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Currently, preoperative diagnosis and differentiation of renal clear cell carcinoma and other
subtypes remain a serious challenge for doctors. The liquid biopsy technique and artificial
intelligence have inspired the pursuit of distinguishing clear cell renal cell carcinoma using
clinically available test data. In this work, a method called liq_ccRCC based on the
integration of clinical blood and urine indices through machine learning approaches was
successfully designed to achieve this goal. Clinically available biochemical blood data and
urine indices were collected from 306 patients with renal cell carcinoma. Finally, the
integration of 18 top-ranked clinical liquid indices (13 blood samples and 5 urine samples)
was proven to be able to distinguish renal clear cell carcinoma from other subtypes of
renal carcinoma by cross-valuation with an AUC of 0.9372. The successful introduction of
this identification method suggests that subtype differentiation of renal cell carcinoma can
be accomplished based on clinical liquid test data, which is noninvasive and easy to
perform. It has huge potential to be developed as a promising innovation strategy for
preoperative subtype differentiation of renal cell carcinoma with the advantages of
convenience and real-time testing. liq_ccRCC is available online for the free test of
readers at http://lishuyan.lzu.edu.cn/liq_ccRCC.

Keywords: Liq_ccRCC, clear cell renal cell carcinoma, subtype differentiation, liquid indices, machine learning
INTRODUCTION

Renal cell carcinoma (RCC) is the primary malignant tumor in renal tumors, occupying the sixth
place globally with regard to tumor death; it is the second leading cause of death among urinary
system tumors only after bladder cancers (1). There are several subtypes of RCC, for which the
growth rate, mode, and metastasis rate vary greatly. Among these subtypes, clear cell renal cell
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carcinoma (ccRCC) is the most prevalent type, accounting for
about 75%–80% of all diagnosed instances (2) and 90% of cases
that metastasize (3). Approximately 25%–30% of patients with
ccRCC present with metastatic disease at the time of diagnosis
(4). Therefore, the surgical methods and prognosis for ccRCC
exhibit great differences compared with other subtypes. Hence,
an accurate preoperative identification of ccRCC will contribute
significantly to the success rate of surgery and survival rate of
patients. However, CT or MR enhancement, which are
currently the most dominant imaging diagnostic methods for
renal cancers, have frequently failed to differentiate between
different subtypes of RCC; this affects the treatment scheme,
surgical approach, and prognosis of patients. Therefore,
exploring new methods for simply and quickly distinguishing
ccRCC from other subtypes is still a serious challenge
for doctors.

Many researchers have contributed to the identification of
ccRCC. For example, from the medical imageology standpoint,
Dong et al. investigated the contrast-enhanced ultrasound
(CEUS) method (5), and Wei et al. analyzed the dual energy
spectral CT method (6) with this goal in mind; both achieved
good identification performance. Young et al. provided novel
evidence that multiphasic multidetector CT may assist in
the discrimination of ccRCC from oncocytoma, papillary
RCC, and chromophobe RCC (7). However, these methods
are radioactive, time-consuming, or complex. Therefore, they
have not been widely applied in clinical practice. Wang et al.
utilized a 44-gene expression signature from microarray
analysis to accurately discriminate ccRCC from different
subtypes with an overall accuracy of 95.7% based on 5-fold
cross-validation, which was beneficial for accelerating the
development of the gene expression profile (8). Recently, with
the concept of liquid biopsies continuing to evolve, various
biomarkers have been rapidly emerging in the field of diagnosis,
prediction, and prognosis of ccRCC. For example, James et al.
applied an enhanced RT-PCR technique to test MN/CA9
mRNA that was expressed in the peripheral blood of patients
with renal cancer. The results show that 86% of ccRCC had a
positive expression of MN/CA9 mRNA, and no patient with a
benign renal tumor exhibited MN/CA9 expression (9). Zhao
et al. used real-time PCR to measure microRNA miR-210 in
serum and found that the average level of miR-210 was
significantly higher in ccRCC patients than in controls
(p<0.001) with an area under the curve (AUC) of 0.874 (10).
There is mounting evidence that serum-circulating long
noncoding RNAs (lncRNAs) have great potential as practical
biomarkers for clinical diagnosis. Wu et al. conducted an
adequate investigation of the levels of the 5-lncRNA signature
to build a risk model that could distinguish ccRCC samples
from healthy controls with an AUC value of 0.9000 (11). In
addition, serum histidine and plasma tryptophan were
employed to correctly classify 85.5% of control and 84.7% of
case samples with the logistic regression model (12). However,
this requires extremely high sensitivity in terms of detection
technology because of the low levels of these biomarkers that
are released into the blood.
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Therefore, we construct a simple, effective, and noninvasive
method to differentiate ccRCC from other RCC subtypes. In this
work, inspired by multi-analyte blood tests, which can reveal
greater correlations between complex associations (13), and the
success of machine learning in support decision systems (14, 15),
we sought to find a link between ccRCC and clinical liquid data,
including blood and urine indices that are easy and cost-effective
to detect through machine learning approaches.
MATERIALS AND METHODS

Source of Materials
A total of 306 samples that were collected in the Lanzhou
University Second Hospital were used to build the model, of
which 269 samples were used to train the model and 37 samples
were used to test the performance of the model. From among
these samples, 240 samples of ccRCC were classified as positive
samples, and the remaining were negative samples, including
papillary, chromophobe, and other rare renal tumors.
Furthermore, all samples were collected with routine blood
and urine testing when a patient was first diagnosed with
malignant kidney tumors through clinical characteristics
and hematological, radiological, and histopathological
examinations, etc., by no less than two experienced experts.
Each sample consisted of 26 routine blood indices (detected by
Sysmex XN9000), 22 blood biochemical indices (detected by
Roche COBAS 8000), and 16 numerical routine urine indices
(detected by Sysmex UF-1000i). Detailed allocation information
about the data sets is shown in Table 1, and general information
about the indices is listed in Supplementary Table S1. The study
was approved by the ethics committee of Lanzhou University
Second Hospital. Written informed consent was obtained from
all participants.

Machine Learning Method
The random forest (RF) method is a flexible and practical
classifier among many supervised machine learning algorithms
and has been widely used in scientific research and practical
applications. The most prominent advantages of the RF
algorithm are random sampling and random feature
selection, which can ensure the accuracy and stability of a
model. In addition, it can reduce the dimension of high-
dimensional data and has a strong generalization ability for
data sets about which little is known. Moreover, it can monitor
the error, strength, and correlation of an out-of-bag set; it can
also present the importance of a set’s features through
permutation. Generally speaking, the RF method mainly
TABLE 1 | Detailed division number and general information of the data set
of RCC.

Training set Testing set Total

ccRCC 219 21 240
Other subtypes of RCC 50 16 66
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contains two parameters to be adjusted, namely the number of
trees (ntree) and the number of randomly selected features to
be split at each node (mtry). Because of the unique advantages
of RF, this algorithm was used for training and predicting
samples in this study.

The research process can be roughly divided into three
successive stages. First, all blood and urine indices were used
to construct a suitable classification model. The main purpose of
this is to obtain the importance ranking of each index for high-
performance prediction outcomes. Second, with the adjustment
of ntree and mtry parameters, various models with different
outcomes were built by increasing the number of important
indices one by one based on 10-fold cross-validation. The value
of ntree increased from 500 to 2000 with a step size of 100,
whereas the value of mtry increased from 2 to 15 with a step size
of 1. Third, according to the principle that an appropriate
number of top-ranking indices could achieve a comparable
prediction performance as using all the indices, the final model
was determined by the 20 most relevant indices with ntree and
mtry being 1400 and 2, respectively. RF was applied to the
RandomForest package of R v4.6-7.

Validation Method
There are two different yet complementary methods for the
model evaluation process, including 10-fold cross-validation of
the training set and external verification of the testing set to
obtain robust prediction performance for identifying ccRCC.
Indeed, 10-fold cross-validation was used to divide the training
set into 10 nonoverlapping parts, one of which was used for
internal verification, and the remaining parts were used for
internal model training. After this process had been repeated
10 times, each sample could be used to test the model once.
Therefore, 10-fold cross-validation is a powerful and persuasive
method for verifying the prediction ability of a model.

By contrast, external verification of the testing set was only
employed to test the model performance; it did not contribute to
the training process of the model, which was very different from
that of the training set based on 10-fold cross-validation.
RESULTS

After training based on 10-fold cross-validation, a model
composed of 18 top-ranking indices selected by the RF method
displayed relatively good performance in identifying ccRCC with
high sensitivity, specificity, accuracy (ACC), and associated AUC
values of 0.9456, 0.9097, 0.9372, and 0.9728, respectively, as shown
in Figure 1. The specific information of these indices is listed in
Table 2. Apart from the ability to discriminate ccRCC from
various other types of malignant kidney tumors in the training
set, the model had satisfactory prediction outcomes for the testing
set with an ACC of 0.8375 and AUC of 0.8780 as shown in Figure
2. These results indicate that the model formed by the complex
combination of 18 routine blood and urine indices exhibited good
performance in identifying ccRCC; thus, the model could help
Frontiers in Oncology | www.frontiersin.org 3
patients predict the severity of their disease in advance and avoid
unnecessary histopathological examinations.

An interactive web server of liq_ccRCC was developed for
users to test, explore, and experience this method. It is very
convenient and straightforward that users need only enter the
related value into the corresponding text box according to the
requirements of the interface. After clicking the “Submit” button,
the prediction information of the sample is presented in the
results interface after calculation and analysis. The main page of
this website for ccRCC discrimination is shown in Figure 3.
This method has the potential to be developed into a promising
FIGURE 1 | Performance of different models with incremented number of
top-ranking indices of the training set.
TABLE 2 | Top-ranking indices selected by the RF algorithm listed in order of
decreasing importance.

Rank Feature (Abbreviation) Reference range

1 Immature granulocytes (IG#) 0.00-0.03 (109/L)
2 Immature granulocyte ratio (IG%) 0.0-0.5 (%)
3 Non-lysed-red blood cells (N-L-RBC#)
4 Magnesium (Mg) 0.70-1.20 (mmol/L)
5 Red blood cells (RBC)* 0.0-20.0 (/ul)
6 Globulin (GLO) 15.0-35.0 (g/L)
7 ALB/GLB 1.10-2.50
8 Phosphorus (PHOS) 0.80-1.45 (mmol/L)
9 Blood urine nitrogen (BUN) 1.8-8.0 (mmol/L)
10 Platelet (PLT) 100-300 (109/L)
11 Bacteria (BACT) 0.0-1000.0 (/ul)
12 Total protein (TP) 60.0-85.0 (g/L)
13 Albumin (ALB) 35.0-55.0 (g/L)
14 Calcium (Ca) 2.10-2.80 (mmol/L)
15 Mucous strands (MUCUS) (/ul)
16 Conductivity (Cond.) 3.0-39.0 (mS/cm)
17 Direct bilirubin (DBIL) 0.0-6.8 (mmol/L)
18 Red blood cells (RBC)# 4.00-5.50 (1012/L)
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tool for the discrimination of ccRCC from other types of
kidney cancers.
DISCUSSION

During the training process, the importance of an appropriate
number of top-ranking indices should be highlighted in the
context of an urgent requirement for high-efficiency solutions
and easy-to-perform models. Thus, the 18 top-ranking indices
are hand-picked by the RF method based on the principle that
this low number of indices can attain comparative prediction
ability to the entire set of indices. Although the AUC value of the
model did not reach the optimal choice with the combination of
18 indices, both the Matthews correlation coefficient (MCC)
and ACC reached their peaks. The difference between the AUC
at the time and the nearby AUC values was very small. After
comprehensive consideration, 18 indices became the best choice
for identifying ccRCC without compromising on performance.
Although ccRCC cannot be diagnosed by symptoms alone,
the prewarning method can provide warning information to
FIGURE 2 | Results of the external verification of the testing set.
FIGURE 3 | Web server of liq_ccRCC method.
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patients for more in-depth examinations. In particular, when the
pattern of tumor cells is abnormal or the availability of lesion
samples is limited, this auxiliary method is expected to offer a
potential future avenue for some special ccRCC diagnosis. The
method using the combination of key indices through the RF
algorithm has been proven to be stable and reliable based on the
results of the training set and the external testing set.

To further prove the generalization ability of this method,
another external testing data set with 79 RCC samples, including
61 ccRCC and 18 non-ccRCC, were collected from the First
Hospital of Lanzhou University. Routine blood indices were
detected by Mindray BC 6800. The blood biochemical indices
were detected by BECKMAN, and the routine urine indices were
detected by Sysmex UF-1000i. Detailed information about this
new data set is listed in Supplementary Table S2. The study was
approved by the ethics committee of the First Hospital of
Lanzhou University. Based on the same method described
earlier, the new samples with 18 blood and urine indices
showed comparable identification results for ccRCC in terms
of sensitivity, specificity, accuracy, and AUC of 0.8229, 0.8000,
Frontiers in Oncology | www.frontiersin.org 5
0.8222, and 0.8507, respectively. These new samples revealed
comparable identification ability with the first testing set using
the proposed method although the test data were collected with
different testing equipment than the training data set. These
results suggest that this method possesses good generalization
ability and is able to tolerate systematic errors between different
testing instruments to some extent. Therefore, this technology
looks promising for differentiating ccRCC from other subtypes of
RCC preoperatively in the future.

To explore more valuable information, all 18 indices selected
from the RF algorithm, including 4 routine blood indices, 9
blood biochemical indices, and 5 numerical routine urine indices
were analyzed by Mann–Whitney U tests, for both ccRCC and
non-ccRCC samples. Finally, six differentially expressed blood
indices were identified as providing some novel pathological
insights and potential clinical application opportunities as shown
in Figure 4. Immature granulocytes (IG#) and immature
granulocyte ratio (IG%) are not discussed commonly in terms
of clinical relevance for this disease. However, IG% played a
special role in the severity of sepsis (16). In Figures 4A, B, the
A B

D E F

C

FIGURE 4 | Differentially expressed blood indices between ccRCC and non-ccRCC. (A) Immature granulocytes (IG#); (B) Immature granulocyte ratio (IG%); (C) Platelet
(PLT); (D) Magnesium (Mg); (E) Globulin (GLO); (F) Blood urine nitrogen (BUN).
TABLE 3 | Performance comparison of different methods for identifying ccRCC.

Identification method Sample number Sens (%) Spec (%) AUC ACC

This work 306 94.56 90.97 0.9372 97.28
Gene expression profiling (8) 295 98.10 NA NA 95.70
Serum lncRNA signature (11) 51 79.20 88.90 0.9000 84.10
Serum histidine and plasma tryptophan (12) 242 84.70 85.50 0.9160 85.12
Multiphasic multidetector CT (7) Discrimination of ccRCC from

oncocytoma 108 86.00 43.00 NA 77.00
papillary RCC 119 94.00 62.00 NA 85.00
chromophobe RCC 97 92.00 25.00 NA 84.00
Ja
nuary 2021 | Volum
e 10 | Article 6
05769

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Identify ccRCC by Liquid Indices
expression levels of these two indices for ccRCC were
significantly lower than those of non-ccRCC patients;
therefore, they may be two useful biomarkers for reflecting the
progress of renal tumors. Previous studies report that platelets
(PLT) are related to tumor angiogenesis; they promote metastasis
and contain diverse angiogenic factors that are associated with
various stages of tumor development (17). Thus, the PLT in
Figure 4C has great potential for enhancing the identification
probability of ccRCC. The function of magnesium for genetic
instability and promotion of tumorigenesis in a body has
received some pertinent attention (18). It is meaningful that
there is a significant difference in the expression of magnesium
between ccRCC and non-ccRCC samples (Figure 4D). As the
main serum protein, globulin (GLO) has always been a common
and important marker, having a significant impact on the
inflammation process (19). The improved GLO can be
regarded as an important risk factor for ccRCC, as shown in
Figure 4E. Urea is a nitrogen-containing metabolite produced
during protein metabolism (20). In this study, we found that the
urea level of patients with ccRCC was significantly lower than
that of other negative samples (Figure 4F), which may be an
independent predictor of the risk of ccRCC in advance.

Supplementing these differentially expressed blood indices
remains an important driving force for promoting a better
understanding of the ccRCC process. The random forest
method can not only absorb these differentially expressed
indices, but also integrate some conventional blood and urine
indices into a prewarning system for identifying ccRCC after
comprehensive consideration. Although none of the urine
indices suggests significant differential expression levels, these
parameters play an indispensable part in the nodes of each
random tree to help accurately distinguish ccRCC from
other types of renal tumors. It is a complex combination
of all selected indices that leads to a high-performance
ccRCC discrimination system, which implies that no single
indicator is fully capable of identifying ccRCC from among
complex diseases.

In order to further evaluate the performance of our
method, the identification results of ccRCC were compared
between this work and recently published works pursuing the
same goal. Table 3 shows that our method can satisfy the
enormous demands of discovering ccRCC with increased
sensitivity and specificity compared with recently published
methods. At the same time, several important blood and urine
indices have been developed and applied in the RF algorithm
to identify the relationship between ccRCC and other types of
renal tumors and to facilitate the rapid and accurate diagnosis
of ccRCC.
Frontiers in Oncology | www.frontiersin.org 6
Collectively, our results suggest that there are strong
associations between various types of renal carcinoma, specific
hematological characteristics and urine indicators. The
diagnostic method liq_ccRCC, which was built based on these
key indices in routine clinical settings, appears to be able to
accurately differentiate ccRCC, especially with atypical
histological presentation. The high-level discriminatory
performance between ccRCC and other subtypes of RCC
demonstrates that this method has huge potential to be
extended and applied for the early warning of other malignant
diseases after sufficient cognition by machine learning. More
clinical trials are needed to test the reliability and stability of this
method. Nonetheless, our results indicate that a new class of
ccRCC diagnostic methods may provide significant future value
to patients.
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