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Glioma is characterized by rapid cell proliferation and extensive infiltration among brain
tissues, but the molecular pathology has been still poorly understood. Previous studies
found that DNA methylation modifications play a key role in contributing to the
pathogenesis of glioma. On the other hand, long noncoding RNAs (lncRNAs) has been
discovered to be associated with some key tumorigenic processes of glioma. Moreover,
genomic methylation can influence expression and functions of lncRNAs, which
contributes to the pathogenesis of many complex diseases. However, to date, no
systematic study has been performed to detect the methylation of lncRNAs and its
influences in glioma on a genome-wide scale. Here, we selected the methylation data,
clinical information, expression of lncRNAs, and DNA methylation regulatory proteins of
537 glioma patients from TCGA and TANRIC databases. Then, we performed a differential
analysis of lncRNA expression and methylated regions between low-grade glioma (LGG)
and glioblastoma multiform (GBM) subjects, respectively. Next, we further identified and
verified potential key lncRNAs contributing the pathogenesis of glioma involved in
methylation modifications by an annotation and correlation analysis, respectively. In
total, 18 such lncRNAs were identified, and 7 of them have been demonstrated to be
functionally linked to the pathogenesis of glioma by previous studies. Finally, by the
univariate Cox regression, LASSO regression, clinical correlation, and survival analysis, we
found that all these 18 lncRNAs are high-risk factors for clinical prognosis of glioma. In
summary, this study provided a strategy to explore the influence of lncRNA methylation on
glioma, and our findings will be benefit to improve understanding of its pathogenesis.

Keywords: glioma, methylation modification, long non-coding RNAs, clinical prognosis, the cancer genome
atlas (TCGA)
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INTRODUCTION

Glioma is the most common and highly malignant tumor in the
intraparenchymal central nervous system (CNS) tumors (1). It is
characterized by the rapid and extensive proliferation among
brain tissues (2, 3). The high grade glioma subtype, glioblastoma
multiform (GBM), could cause the significant mortality that are
disproportionate to their relatively rare incidence (4). Even
under the best treatment, the median survival time is just over
a year, and the few GBM patients survive more than 3 years (1).
The etiology and pathogenesis of GBM have been extensively
investigated, but the epigenetic mechanisms contributing to its
pathogenesis were much less understood (2, 3, 5).

To date, DNA methylation is the most widely studied
epigenetic mechanisms (6). Tremendous evidences shows that
the DNA methylation is involved in tumorigenesis and
development of the GBM (1, 7). For example, the promoter
DNA methylation pattern of genes involved in RB1 and TP53
signaling pathways were identified in GBM patients (7). The
promoter methylation of the DNA repair enzyme (O6-
methylguanine-DNA methyltransferase) was discovered as a
significant prognostic factor for temozolomide resistance in
GBM patients (8).

The long non-coding RNAs (lncRNAs), a kind of non-protein
coding transcripts of >200 nucleotides (9–11), has been reported
to be a key regulator in a broad range of biological and cellular
processes of GBM, including cell proliferation, motility, hypoxia
response, and apoptosis (12–14). The expression levels and
functions of lncRNAs could be significantly affected by the
genomic methylation in many complex diseases (15–18).
Moreover, there is increasing evidences that the methyltransferase,
demethylase, and binding protein dynamically regulate the
methylation level of the lncRNAs, which influences their
expression in specific biological processes (18, 19). However, to
date, no systematic study has been conducted to discovery the
methylation of lncRNAs and its influences in the glioma on a
genome-wide scale.

Herein, to address this lack of knowledge, we used a cohort of
low-grade glioma (LGG) and GBM from The Cancer Genome
Atlas (TCGA) database to investigate the contribution of
lncRNA methylation to tumorigenesis and development in
glioma. Specifically, we first downloaded the expression data of
lncRNAs from The Atlas of Noncoding RNAs in Cancer
(TANRIC) database, and then implemented a differential
expression analysis between the LGG and GBM subjects.
Second, we obtained the glioma-related methylation array data
and the protein-coding gene expression data of the same samples
from TCGA database, and then identified the differentially
methylated regions of the differentially expressed lncRNAs
according the GENCODE reference annotation for human
genomes. Third, we conducted a correlation analysis between
methylation level and expression of the lncRNAs and the genes
involving in the three kinds of methylation regulatory proteins,
and identified the potential key lncRNAs contributing the
pathogenesis of glioma. Finally, we conducted the univariate
Cox regression, least absolute shrinkage and selection operator
Frontiers in Oncology | www.frontiersin.org 2
(LASSO) regression, clinical correlation, and survival analysis
based on the clinical data of these samples to explore the
influence of these methylated and potentially disease-related
lncRNAs on clinical prognosis of glioma. The flow chart was
shown in Figure 1.
MATERIALS AND METHODS

Data Collection and Preprocessing
The clinical information and the methylation information of
patients with glioma were downloaded from the TCGA
database (http://cancergenome.nih.gov), a comprehensive
resource for investigating the molecular basis in various
cancers. According to TCGA annotation, glioma is classified
as the LGG and the GBM. The Genomic Data Commons
(GDC) Data Portal (https://portal.gdc.cancer.gov/) was used
to access these TCGA data. Particularly, we selected “DNA
methylation” in the Data Category, “Illumina human
methylation 450” in the Platform, “brain” in the Primary Site,
and “gliomas” in the Disease Type to screen out the
methylation information of patients. Then, we selected
“clinical” in the Data Category, “brain” in the Primary Site,
and “gliomas” in the Disease Type to screen out the clinical
information of patients. Next, we removed the samples
which lack the methylation or clinical information. Finally,
the lncRNA expression data of the same patients was
downloaded from the TANRIC database, which quantified
the expression profiles of lncRNAs in Ensembl using the
TCGA data (20).

Moreover, we further searched all the possible studies in
PubMed database (http://www.ncbi.nlm.nih.gov/pubmed)
using the keywords to “methylase gene,” “methyltransferase
gene,” “binding protein gene,” “demethylase gene” to identify
the DNA methylation regulatory proteins. The search was
performed before the last update of this database on May 13,
2020. The gene expression of the methylation regulatory proteins
was obtained from TCGA database. The expression data of
lncRNAs and methylation regulatory proteins have been
normalized as reads per kilobase of exon model per million
mapped reads (RPKM) and RNA-Seq by Expectation-
Maximization (RSEM), respectively. The DNA methylation
values were normalized using the “betaqn” function of the R
package “wateRmelon” (http://bioconductor.org/packages/
release/bioc/html/wateRmelon.html) (21).

Differential Expression Analysis
of lncRNAs Between Low-Grade Glioma
and Glioblastoma Multiform
To identify the key lncRNAs which are potentially associated
with the gliomas progression, we performed a differential
expression analysis of all the lncRNAs obtained from TANRIC
database between LGG and GBM subjects using the R package
“lncDIFF” with its default parameter settings (i.e. link.function =
“log,” simulated.pvalue = FALSE, permutation = 100) (https://
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CRAN.R-project.org/package=lncDIFF). It is a powerful
differential analysis tool by the normalized expression data (e.g.
RPKM values) as the input, and has high sensitivity to identify
the low abundant differentially expressed genes, as commonly
observed in lncRNAs. This package adopts the generalized linear
model with zero-inflated exponential quasi-likelihood to
estimate group effect on normalized counts, and employs the
likelihood ratio test to detect differential expressed genes. The
proposed method and tool are applicable to data processed with
standard RNA-seq preprocessing and normalization pipelines
(22). We first removed 21 lncRNAs whose expression is zero in
all the LGG or GBM subjects. Then, we set significance level
according to the common threshold of the absolute value of fold
change (FC) ≥ 2 and false discovery rate (FDR) p < 0.05. The p
values are corrected for multiple testing by Benjamini–Hochberg
method. Finally, we used a volcano plot to describe the profile of
whole lncRNA expression by the R package “ggplot2” (https://
Frontiers in Oncology | www.frontiersin.org 3
CRAN.R-project.org/package=ggplot2), and used a heatmap to
visualize the cluster pattern of the differentially expressed
lncRNAs based on Manhattan distance by the R package
“gplots” (https://CRAN.R-project.org/package=gplots).

Differential Methylation Analysis and
lncRNA Annotation
To identify the glioma-related methylation positions and regions,
and the differentially expressed lncRNAs located in these regions,
we performed a differential methylation analysis and lncRNA
annotation. The differential methylation analysis was conducted
by the R package “minfi” which is a specialized tool designed to
process the Illumina methylation 450 array data (http://
bioconductor.org/packages/release/bioc/html/minfi.html). It
used the Subset-quantile Within Array Normalization method
to preprocess data and the bump-hunting algorithm to discover
the differential methylation information (23). Firstly, we used the
FIGURE 1 | The flow chart of the study design for exploring the potential key lncRNAs contributing the pathogenesis of glioma involved in methylation modifications
and their impact on disease prognosis.
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“densityBeanPlot” function of this package to conduct the
quality control for each array. The qualified samples should
have the characteristic that the methylation levels (beta values) of
CpG positions are distributed around 0 and 1, respectively. Then,
we used the “dmpFinder” function (type = “categorical”) of this
package to identify the differentially methylated positions
between LGG and GBM subjects based on the methylation
array. The significance level was set according to a common
threshold of the absolute intercept ≥ 0.2 (i.e. 20% difference on
the beta values) and p < 1×10−3 (24). Next, based on these
differentially methylated positions, we further used the
“bumphunter” function (B = 10, type = “Beta”) of this package
to look for the differentially methylated regions between LGG
and GBM subjects with the common threshold of average
methylation level difference ≥ 0.2 (25, 26). The differentially
methylated regions are the consecutive genomic locations
containing a battery of differentially methylated positions in
the same direction. Finally, we download the ensGene
annotation file (hg19) from the Ensembl (release 75) which
stores the location information of lncRNA transcripts and
exons in human genome. Based on this file, the ANNOVAR
software was used to perform an lncRNA annotation and
identify the differentially expressed lncRNAs located in the
differentially methylated regions. ANNOVAR is a Perl
command-line tool for rapidly and efficiently annotating the
genomic variants, including gene-based, region-based and filter-
based annotations on a variant call format (VCF) file generated
from human genomes (27).
Correlation Analysis Between Methylation
and Expression of lncRNAs
To explore the influence of methylation on the corresponding
lncRNAs, and identify the potential key lncRNAs contributing
the pathogenesis of glioma, we performed a correlation analysis
between methylation and expression of lncRNAs. Particularly,
we first selected the differentially methylated positions to be
included in each of the identified lncRNAs in the previous step,
and calculated the average values of these methylation positions
for each lncRNAs, respectively. Then, we calculated the
Pearson’s correlation coefficient between the expression of
these lncRNAs and their average methylation level using the
R function “cor.test.” The threshold of significance was set at
the absolute value of r > 0.6 and FDR p < 0.05. The p values
are corrected for multiple testing by Benjamini–Hochberg
method. Finally, it is reported that the methylation regulatory
proteins (including methyltransferase, demethylase, and
binding protein) dynamically regulate the methylation level
of lncRNAs, which influences their expression in specific
biological processes (18, 19). Therefore, to explore which
methylation regulatory proteins are involved in the methylation
modification of the potential key lncRNAs and further increase
the reliability of our findings, we selected the known methylation
regulatory proteins and calculated the Pearson’s correlation
coefficient between their expression and the average methylation
level of these lncRNAs using the same significance threshold.
Frontiers in Oncology | www.frontiersin.org 4
Influence of the Methylated lncRNAs
on Clinical Prognosis of Glioma
We further analyzed the Influence of these identified methylated
lncRNAspotentially contributing the pathogenesis of gliomaon the
clinical prognosis of glioma. First, we calculated the average
expression of the key lncRNAs obtained above in each patient
and get the median of these average expressions. According to the
median, the patients were separated into the lncRNAs low and high
expression groups. We compared prognosis between the high
expression and low expression subjects using a Kaplan-Meier
overall survival curves. Then, we performed a univariate Cox
regression analysis to assess the association between these
methylated lncRNAs and the prognosis of glioma. The threshold
of significance was set at 95% confidence interval (CI) of hazard
ratio (HR) ⊉ 1 and p < 0.05. The R package “survival” (https://
CRAN.R-project.org/package=survival) was used for these
analyses. Next, based on the results of univariate Cox regression
analysis,we furtherused theLASSOregressionalgorithmto identify
the key lncRNAs whose methylation and expression impact on the
prognosis of glioma by R package “glmnet.” It is a pathwise
algorithm for the Cox proportional hazards model, regularized by
convex combinations of ℓ1 and ℓ2 penalties (elastic net). The
algorithm fits via cyclical coordinate descent, and employs warm
starts to find a solution along a regularization path (28). The
parameter familiy, maxit, and alpha were set to Cox, 1000 and 1,
respectively (others were set by their default values). And then we
calculated the risk score of each subject using them through the
“survival” package. Finally, we used a receiver operator
characteristic (ROC) curve to verify the reliability of the risk score
by the R package “survivalROC” (https://CRAN.R-project.org/
package=survivalROC). In addition, we also assessed the
association between these lncRNA expressions and other clinical
features of the patients (including age at initial pathologic diagnosis,
vital status, and gender) using the chi-square test. The threshold of
significance was set at p < 0.05.
RESULTS AND DISCUSSION

Methylation, Expression, and Clinical
Information of 537 Glioma Samples
After the data collection, we found a total of 537 glioma samples
(including 486 LGG and 51 GBM patients from TCGA) with the
DNA methylation values, expression levels of protein-coding
genes, and clinical information. Particularly, according to the
annotation of Illumina human methylation 450 array, a total of
369,531 CpGs methylation positions were quantified after
removing the missing values. We normalized the CpGs
methylation values for the subsequent analyses. The results
were shown in Supplementary Figure S1. The lncRNA
expression data of the 537 glioma samples were obtained from
TANRIC database. A total of 12,727 lncRNAs of these samples
were quantified as RPKM values. Through the keyword search
and the title/abstract screening, 23 articles containing genes for
methylation-related enzymes were obtained from PubMed.
January 2021 | Volume 10 | Article 607047
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In total, we identified 32 DNA methylation regulatory proteins
(including methyltransferase, demethylase, and binding protein)
from the 23 articles (Table 1). We extracted the expression data
of these 32 methylation regulatory proteins for each sample
(quantified as RSEM values) from the TCGA database. The
clinical information of these samples contains age, gender,
survival time, and vital status. The summary of these glioma
samples was listed in Table 2.
Differential Expression Analysis
of lncRNAs Between Low-Grade Glioma
and Glioblastoma Multiforme
We used the R package “lncDIFF” to perform the differential
expression analysis of lncRNAs between LGG and GBM subjects
according to the significance threshold of |FC|≥ 2 andFDR p<0.05.
Frontiers in Oncology | www.frontiersin.org 5
In total, we identified 1,988 significantly differentially expressed
lncRNAs,which include1,284highly expressed (i.e.FC≥2) and704
lowly expressed lncRNAs (FC ≤ −2) in the GBM subjects. The
details are described in Supplementary Table S1. We used a
volcano plot to describe the profile of whole lncRNA expression
(Figure 2A). Then, to verify these findings, we contrasted these
identified differentially expressed lncRNAs with another
independent study. This study used 19 glioblastoma and 9 control
brain samples to perform the differential expression analysis of
30,586 lncRNA transcripts (Arraystar Human lncRNAMicroarray
V3.0, nearly 30% of them overlap with our study). According to its
results, about 71.5% differentially expressed lncRNAs overlapped
with our findings (52). Further, we selected the top most 100
differentially expressed lncRNAs to visualize the cluster pattern of
their expression by a heatmap. As Figure 2B shows, the GBM and
LGG subjects aremainly grouped under a cluster according to high
TABLE 1 | The information of the 32 DNA methylation regulatory proteins.

Gene ID Description Type Reference

DNMT3A 1788 DNA methyltransferase 3 alpha Methyltransferase (29, 30, 31)
DNMT3B 1789 DNA methyltransferase 3 beta Methyltransferase (29, 30, 31)
DNMT3L 29947 DNA methyltransferase 3 like Methyltransferase (30)
DNMT1 1786 DNA methyltransferase 1 Methyltransferase (31–33)
DMAP1 55929 DNA methyltransferase 1 associated protein 1 Binding protein (33)
SUV39H1 6839 Suppressor of variegation 3-9 homolog 1 Methyltransferase (34)
MECP2 4204 Methyl-CpG binding protein 2 Binding protein (35)
MBD1 4152 Methyl-CpG binding domain protein 1 Binding protein (35)
MBD2 8932 Methyl-CpG binding domain protein 2 Binding protein (35)
MBD3 53615 Methyl-CpG binding domain protein 3 Binding protein (35)
MBD4 8930 Methyl-CpG binding domain 4, DNA glycosylase Binding protein (35)
SETDB1 9869 SET domain bifurcated histone lysine methyltransferase 1 Methyltransferase (31, 35)
MGMT 4255 O-6-methylguanine-DNA methyltransferase Methyltransferase (36)
TET1 80312 tet methylcytosine dioxygenase 1 Demethylase (37)
TET2 54790 Tet methylcytosine dioxygenase 2 Demethylase (37)
TET3 200424 Tet methylcytosine dioxygenase 3 Demethylase (37)
JMJD6 23210 Jumonji domain containing 6, arginine demethylase and lysine hydroxylase Demethylase (38)
KDM3A 55818 Lysine demethylase 3a Demethylase (39)
KDM5C 8242 Lysine demethylase 5c Demethylase (39)
KDM1A 23028 Lysine demethylase 1a Demethylase (40)
KDM5B 10765 Lysine demethylase 5b Demethylase (41)
KDM5A 5927 Lysine demethylase 5a Demethylase (42)
KDM5D 8284 Lysine demethylase 5d Demethylase (42)
KDM3B 51780 Lysine demethylase 3b Demethylase (43)
KDM4A 9682 Lysine demethylase 4a Demethylase (44, 45)
KDM4B 23030 Lysine demethylase 4b Demethylase (46)
KDM4C 23081 Lysine demethylase 4c Demethylase (47)
KDM4D 55693 Lysine demethylase 4d Demethylase (48)
KDM6A 7403 Lysine demethylase 6a Demethylase (42, 49)
KDM6B 23135 Lysine demethylase 6b Demethylase (42, 49)
KDM2A 22992 Lysine demethylase 2a Demethylase (48)
KDM2B 84678 Lysine demethylase 2b Demethylase (50, 51)
Ja
nuary 2021 | Volume 10 | A
TABLE 2 | Summary of the 537 individuals studied in this work.

Individuals Sample Type Sample Size Mean Age (SD) Male/Female (%) Death Rates (%)

GBM subjects Primary Tumor 51 61.54 (13.41) 56.00/44.00 66.00
LGG subjects Primary Tumor 486 42.91 (13.42) 54.64/45.36 25.15
Total 　 537 44.66 (14.48) 54.77/45.23 28.97
rticle 607047
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and low expression of the lncRNAs, respectively, andmost of these
lncRNAs (83%) are significantly highly expressed in the GBM than
LGG subjects. These differentially expressed lncRNAs may
Frontiers in Oncology | www.frontiersin.org 6
contribute to the progress of glioma. Thus, we used these
significantly differentially expressed lncRNAs to conduct the
subsequent analysis.
A

B

FIGURE 2 | The differential expression analysis of lncRNAs. (A) The volcano plot shows a profile of the expression of all these lncRNAs in this study. There are
1,284 highly expressed (i.e. and FDR p < 0.05) and 704 lowly expressed lncRNAs (and FDR p < 0.05) in the GBM subjects. (B) The clustered heatmap of the top
100 most differentially expressed lncRNAs between LGG and GBM subjects. Most of these lncRNAs (83%) are significantly highly expressed in the GBM than LGG
subjects. There are 50 GBM subjects (about 98.04%) grouped into a cluster base on the lncRNA expression.
January 2021 | Volume 10 | Article 607047
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Differential Methylation Analysis
and lncRNA Annotation
We performed a differential methylation analysis and lncRNA
annotation to identify the glioma-related DNA methylation and
the differentially expressed lncRNAs located in the regions. The
results of array quality control showed that the beta values of DNA
methylation positions are mainly distributed around 0 and 1,
respectively, for each sample (Supplementary Figure S2). Then,
we used these arrays to identify the differentially methylated
positions and regions, respectively. The results showed that there
are a total of 208,138 positions and 13,227 corresponding regions
with a significantly differential methylation level between LGG and
GBM subjects (Supplementary Tables S2, S3). The methylation
array GSE90496 (contains 347 GBM and 301 LGG subjusts) was
used to verify these findings. The results showed that about 71.1%
differential methylation positions are consistent with our findings
(53). Finally, based on these differentially methylated regions, we
performed the location annotation of the differentially expressed
lncRNAs. In total, we identified 744 lncRNAs which are located in
the differentially methylated regions. According to the results of
annotation, these differentially methylated regions are at five
categories of different genomic locations, i.e. intergenic,
ncRNA_exonic, ncRNA_intronic, upstream and downstream, and
the proportion of intergenic areas is significantly increased
compared with other types (Supplementary Table S4). We
further calculated the proportion of them in the different
genomic locations. We found that these lncRNAs are mainly
distributed in chromosome 1, 2, 7, and 12 (11.42, 10.48, 8.06, and
8.06%, respectively) (Supplementary Table S5). Moreover, as the
Supplementary Table S1 shown, these identified lncRNAs include
1,284 highly and 704 lowly expressed ones in the GBM subjects. But
not all of these highly and lowly expressed lncRNAs have
significantly reduced and increased methylation levels in the
GBM subjects, respectively, which imply that not all of DNA
methylation changes can affect the expression of lncRNAs in the
corresponding genomic regions.

Correlation Analysis Between Methylation
and Expression of lncRNAs
We first conducted a Shapiro-Wilk normality test for each vector
by the R function “shapiro.test.” According to the threshold P >
0.05, 11 lncRNAs that do not obey the normal distribution were
removed. Then, to identify the differentially expressed lncRNAs
affected by the glioma-relatedDNAmethylation,we performed a
Pearson’s correlation analysis between methylation and
expression of lncRNAs. The results revealed that there are a
total of 18 lncRNAs (including 16 highly and 2 lowly expressed
ones) whose expression is significantly associated with their
DNA methylation level, and all of them show a significant
negative correlation (r < −0.6 and FDR p < 0.05) (Table 3). It
is consistent with the common understanding that DNA
methylation inhibits the corresponding gene expression in a
variety of tissues and cell lines (54, 55). Next, we further
measured the association between the expression of the 32
methylation regulatory proteins and methylation level of
these lncRNAs. The results showed that there is a significantly
negative correlation between TET1 expression and most of the
Frontiers in Oncology | www.frontiersin.org 7
18 lncRNAs’ methylation level. TET1 is a demethylase
which can catalyze the conversion of 5-methylcytosine to 5-
hydroxymethylcytosine and maintains hypomethylation status
of the corresponding regions (37). Besides this gene, the
expression of KDM4B and MBD2 also show a significantly
negative and positive correlation (r > 0.6 and FDR p < 0.05)
with a part of the 18 lncRNAs’ methylation level, respectively.
KDM4B is also a demethylase of histone lysine by a hypoxia-
induced pathway, and an important epigenetic modifier in
cancer (46). MBD2 is a methyl-CpG binding protein which
binds and maintains methylated gene promoter to repress its
transcriptional activity (35). However, this significant
correlation is not observed in the other 29 genes, which imply
that the DNA methylation of lncRNAs in glioma may be
influenced predominantly by some specific methylation
regulatory proteins (Table 3 and Supplementary Table S5).
Moreover, the mean differential methylation of the 18 lncRNAs
was calculated.We found that all of the lowly expressed lncRNAs
have significantly reduced methylation levels and most of them
have significantly reduced methylation levels in the GBM
subjects. It is also consistent with the understanding that DNA
methylation inhibits gene expression (56, 57). Therefore, we
considered them as the potential key lncRNAs contributing the
pathogenesis of glioma involved in methylation modifications.
Finally, we further queried PubMed for the functions of the 18
potential key lncRNAs contributing the pathogenesis of glioma. We
found that seven of them have been demonstrated to be functionally
linked to the pathogenesis of glioma by the previous studies. For
example, the overexpression of the ENSG00000222041 (CYTOR)
partially reversed the inhibitory effects of UPF1 on proliferation and
invasion abilities in glioma (58, 59). Themore details were described
in the Supplementary Table S6.

Influence of the Methylated lncRNAs on
Clinical Prognosis of Glioma
We further analyzed the influence of the 18 identified lncRNAs,
which potentially contribute the glioma pathogenesis by
methylation modifications, on the clinical prognosis of
glioma. For the 16 lncRNAs highly expressed in GBM
patients, we found that the overall survival curve of the
subjects with high lncRNA expression is significantly longer
than the subjects with low lncRNA expression (p = 1.38 ×
10−10) (Figure 3A). On the contrary, the overall survival curve
of the subjects with low lncRNA expression is significantly
longer than the subjects with high lncRNA expression for the
two lowly expressed lncRNAs (p = 3.11 × 10−10) (Figure 3B). It
reflects an association between the dysregulation of lncRNA
expression and a bad prognosis of glioma patients. To avoid
dependence on the tumor grade, we performed the univariate
Cox regression analysis of the 18 lncRNAs in GBM and LGG
subjects, respectively. We did not find a significant association
between lncRNA expression and poor patient outcomes in
GBM subjects. However, the results showed that all of the 18
identified methylated lncRNAs are high-risk factors for the
prognosis of glioma in LGG subjects (i.e. 95% CI HR ⊉ 1 and
p < 0.001) (Figure 3C). This suggests that both over-expression
of those 16 lncRNAs and under-expression of other 2 ones can
January 2021 | Volume 10 | Article 607047
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lead to a poor prognosis in LGG patients, which is also
consistent with common sense, given that GBM patients are
in advanced stages of the disease and their survival may be
affected by other complications or factors. In addition, the
univariate Cox regression analysis was further performed for all
the 1,988 significantly differentially expressed lncRNAs in LGG
patients. We found that only about 39% of the lncRNAs
unlikely affected by methylation modifications are associated
with poor patient outcomes (Supplementary Table S7). We
further applied LASSO regression algorithm to the 18 lncRNAs
to identify the key ones for glioma prognosis and calculate the
risk score of each subject. As Figures 3D, 3E show, there are
four key lncRNAs (i.e. ENSG00000256802, ENSG00000232533,
ENSG00000227372, ENSG00000222041) selected when the
cross-validated partial likelihood deviance reaches its
minimum value, and the coefficients of all these lncRNAs are
positive (i.e. increase risk of disease). The area under the curve
(AUC) of the ROC is 0.903, which shows the reliability of the
risk score (Figure 3F). According to the median of risk scores,
the patients were separated into the low and high-risk groups.
We found that the GBM subjects are mainly distributed in
high-risk group, while the LGG subjects are mainly distributed
in low-risk group. This demonstrates the consistency between
the sample risk score by the key lncRNAs and the severity of
glioma. Moreover, as Figure 4A shows, the risk classification by
the key lncRNAs is significantly associated with the age at
initial pathologic diagnosis (p = 1.32 × 10−2) and vital status
(p = 1.72 × 10−8). But we observed no association with the
gender of the patients (p = 1.97 × 10−1). The similar results were
also observed for all the 18 identified methylated lncRNAs (p
value of age, vital status and gender is 2.87 × 10−14, 2.01 × 10−9,
and 1.45 × 10−1, respectively) (Figure 4B).
CONCLUSIONS

In this study, we used the TCGA data to identify potential key
lncRNAs contributing the pathogenesis of glioma involved in
methylation modifications and further explore influence of them
on the clinical prognosis of glioma. In total, we identified 18 such
lncRNAs which has the following four characteristics: 1) they are
significantly differentially expressed between the LGG and GBM
subjects; 2) at least one of the differentially methylated regions,
which cover the contiguous differentially methylated positions, is
located in these lncRNA sequences; 3) there is a strong correlation
between the methylation level of these lncRNAs and the expression
of methylation regulatory proteins; 4) the expression of these
lncRNAs is significantly associated with their methylation level.
Further, the results of clinical data analysis show that all these 18
lncRNAs are high-risk factors for the clinical prognosis of glioma,
and four of them (i.e. ENSG00000256802, ENSG00000232533,
ENSG00000227372 and ENSG00000222041) are most important
for the severity of glioma. All in all, we performed a strategy to
explore the influence of the lncRNA methylation on the
pathogenesis of glioma, and these findings will be benefit to
further glioma research in the future.
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A B

D E F

C

FIGURE 3 | The influence of the methylated lncRNAs on the prognosis of glioma. (A) For the 16 lncRNAs highly expressed in GBM patients, the Kaplan-Meier overall survival
curve of the subjects with high lncRNA expression is significantly longer than the subjects with low lncRNA expression. (B) For the two lncRNAs lowly expressed in GBM
patients, the Kaplan-Meier overall survival curve of the subjects with low lncRNA expression is significantly longer than the subjects with high lncRNA expression. (C) The forest
plot for the results of univariate Cox regression analysis in LGG. (D) The relationship between the partial likelihood deviance and the penalty coefficient l value. The log (l) is
equal to about 2.5 when the partial likelihood deviance reaches its minimum value. (E) The LASSO regression for calculating the coefficient of each lncRNA. There are four
lncRNAs with non-zero coefficients when the log (l) is equal to 2.5. (F) The ROC curve shows the reliability of the risk score.
A B

FIGURE 4 | The association between the methylated lncRNAs and the clinical features of glioma patients. (A) The risk classification by the four key methylated lncRNAs is
significantly associated with the age at initial pathologic diagnosis and vital status, but not with the gender of the patients. (B) The 18 glioma-related lncRNAs are significantly
differentially expressed between GBM and LGG groups, which are also significantly associated with the age and vital status, but not with the gender.
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