, the FAS pathway has two rate-limiting
enzymes, ACC and FASN. ACC catalyzes the ATP-dependent
carboxylation of acetyl-CoA, generating malonyl-CoA used for FA
synthesis following the conversion of citrate and acetate to acetyl-
FIGURE 1 | Lipid metabolism overview in normal and cancer cells. Cancer cells acquire diet-derived FA through LPL, CD36, FATPs, and FABPpm. Glucose is
converted to acetyl-CoA by glycolysis and on to citrate through the TCA cycle in the mitochondria. The citrate is transported to the cytoplasm and converted
back to acetyl-CoA by citrate lyase, which is used as the carbon source for the growing acyl chains. The pentose phosphate pathway from glycolysis generates
NADPH. Cancer cells also develop effective de novo FAS machinery with an increase in the activity of key lipogenic enzymes. The surplus lipids (including excess
FAs and cholesterol) in a cell exist in the form of neutral, inert biomolecules in the core of LDs. ATGL catalyzes the initial step of lipolysis, converting TGs to DGs;
HSL is primarily responsible for the hydrolysis of DGs to MGs, and MAGL hydrolyzes MGs into FFA and glycerol. CPT1, as an outer mitochondrial membrane
enzyme, translocates FA across the mitochondrial membranes and then the degradation of long-chain FAs occurs in the mitochondria. Cholesterol homeostasis
involves the interplay between de novo synthesis (mevalonate pathway), uptake of dietary cholesterol, and removal of excess cholesterol from peripheral tissues.
27-HC is the metabolite substrate of cholesterol by CYP27A1 enzymes. SREBP-1 is activated through the PI3K/Akt/mTOR pathway and the Ras/Raf/MEK/ERK
signaling pathway.
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CoA. FASN, downregulated in most normal human tissues, is the
leading synthetic enzyme that catalyzes the NADPH-dependent
condensation of malonyl-CoA and acetyl-CoA to produce the
saturated FA palmitic acid. In contrast, FASN is often highly
expressed in human cancers and represents a nearly universal
phenotypic alteration inmost humanmalignancies, such as breast,
prostate, colon, ovary, endometrium, thyroid, esophagus, stomach,
lung cancer, etc. (18, 21, 22). Additionally, a metabolic feature of
PCa progression consist of increased rates of de novo FAS via
overexpression of FASN, especially in metastatic castration-
resistant prostate cancer (mCRPC) (23).

As master regulators of cholesterogenesis and lipogenesis,
sterol regulatory element-binding proteins (SREBPs, including
SREBP1a, SREBP1c, and SREBP2) transcriptionally activate a
cascade of enzymes required for endogenous cholesterol, FAs,
TGs, and phospholipid synthesis (24) (Table 1). In
hepatocellular carcinoma (HCC), SREBP-1 promotes cancer
cell proliferation and metastasis, and its levels negatively
correlate with the HCC patient prognosis (25). Previous work
has shown that SREBP-1 is activated through several
mechanisms, including the phosphatidylinositol 3-kinase
(PI3K)/Akt/mTOR pathway, Ras/Raf/MEK/extracellular signal-
regulated kinase (ERK) signaling pathway (Ras/ERK pathway),
and oncogenic BRAF signaling (26, 27). First, a lack of expression
or mutation of the tumor suppressor gene, PTEN, has been
clearly established in various types of tumors, and NADH
accumulation in respiration-deficient cells leads to inactivation
of PTEN and subsequent activation of the Akt survival pathway
(28). It has previously been reported that p53-mediated
transactivation can also increase PTEN levels, as it has a
functional p53 binding site within its promoter (29). Akt-
dependent lipogenesis requires a mammalian target of
rapamycin (mTORC1) activity to regulate SREBP1 activity,
inducing the increased expression of enzymes involved in lipid
biosynthesis, including ACLY, FASN, and ACC (30).
Furthermore, in glioblastoma cells, epidermal growth factor
receptor (EGFR) can promote SREBP-1 cleavage and nuclear
Frontiers in Oncology | www.frontiersin.org 4
translocation through EGFR-PI3K-Akt signaling, without
depending on mTORC1 activity (31). In addition, hypoxia also
has an impact on the level of FASN expression in vivo: hypoxia
significantly upregulates SREBP-1 through induction of Akt,
which then firmly binds to the SREBP-binding site/E-box
sequence on the FASN promoter (32). Second, in BRAFV600E-
mutant melanoma, SREBP-1 is a crucial downstream target of
BRAF signaling that induces lipogenesis and enhances
membrane lipid saturation, promoting targeted therapy
resistance (26). In addition, SREBP-1 is also known to regulate
glucose and glutamine metabolic pathways, and SREBP-1 can
also protect tumor cells by enhancing glycolytic activities (25).

An ever-growing body of experimental evidence supports the
notion that the oncogenic nature of FASN-associated lipogenesis
strictly depends on the activity and/or expression of important
oncogenes and tumor suppressors, such as p53, MYC, HER2, and
retinoblastoma (RB).MYC, a dominant oncogene, in collaboration
with SREBP, induces lipogenesis both in vitro and in vivo, and
plays a role in the initiation and maintenance of tumorigenic
growth inMYC-driven cancers (33). Rueda–Rincon et al. reported
that p53, an important tumor suppressor, can repress SREBP1
expression via the p21 (cyclin-dependent kinase inhibitor 1A)/Rb/
E2F transcription factor pathway, resulting in SCD and a
subsequent decrease in mono-unsaturation of phospholipid acyl
chains (27). HER2, which is frequently overexpressed in breast
cancer and other cancers, can stimulate the expression of FASN
via the PI3K/Akt/mTOR and Ras/Raf/MAPK pathway (34, 35).
The prolyl isomerase Pin1 can enhance FAS by regulating ACC1,
FASN, and the SREBP-1, and it can also suppress AMPK
phosphorylation to stabilize the ACC1 protein (36).

Humans lack the enzymes required for generating
polyunsaturated FAs from saturated and mono-unsaturated
species; however, SCD1, which introduces a double bond in the
D9 position of saturated fatty acids (SFAs) to produce mono-
unsaturated fatty acids (MUFAs), has an increased expression in
various cancer cells and is involved in the promotion of cancer cell
proliferation, migration, metastasis, and tumor growth (37, 38).
Intensively proliferating cancer cells are distinguished by the higher
demand for MUFAs, which are utilized mainly to synthesize new
membrane-forming PLs, triacylglycerols, and cholesteryl esters (37).
The unsaturated FAs promote the activation of NF-kB (nuclear
factor k-light-chain-enhancer of activated B cells), a well-known
pro-tumorigenic driver, which in turn regulates the expression
levels of SCD1 at transcriptional level (39). Single-cell imaging
studies and mass spectrometry analysis showed that ovarian cancer
stem-like cells (CSCs) (ALDH+/CD133+) had an higher degree of
lipid unsaturation than non-CSCs (ALDH−/CD133−), mediated by
lipid desaturases (including SCD1 and D6) (39). In turn, lipid
desaturases play a role in the maintenance of cancer cell stemness
(39). Furthermore, Lai et al. proposed a Wnt-SCD- lipoprotein
receptor-related protein (LRP) loop in CSC-related tumor
development (40). In rodent hepatic stellate cells and tumor-
initiating stem cell-like cells, Wnt/b-catenin interacts with
SREBP-1c in novel sterol-regulatory element sites to promote
SCD1 expression, which amplifies the Wnt pathway via
stabilization of low-density LRP5 and six mRNAs (40).
TABLE 1 | Summary of transcription factors that regulate key enzymes in
lipid metabolism.

Targets Transcription factors References

CD36 Peroxisome proliferator-activated receptors (PPARs)
CCAAT/enhancer-binding protein (C/EBP), signal
transducer and activator of transcription 3 (STAT3),
liver X receptor (LXR), pregnane X receptor (PXR),
forkhead box O1 (FoxO1), and hypoxia inducible factor
1 (HIF-1a)

(11)

ACLY Sterol regulatory element-binding protein 1c (SREBP1c)
carbohydrate response element-binding protein
(ChREBP),

(96)

FASN SREBP1c, ChREBP, (96)
ACC SREBP1c, ChREBP (96)
SCD1 SREBP1c, ChREBP (96)
HMGCR
and
HMGCR

SREBP-2 (97)

ABCA1 LXR and retinoid X receptor (RXR) (98)
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Increased Mitochondrial FAO Pathway
Long-chain FAs degradation occurs in mitochondria and is
catalyzed by several carnitine acyl transferases, including
carnitine palmitoyltransferase (CPT) 1, located in the outer
membrane, and CPT2, located in the inner membrane,
together with a carnitine-acylcarnitine translocase (CAT) (41).
CPT1, as an outer mitochondrial membrane enzyme, catalyzes
the rate-limiting step of b-oxidation by translocating FA across
the mitochondrial membranes. Its activities vary according to
tissue-specific needs in FA metabolism and energy expenditure.
Immunohistochemistry staining has shown elevated expression
levels of CPT1 in human glioma tissues (41).

Furthermore, tumor cells can acquire FAs through lipolysis to
perform FA b-oxidation (also known as FAO), which further
promotes cancer proliferation, survival, drug resistance, and
stemness (42–44). FAO can be utilized to produce high levels
of ATP and support the proliferation of triple-negative breast
cancer, and glioma (41, 43). However, FAO is not a predominant
oxidative substrate for ATP generation. Guppy and colleagues
reported that approximately 10% glucose, 14% glutamine, 7%
palmitate, 4% oleate, and 65% from unidentified sources
contribute to the oxidative component in MCF-7 breast cancer
cell line (45). Moreover, promyelocytic leukemia can modulate
PPAR signaling and FAO, thereby contributing to the
hematopoietic stem cell maintenance (44). At the same time,
NANOG, a key regulator of cell reprograming, reduces
mitochondrial oxidative phosphorylation (OXPHOS) and
production of ROS and promotes FAO, contributing to the
self-renewal ability and therapeutic of CSC (46).

Flexible Regulation of Lipolysis and
Lipophagy to Liberate Stored FAs
Considering that newly synthesized FAs are rapidly incorporated
into neutral and phospholipid stores, cancer cells are also
required to possess a complementary lipolytic pathway to
liberate stored FAs for metabolic and signaling purposes (47).
During periods of hypoxia, FA delivery to the cells exceeds FA
oxidation rates, which consumes significant amounts of oxygen,
resulting in elevated mitochondrial ROS production and
subsequent cell damage and apoptosis, known as lipotoxicity
(48, 49). Therefore, FA oxidation switch-off combined with the
storage of excess FAs in TG-LDs through inhibition of lipolysis
would constitute a conceivable strategy for cancer cells in
hypoxia. The surplus lipids (including excess FAs and
cholesterol) in a cell exist in the form of neutral, inert
biomolecules in the core of lipid droplets (LDs) (50), which are
a hallmark of hypoxic cancer cells, and are released through a
combination of lipolysis and a selective autophagic mechanism
called lipophagy (48, 51–53). At the same time, when exposed in
acid TME, autocrine TGF-b2 signaling is drived in cancer cells,
thus further fueling FAs uptake and oxidation as well as
formation of LDs (54). LDs accumulation is associated with a
more aggressive cancer phenotype and increased migration via
elevated levels of pro-oncogenic signaling lipids, particularly
lysophosphatidylcholines, and activation of pro-oncogenic SRC
kinase signaling (53). Moreover, prolonged nutrient deficiency or
Frontiers in Oncology | www.frontiersin.org 5
lipid overload tend to provoke the autophagy of cancer cells (55).
Cancer cells can employ LDs to modulate autophagy through
providing the lipid precursors for the formation of autophagic
membranes or signaling that activates the autophagy genes
expression (56–58). HER2 overexpression can upregulate the
PPAR-g, which promotes conversion and storage of excess FAs
to TGs, thus allowing cells to avert cell death resulting from
endogenous palmitate-related lipotoxicity (34). TGs can also
sequester exogenous unsaturated FAs, particularly oleate (16).
While, under serum- and O2-limited conditions, TGs can
neutralize excess FA saturation through preferential release of
unsaturated FAs to ameliorate stress (16).

Conversely, adipose triglyceride lipase (ATGL), hormone-
sensitive lipase (HSL), and monoacylglycerol lipase (MAGL)
provide a stream of intracellular FFAs that play important and
critical roles in cancer cell proliferation and tumor progression
by de-esterification.

ATGL has been found to be significantly reduced in a variety
of human malignancies, including lung and pancreatic cancer.
The role of ATGL in several cancer cells such as PCa and HCC is
ambiguous, as contradicting evidence has been reported so far
(59, 60). Liu et al. reported that ATGL is highly expressed in
human HCC tissues and positively correlated with tumor size,
predicting poor prognosis (61). At the same time, Di Leo et al.
demonstrated that ATGL levels are inversely correlated with the
proliferation rate of HCC-derived cell lines, which depend on
intact ATGL enzymatic activity (62). Moreover, ATGL
upregulation in breast cancer was associated with an enriched
adipocyte tumor microenvironment (TME), contributing to the
aggressiveness of high-grade tumors (63). Zhang et al.
demonstrated that, in hypoxia, hypoxia-inducible gene 2
(HIG2), as a novel endogenous inhibitor of ATGL, mediates
the lipolytic inhibition, promotes LD accumulation, attenuates
ROS production, and enhances cancer cell survival (48).
However, Di Leo et al. did not observe this mechanism in their
model, suggesting that alternative mechanisms contributing to
the control of proliferation need further research (62). In
addition, long non-coding RNA NEAT1 expression is
upregulated by hypoxia through hypoxia inducible factor
(HIF)-2a in various types of cancers, and can disrupt
hepatoma cells lipolysis via ATGL (61). Additionally, ATGL-
mediated p53 acetylation by the PPARa/p300 axis is responsible
for its inhibitory effect on glycolysis. In contrast, ATGL
overexpression redirects HCC cell metabolism towards a less
glycolytic phenotype via P53 and thereby is more resistant to
glycolysis inhibitors (62). Liu et al. reported that ATGL
contributed to the proliferation of HCC cells by upregulating
AKT phosphorylation levels (64). Therefore, cancer cell
metabolism is also regulated by direct crosstalk with tumor-
surrounding stromal components (such as adipocytes) and
hypoxia (63). On the other hand, ATGL may have a broad
influence on cancer processes, such as redox homeostasis,
inflammation, and autophagy, through PPARa signaling (59).

MAGL expression is highly elevated in human cancer cells
and primary tumors, including PCa, neuroblastoma, HCC,
colorectal, ovarian, endometrial cancers, etc. Aggressive cancer
December 2020 | Volume 10 | Article 605154
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cells do indeed acquire the ability to liberate FFAs from neutral
lipid stores because of the heightened expression of MAGL,
which is the principal regulator of FFA levels (47). Zhang et al.
confirmed that promoter methylation of large tumor suppressor
kinase 1 (LATS1) resulted in the dysfunction of the Hippo signal
pathway, which induced overexpression of MAGL in HCC (65).
Moreover, Nomura et al. reported that MAGL regulates a host of
secondary lipid metabolites that include essential signaling
molecules, such as LPA and prostaglandin E2 (PGE2), which
have been reported to promote cancer cell aggressiveness (47).

Sphingolipid Metabolism Involves
in Regulating Tumor Proliferation
Accumulating evidence indicates that sphingolipids including
sphingosine, ceramide, and sphingosine-1-phosphate, involve
multi-layered aspects of cancer cell biology (66). Perturbation
of sphingolipid homeostasis has been reported in various solid
tumors and hematological malignancies (67). As the most
abundant cellular sphingolipids, ceramides can exert pro-
apoptotic effects as tumor-suppressing lipids and augment the
efficacy of chemotherapeutics and targeted therapies (67–69).
However, several enzymes (e.g., acid ceramidase, ceramide
kinase, etc.) that accelerate the metabolism of ceramides, have
been found to have an enhanced expression level in multiple
tumors (67, 68, 70). Therefore, ceramide metabolism has been
utilized to develop some drugs that target these vital enzymes
thus inducing lethal ceramide accumulation and overcoming
cancer therapy resistance (67).
DEREGULATION OF CHOLESTEROL
METABOLISM IN CANCER

Cholesterol, as an essential component of the cell membrane, alters
the biophysical properties of the membrane by governing its fluidity
and impacts various biochemical functions, including modulation
of signaling pathways and intercellular communication, as an
integral component of lipid rafts (71, 72). Cholesterol homeostasis
involves the interplay between de novo synthesis, uptake of dietary
cholesterol (low density lipoprotein – LDL or high density
lipoprotein – HDL), and removal of excess cholesterol from
peripheral tissues (73) (Figure 1). In cancer, the reprogramed
cholesterol metabolism can provide a signal transduction platform
and activate stemness and oncogenic signaling (such as the
Hedgehog pathway, mTORC1) as a second messenger or
component of lipid rafts, thereby contributing to cancer
progression and invasion (74).

Regulation of Cholesterol Transport to
Maintain Cholesterol Homeostasis
Since several tumor cells have been shown to present with an
abnormal distribution of cellular cholesterol, such as clear cell
renal cell carcinoma (ccRCC) and PCa bone metastases, some
essential cholesterol transporters have been characterized as
cancer-related factors (75, 76). As a transmembrane protein,
the ATP-binding cassette transporter (ABCA1) is responsible for
Frontiers in Oncology | www.frontiersin.org 6
reverse cholesterol transport from the inner cell to the circulatory
system. By stabilizing ABCA1, apolipoprotein A-I (ApoA-I) can
recover the extracted cholesterol and synthesize HDL (77). The
interaction of lipidated ApoA-I in discoid or more mature HDL
particles with another transporter of the ABC family, ATP-
binding cassette subfamily G member 1 (ABCG1), further
contributes to reverse cholesterol transport. Finally, HDL
particles binding to the scavenger receptor class B type 1 (SR-
B1) transfer cholesterol down a cholesterol gradient (78). ABCA1
is significantly overexpressed, promotes EMT, and leads to
increased invasiveness in advanced stages of colorectal cancer
(CRC) (77). Reduced ApoA-1 mRNA and protein levels have
been found in HCC compared to normal liver tissue, the main
source of ApoA-I (78). ApoA-I exhibits tumor suppressive
activity both in vitro and in animal studies, accompanied by
anti-inflammatory and immune-modulating effects, which have
been reviewed by Georgila et al. (78). However, conflicting
conclusions are present in some cancers; for example, ApoA-I
levels were reported to be positively associated with breast cancer
risk (79). As a receptor for the uptake of HDL-associated
cholesterol, elevated SR-B1 expression causes an increased
uptake of HDL-cholesterol in ccRCC through the reduction in
CpG islands methylation (75). Besides, sterol carrier protein 2, an
intracellular cholesterol trafficking protein, can transport
cholesterol from the cytoplasm to the plasma membrane (80).
Then, the membrane cholesterol concentration induces the
activation of PKA/SUFU/GLI1 signaling via the smoothened
receptor, which is well-known as Hedgehog signaling, resulting
in the inhibition of apoptosis and promotion of the cell cycle in
pituitary adenomas (80).

Upregulated Cholesterol Synthesis
Cholesterol is synthesized via the mevalonate pathway and
regulated by its rate-limiting enzyme, 3-hydroxy-3-
methylglutarylcoenzyme A reductase (HMGCR), which catalyzes
the reduction of 3-hydroxy-3-methylglutarylcoenzyme A (HMG-
CoA) to mevalonate. In glioblastoma patients, CSCs have been
found to overexpress mevalonate pathway genes, and MYC can
alter mevalonate metabolism (81). A meta-analysis encompassing
865 primary breast cancer patients reported that high HMGCR
and additional mevalonate pathway genes mRNA levels correlated
with poor patient prognosis and reduced survival (82). Mevalonate
was found to constitute an escape mechanism of survival and
growth in HER2+ breast cancer models resistant to anti-HER2
therapies, partly through the activation of downstream YAP (Yes-
associated protein)/TAZ (transcriptional coactivator with PDZ-
binding motif)-Survivin signaling particularly through farnesyl
pyrophosphate/geranylgeranyl pyrophosphate (83). Regulation of
HMGCR is influenced by a network of modulatory proteins,
including SREBP2, SREBP cleavage activated protein (SCAP),
and insulin-induced gene (Insigs). Oncogenic growth signaling,
such as PI3K/AKT and RAS/MAPK, is triggered to maintain
cholesterol homeostasis by activating SREBP-mediated cholesterol
biosynthesis. SREBP2, transcribed from the SREBF2 gene, is the
main transcription factor that activates the genes involved in
mevalonate and cholesterol synthesis (84). Constitutively
activated RAS/MAPK signaling also activates heat shock factor 1
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(HSF1), thereby increasing the expression of cholesterol
biosynthesis-related genes such as SREBF2, HMGCR, HMGCS1,
etc. In contrast, HSF1 inhibition sensitizes HCC cells to the
antiproliferative effects of simvastatin (85). Hypoxia also induces
HIF-1a accumulation, which increases HMGCR levels and
activity by stimulating its transcription (86). P53 can actively
repress activation of SREBP-2 through transcriptionally
upregulating the ABCA1 (87). In breast cancer cells, mutant
p53, which is the most frequent target for mutation in tumors,
contributes to the upregulation of the mevalonate pathway,
through recruitment of many sterol biosynthesis genes, or
probably through one or more of the SREBP proteins (88).
Furthermore, recent research reported that radiation upregulated
the expression of four enzymes in the cholesterol biosynthesis
pathway and increased the cell cholesterol content (89).

Moreover, cholesterol is also related to therapeutic resistance.
Cholesterol and sphingolipids are also components of caveolae as
major structural lipids, accompanied by the defining protein
components, caveolins, and cholesterol appears to modulate
caveolin-1 expression through a steroid regulatory binding
element present in the caveolin-1 promoter and SREBP-1 (90).
Since caveolin-1 is crucial for cellular energy homeostasis in
tyrosine kinase inhibitor (TKI)-resistant tumor cells by mediating
glucose uptake via GLUT3, Azhar et al. demonstrated a link
between elevated cellular cholesterol and TKI resistance in
NSCLC, which is independent of EGFR mutation status (91).

Increased Cholesterol Metabolism
and Esterification
The oxysterol 27-hydroxycholesterol (27-HC) is known as the
metabolite substrate of cholesterol by cytochrome P450 family 27
subfamily A member 1 (CYP27A1) enzymes. An elevated level of
serum cholesterol corresponds to a high level of serum 27-HC.
As a selective endogenous estrogen receptor (ER) agonist and
liver-X-receptor (LXR) agonist, 27-HC may contribute to ER-
positive breast cancer growth and metastasis by inducing several
EMT genes and disrupting constitutive p53 signaling in an
MDM2-dependent manner (92, 93).

Furthermore, inside cells, the free cholesterol excess is
esterified and stored as CE in LDs to prevent the toxicity
generated by the over-accumulation of free cholesterol,
mediated by acyl-CoA cholesterol acyltransferase (ACAT)
encoded by Acat1 and Acat2 genes. Increased CE levels have
been reported in breast cancer, leukemia, glioma, prostate,
pancreatic cancer, renal cell carcinoma, etc. (94, 95).
THERAPEUTIC TARGETS FOR
CANCER TREATMENT

The critical role of altered metabolic pathways in cancer cell
proliferation, but not in most normal human tissues, has led to
some proposed strategies for cancer-specific treatments by
targeting these pathways. To date, several metabolic enzymes
inhibitors, such as glycolysis inhibitors, have been studied in
clinical trials as targeted cancer therapeutics (Table 2 and
Figure 2).
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Lipid Uptake Blocking
Orlistat, a compound that inhibits both LPL and FASN, may be
used in tumors that are provided with LPL and express CD36 (8).
However, the prolonged systemic suppression of LPL activity
could result in hypertriglyceridemia and consequent pancreatitis,
particularly if dietary fat intake is not curtailed. Furthermore,
tumor cells may establish metastases in LPL-rich tissues, which
can provide LPL to the nearby TME (8).

The potential of targeting oxLDL and related receptors (e.g.,
CD36 receptor) to reduce metastasis has been demonstrated in a
variety of orthotopic cancer models (124). The direct impact of
reducing oxLDL has never been investigated. At the same time,
the use of anti-CD36 neutralizing antibodies causes almost
complete inhibition of metastasis in immunodeficient or
immunocompetent orthotopic mouse models of human oral
cancer, with no side effects (125). CD36 monoclonal antibodies
can reduce tumor growth in PCa patient-derived xenografts; at
the same time, the combination with FASN inhibitor increases
the efficacy of the CD36 blockade (99). In ovarian cancer, CD36
inhibition effectively reduced adhesion on collagen I matrices,
which are abundantly expressed in the omental basement
membrane where ovarian cancer cells preferentially attach
(126). However, since CD36 also plays an important role in
the myocardial metabolism of FAs (127), side effects caused by
long-term inhibition of CD36 and the effect of direct targeting of
oxLDL need further investigation.
Targeting de Novo FA Biosynthesis
The inhibition of different enzymes (especially ACC and FASN,
SCD) and the AKT/mTOR/SREBP-1 pathway within the de novo
FA biosynthetic pathway can block cancer cell growth. Several
ACC inhibitors, including TOFA, Soraphen A, and ND-646,
have shown high efficacy in disturbing FAS, inducing oxidative
stress, and inhibiting tumor growth in lung, colon, and prostate
cancer in preclinical studies (104–106).

FASN is an established therapeutic target. First-generation
(e.g., orlistat and cerulenin) and next-generation (TVB-3166 and
TVB-2640) FASN-targeting drugs have been developed. Orlistat
(tetrahydrolipstatin), a tight-binding irreversible inhibitor of the
FASN thioesterase domain, exhibits both in vitro and in vivo
antitumor properties against melanoma, breast cancer, PCa cells,
and oral tongue squamous cell carcinoma (100). However, first-
generation FASN inhibitors such as orlistat have pharmacological
characteristics (e.g., lack of selectivity, poor metabolic stability, low
cell permeability, etc.) and display detrimental systemic side effects
(e.g., anorexia) (102). In contrast, next-generation FASN
inhibitors exhibit anti-tumor potential, higher specificity for
FASN, and limited systemic toxicity in a preclinical study. TVB-
2640 was included in a phase II clinical trial. In multiple phases,
1/2 FASN inhibitor studies have been conducted (e.g.,
NCT00908791 for breast cancer, NCT02980029 for colon
cancer, etc.), but no results have been published. TVB-3166 and
TVB-3664 have shown anti-tumor activity in oral squamous cell
carcinoma, breast, and colorectal cancer preclinical studies (102,
103). Giorgia et al. developed a selective and potent FASN
inhibitor (IPI-9119), which can significantly reduce cell growth
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TABLE 2 | Therapeutic perspectives in lipid metabolic pathways.

Targets Drug name Type of cancer Beneficial effects Stage of
development

References/
clinical trial
number

CD36 CD36 monoclonal
antibody

Prostate cancer Reduced fatty acid uptake and the abundance of oncogenic
signaling lipids

Preclinical (99)

FASN IPI-9119 Castration-resistant prostate
cancer

Selectively inhibit FASN and suppress expression of both
full-length of androgen receptor (AR) and AR variant V7

Preclinical (23)

Orlistat Prostate, breast, ovarian, colon
cancer, and other solid tumors

An anti-obesity drug approved by FDA and an irreversible
inhibitor of FASN

Preclinical (100, 101)

TVB-2640 Solid Malignant Tumor A potent and reversible FASN inhibitor Phase 2
Phase 2
Phase 1
Phase 1

NCT03032484
NCT03179904
NCT02980029
NCT02223247

TVB-3166;
TVB-3664

Oral squamous cell carcinoma,
colorectal, breast cancer

A reversible and selective FASN inhibitor Preclinical (102, 103)

Conjugated Linoleic
Acid

Breast Cancer Reduce FASN gene expression and spot 14 Early Phase 1 NCT00908791

Omeprazole Triple negative breast cancer A proton pump inhibitors that can inhibit FASN Phase 2 NCT02595372
ACC TOFA Lung cancer and colon carcinoma Induce apoptosis as an allosteric inhibitor of ACC-alpha Preclinical (104)

Soraphen A Prostate cancer Inhibit fatty acid synthesis and stimulate fatty acid oxidation Preclinical (105)
ND-646 NSCLC Inhibit fatty acid synthesis and tumor growth as an allosteric

inhibitor of the ACC
Preclinical (106)

mTOR Rapamycin
(<x>RAD001</x>)

Breast cancer Inhibit S6 phosphorylation and cell proliferation, and resulted
in lower levels of apoptosis induction

Preclinical (107, 108)

Everolimus Castrated Resistant Prostate
Cancer; Locally Advanced Cervical
Cancer

Directly inhibit mTORC1 and indirectly inhibit mTORC2 Phase 3
Phase 1

NCT03580239
NCT01217177

PF-05212384 Advanced Cancer;
Advanced squamous cell lung,
pancreatic, head and neck, and
other solid tumors

Intravenous PI3K/mTOR inhibitor Phase 1
Phase 1

NCT01347866
NCT03065062

PF-04691502 Breast Neoplasms Inhibit PI3K and mTOR kinase Phase 2 NCT01658176
Vistusertib/AZD2014 Endometrial, triple negative breast

cancer, ovarian, primary peritoneal,
or fallopian tube cancer

mTORC1/2 Inhibitor phase 1b/2 NCT02208375

AKT MK-2206 Advanced or metastatic solid
tumors or breast cancer; prostate
cancer

Inhibit Akt phosphorylation, cell proliferation and apoptosis in
a dose-dependent manner

Phase 1
Phase 2
Phase 2

NCT01245205
NCT01277757
NCT01251861

Capivasertib/
AZD5363

Breast cancer, prostate cancer,
and advanced solid tumors

A novel pan-AKT kinase catalytic inhibitor Phase 1
Phase 1
Phase 2
Phase 1/2

NCT03310541
NCT01226316
NCT02525068
NCT01992952

GSK2141795 Endometrial cancer AKT inhibitor Phase 1 NCT01935973
SREBP Betulin BRAFV600E-mutant melanoma Increase membrane lipid poly-unsaturation and lipid

peroxidation; sensitize therapy-resistant melanoma cells to
MAPK-targeting therapy

Preclinical (26)

Fatostatin Prostate cancer A non-sterol diarylthiazole derivative which has antimitotic
properties and perturbs nuclear translocation of SREBP and
androgen receptor signaling

Preclinical (109)

PF-429242 HCC A reversible site 1 protease inhibitors, which inhibits
endogenous SREBP processing

Preclinical (110)

AMPK 5-aminoimidazole 4-
carboxamide riboside
(AICAR)

Prostate cancer An AMPK activator which inhibits cell growth Preclinical (111)

SCD1 A939572 Glioblastoma and renal cell
carcinoma

Inhibit tumor growth both in vitro and in vivo; overcoming
chemotherapy agent resistance

Preclinical (112, 113)

CVT-11127 or CVT-
12012

Lung cancer A small molecule SCD inhibitor which modulate cancer cell
metabolism, proliferation and survival

Preclinical (114)

MF-438 Lung cancer Induce lung cancer stem cells apoptosis Preclinical (115)
CPT1 Etomoxir Glioma A CPT1 inhibitor which inhibits proliferative activity Preclinical (41)

Perhexiline Breast and gastrointestinal cancer A CPT1 inhibitor which blocks FFA utilization, OxPhos, and
proliferation

Preclinical (116, 117)

MAGL Three different types of
MAGL inhibitors

— Potent and reversible MAGL inhibitors Preclinical (118–120)

(Continued)
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and induce cell cycle arrest and apoptosis in PCa cells, reduced
growth of AR-V7-driven CRPC xenografts, and human mCRPC-
derived organoids and enhances the efficacy of enzalutamide in
CRPC cells (23). Furthermore, proton pump inhibitors (PPIs) are
also effective inhibitors of the thioesterase activity of FASN (128),
and a PPI, omeprazole, has entered clinical trials in patients with
triple-negative breast cancer (NCT02595372).

The importance of the AKT/mTOR/SREBP-1 pathway in
regulating gene expression of critical enzymes has received
interest as a target. To date, several clinical trials aimed at
evaluating different AKT inhibitors such as MK-2206
(NCT01245205, NCT01277757, NCT01251861), Capivasertib/
AZD5363 (NCT03310541, NCT01226316, NCT02525068,
NCT01992952), and GSK2141795 (NCT01935973) in multiple
cancers; however, the results of these studies have not been
reported to date. A combination of the mTOR inhibitor
everolimus and metformin seems to synergistically inhibit
proliferation and colony formation of breast cancer cells with
few side effects in vitro (129). As an allosteric inhibitor of mTOR,
some rapamycin analogs have been approved by the US Food
and Drug Administration to treat breast cancer (107). Since
knockdown and inhibition of SREBP-1 thwarts the glucose
uptake, glycolytic activity, and lipid metabolism of HCC cells,
betulin, a SREBP-1 inhibitor, has been shown to enhance the
sensitivity of HCC cells to sorafenib (a first-line antitumor agent
for advanced HCC treatment) and to facilitate its antitumor
effect in vivo, suggesting that a SREBP-1 inhibitor and sorafenib
combination can be a novel therapeutic option (25). In therapy-
resistant melanoma, the inhibition of SREBP-1 re-sensitizes
resistant cells to BRAF-targeting therapy in vivo, partly
through alterations of membrane polyunsaturation and
subsequent lipid peroxidation (26). Since SREBPs also induce
androgen receptor (AR) activity in addition to lipogenesis,
fatostatin, a non-sterol diarylthiazole derivative, has been
reported to perturb the nuclear translocation of SREBP and
caspase-dependent programed cell death of prostate cancer cells
in vitro (109). Furthermore, AMPK inhibits SREBP activation
Frontiers in Oncology | www.frontiersin.org 9
through interaction with and phosphorylates SREBP-1 and
SREBP-2 (111). Two agents that activate AMPK, 5-amino-4-
imidazolecarboxamide ribose (AICAR) and rosiglitazone, reduce
the activity of ACC and the concentrations of FASN and ACC in
PCa cells and inhibit the stimulatory effect of androgen on these
parameters (111).

Moreover, SCD1 appears to be a potential anticancer
therapeutic target (37). A combined pharmacological approach
involving SCD1 may counteract cancer cell chemoresistance
and enhance the therapeutic efficacy of commonly used
chemotherapeutic drugs, such as SCD1 inhibitor (CVT-11127
or CVT-12012) + gefitinib (114), SCD1 inhibitor (A939572) +
temozolomide (112), SCD1 inhibitor (A939572) + temsirolimus
(113). However, modest effects have been achieved by targeting
SCD, suggesting that alternative desaturation pathways reduce
the cancer cell dependence on SCD-mediated desaturation.
Indeed, some cancer cell lines exploit an alternative FA
desaturation pathway that desaturates palmitic acid to the
unusual FA sapient via fatty acid desaturase 2 (FADS2) (130).
Moreover, since SCD1 plays a major role in the de novo synthesis
of TGs, cholesterol esters, and wax esters required for normal
skin and eyelid function, the targeted disruption of SCD1 in mice
causes atrophy of sebaceous and meibomian glands and
depletion of wax esters in the eyelid (131).

Targeting FAO
FA catabolism inhibition might be a promising anticancer
strategy. A blinded, placebo-controlled preclinical study
showed that etomoxir, a CPT1 inhibitor, slowed tumor growth
and prolonged survival in a mouse model of malignant glioma
(41). Similarly, another b-oxidation inhibitor, perhexiline,
blocked FFA utilization, OxPhos, and cancer cell proliferation
in vitro (116). Recently, perhexiline was reported to increase the
sensitivity of gastrointestinal cancer cells to oxaliplatin. This
suggests that inhibiting FA catabolism can be a promising
therapeutic strategy in combination with conventional
chemotherapy for patients with gastrointestinal cancers (117).
TABLE 2 | Continued

Targets Drug name Type of cancer Beneficial effects Stage of
development

References/
clinical trial
number

HMGCR Statin, e.g., lovastatin,
atorvastatin,
rosuvastatin and
simvastatin

Various leukemia and solid tumors Inhibitors of HMGCR Phase 2
Phase 2
Phase 2
Phase 2

NCT03358017
NCT03324425
NCT02569645
NCT03275376

LXR GW3965; LXR623 Melanoma and glioblastoma LXR agonists which suppress mitochondrial respiration and
decrease cholesterol levels by enhancing the excretion and
decreasing the resorption of cholesterol

Preclinical (121)

ApoA-I ApoA-I mimetic
peptides

— Mimetic peptides which is synthesized on the basis of a-
amphipathic helical repeating structure of ApoA-I

Preclinical (78)

Apabetalone (RVX-208) Colorectal cancer A BET inhibitor which is a stimulator of ApoA-I and regulate
the reverse cholesterol transport

Preclinical (77)

ACAT K604 Glioblastoma A selective ACAT1 inhibitor, which suppresses proliferation
of glioblastoma cells

Preclinical (122)

ATR-101 Advanced adrenocortical
carcinoma

An oral selective ACAT inhibitor Phase 1 NCT01898715
(123)
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Targeting Lipolysis and Lipophagy
MAGL inhibition also decreases cyclin D1 and Bcl-2 expression,
thereby inhibiting the proliferation and promoting tumor
apoptosis or/and cell cycle arrest in endometrial cancer and
CRC (132, 133). Three different types of MAGL inhibitors have
Frontiers in Oncology | www.frontiersin.org 10
been reported in the literature so far, which have been
thoroughly reviewed by Carlotta et al. including (1):
compounds that bind the enzyme covalently and irreversibly
(2), compounds that bind it covalently and reversibly, and (3)
compounds that bind it non-covalently (118). Irreversible
FIGURE 2 | Therapeutic targets and anticancer drugs within the lipid metabolism pathway. The lipid metabolism-targeting therapies are shown as white boxes.
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covalent inhibitors are the most widespread class of MAGL
inhibitors. In contrast, only recently, several reversible MAGL
inhibitors have been reported to lack unwanted side effects from
chronic treatment, including long-chain salicylketoxime
derivatives and phenyl (piperazin-1-yl) methanone derivatives
(118–120).

Targeting Cholesterol Biosynthesis
Cancer cells need cholesterol for growth and survival and decreasing
intracellular cholesterol biosynthesis may be a potential therapeutic
strategy. Statins, inhibitors of HMGCR, trigger a robust homeostatic
feedback response that ensures the cells upregulate and restore the
MVA pathway, which has been successfully exploited for over 20
years to control hypercholesterolemia (82). Statins are proven to
benefit lung cancer patients receiving EGFR-TKI therapy with
improved response rates, prolonged progression-free survival, and
overall survival by lowering cellular cholesterol, inducing loss of
Cav1 expression, and triggering apoptosis to suppress NSCLC cell
growth (91). Apart from cholesterol inhibition, statins inhibit
cholesterol-independent processes, including cellular proliferation
and intracellular signaling. However, statins were not associated
with a reduced risk of pancreatic cancer in clinical trials. One
possible reason is that HMGCR is also required for downstream
protein prenylation, a critical process for protein activation. Thus,
the statin effect not only inhibits cholesterol synthesis, but also other
pathways that may render toxicity to normal cells. This nonspecific
toxicity is a possible reason for the limited anticancer outcome of
statins in clinical trials (94). At the same time, statins seem to
increase the risk of some cancers, such as breast cancer and non-
melanoma skin cancers, in several case-control studies and
prospective studies (134). There are some serious adverse effects
of statins such as muscle symptoms (e.g., rhabdomyolysis), type 2
diabetes mellitus, neurological and neurocognitive conditions (e.g.,
hemorrhagic stroke), hepatotoxicity, renal toxicity, and so on (135).
Further investigation should focus on themore accurate and specific
metabolite effects produced in the MVA pathway in different
tumor cells.

Targeting Cholesterol Transport
LXR agonists represent novel means to counteract cholesterol
levels in tumor cells, including glioblastoma and melanoma, by
enhancing the excretion (increase in ABCA1) and, at the same
time, by decreasing the resorption of cholesterol (decrease in
LDL receptor) (121). Since LXR agonists upregulate the
expression of the pro-apoptotic Bcl-2 family member, Noxa,
BH3 mimetics (ABT263 and ABT199), and LXR agonists
synergistically reduce cellular viability by enhancing apoptosis,
resulting in a synergistic anti-proliferative effect across solid
tumor cells (121). In preclinical models of diffuse intrinsic
pontine glioma, a small molecule, menin inhibitor MI-2, has
been proven to disrupt cholesterol homeostasis by inhibiting the
conversion of 2,3-oxidosqualene to lanosterol, which also
activates LXR to increase cholesterol efflux (136).

Furthermore, some strategies aimed at directly augmenting
ApoA-I (such as intravenous administration of autologous
delipidated HDL, purified native ApoA-I, or recombinant
Frontiers in Oncology | www.frontiersin.org 11
ApoA-I Milano protein, etc.), or mimicking ApoA-I (such as
ApoA-I mimetic peptides) functionality have already been used
successfully in preclinical cancer studies (78).

Targeting Cholesterol Esterification
In an orthotopic mouse model, cholesterol esterification inhibition
disturbed cholesterol homeostasis by increasing the intracellular
free cholesterol level, which was associated with elevated ER stress
and eventually led to apoptosis and decreased tumor growth and
metastasis (94). Several ACAT inhibitors, such as avasimibe, K604,
and ATR-101, have been studied preclinically (123), and ATR-101
has entered clinical trials in patients with advanced adrenocortical
carcinoma (NCT01898715).
CONCLUSIONS AND PROSPECTIVE

Lipid metabolism not only composes the essential component of
survival and proliferation in cancer cells, but also influences the
crosstalk with immune cells in TME. With the gradual
understanding of the mechanism of lipid metabolism in
tumors, targeting the related enzymes and genes involved in
the metabolism may provide an emerging approach for cancer
treatment and restoration of tumor immunology.

However, not only tumor cells, but also immune cells, such as
activated T cells, are considerable similarities in metabolic
reprograming (137). The FA metabolic enzymes and synthetases
are also involved in both cancer and normal whole-bodymetabolic
homeostasis. For example, FASN expression is considered a
metabolic marker of cell proliferation instead of merely a
marker of malignancy (138). Therefore, by analyzing the
difference of lipid content in tumor and normal tissue
microenvironment, it is helpful to find more targeted lipid
metabolism regulation strategies. At the same time, clarifying
the specific mechanisms involved in the reprograming of lipid
metabolism as well as their dual role in multiple tumor-associated
signaling pathways may be better to identify therapeutic targets.

It is well known that some drugs have been used for metabolic
diseases, such as FASN inhibitors, have been gradually developed
for the field of anti-tumor therapy, and more overlap between
metabolic diseases and cancer may be found in the future. So,
additional investigations should carefully consider how to
manage and combine targeting lipid metabolism or dietary
interventions and other therapies to obtain the maximal
clinical benefit.
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