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Background: Use of predictive models for the prediction of biochemical recurrence
(BCR) is gaining attention for prostate cancer (PCa). Specifically, BCR occurs in
approximately 20–40% of patients five years after radical prostatectomy (RP) and the
ability to predict BCR may help clinicians to make better treatment decisions. We aim to
investigate the accuracy of CAPRA score compared to others models in predicting the
3-year BCR of PCa patients.

Material and Methods: A total of 5043 men who underwent RP were analyzed
retrospectively. The accuracy of CAPRA score, Cox regression analysis, logistic
regression, K-nearest neighbor (KNN), random forest (RF) and a densely connected
feed-forward neural network (DNN) classifier were compared in terms of 3-year BCR
predictive value. The area under the receiver operating characteristic curve was mainly
used to assess the performance of the predictive models in predicting the 3 years BCR of
PCa patients. Pre-operative data such as PSA level, Gleason grade, and T stage were
included in the multivariate analysis. To measure potential improvements to the model
performance due to additional data, each model was trained once more with an additional
set of post-operative surgical data from definitive pathology.

Results: Using the CAPRA score variables, DNN predictive model showed the highest
AUC value of 0.7 comparing to the CAPRA score, logistic regression, KNN, RF, and cox
regression with 0.63, 0.63, 0.55, 0.64, and 0.64, respectively. After including the post-
operative variables to the model, the AUC values based on KNN, RF, and cox regression
and DNN were improved to 0.77, 0.74, 0.75, and 0.84, respectively.
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Conclusions: Our results showed that the DNN has the potential to predict the 3-year
BCR and outperformed the CAPRA score and other predictive models.
Keywords: prostate cancer, machine learning, predictive, recurrence, biochemical
INTRODUCTION

Radical prostatectomy (RP) with a concomitant pelvic lymph
node dissection is one of the standard treatment for patients with
intermediate-risk prostate cancer (PCa) according to the
D’Amico classification (1). However, in this population,
extremely heterogeneous definitions and outcomes have been
reported, and more precise stratification is desirable to guide
decision making (2, 3). In this context, the CAncer of the
Prostate Risk Assessment (CAPRA) score was developed in
2005 with a patient population from the Cancer of the Prostate
Strategic Urologic Research Endeavor (CaPSURE) cohort, which
included 1,439 men who had undergone RP, followed in a
longitudinal, community based disease registry of patients with
prostate cancer (4). The CAPRA score is a pre-treatment scoring
system which substratifies patients into 8 risk categories
according to five variables from clinical, biochemical and
histopathological data. The CAPRA score was built in order to
further assess the risk of biochemical and metastatic recurrence
among patients treated with RP (5). The same team similarly has
been developed a post-operative score, the CAPRA-S score, with
improved accuracy via incorporation of pathologic data from the
RP specimen (6). Noted that the CAPRA score technique
outperforms the limitations of counterparts such as D’Amico
classification or national comprehensive cancer network
(NCCN) score, at predicting several endpoints (7). We note
also that the risk nomograms offer more precise risk stratification
and prediction, while the calculations can be cumbersome (7).
Consequently, an automatic tool based on machine learning
(ML) algorithms is needed to predict outcomes following RP,
and to guide adjuvant or salvage treatment.

ML algorithms like logistic regression and Cox proportional
hazard regression have been employed in the healthcare statistics
field for several decades (8, 9). Specifically, logistic regression
uses a logit transform to provide event probabilities from input
variables, while Cox regression considers the risk of an event
occurring based on a linear combination of the covariates. We
note that the ML models (e.g., random forest, nearest neighbors)
cannot applied directly in predicting the survival outcomes since
they don’t consider the censored data (10). To solve this issue
some imputation techniques could be considered, like to use the
imputation of survival time with random forest model to predict
the survival (11). Recently, deep neural networks algorithms have
shown promising results in medical applications (12) in order to
improve the diagnostic accuracy (13, 14) For example, The
Memorial Sloan Kettering Cancer Center (MSKCC) in the
United Statesoffers a tool, probably less frequently used in
Europe than the CAPRA score, to predict the probability of 2-,
5-, 7-, 10-, and 15-year BCR-free survival after prostate cancer
surgery. This tool considers the predictive models like linear
2

regression, logistical regression, and survival progress models to
show the cancer recurrence prediction (15, 16).

In this study, using data from a multicentric national database,
we aim to compare the accuracy of CAPRA score and others
models to predict biochemical recurrence (BCR)-free survival for
patients treated with RP. Also, we aim to consider the ML
algorithms using the pathological data that considered in
CAPRA-S score to improve the accuracy of the predictive models.
METHODS

Patients
A total of 5,043 patients who underwent RP between 2000 and
2015 for clinically localized prostate carcinoma in six French
university hospitals were analyzed retrospectively. All patients
underwent a multicore transrectal ultrasound-guided prostate
biopsy after digital rectal examination. The Gleason score and
percentage of involved biopsies were assigned by dedicated
pathologists. Pretreatment PSA was recorded in all men. The
clinical stage was assigned by the attending urologist according
to the American Joint Committee on Cancer TNM guidelines in
effect at the time of inclusion. All patients were preoperatively
staged for metastases with a contrast-enhanced abdominal and
pelvic computed tomography (CT) and bone scan. The patients
received no neoadjuvant/adjuvant hormone therapy or radiation
therapy. The CAPRA score was calculated from the available
pretreatment variables, and the patients were grouped according
to the resulting CAPRA score for analysis (5). Biochemical
recurrence after RP was defined according to the American
Urological Association (AUA) guidelines as two consecutive
PSA values ≥ 0.2 ng/mL at any time post-operatively or any
additional treatment more than 6 months after RP (17). The
analysis was restricted to patients with a follow-up duration of
longer than 12 months.

Statistical Analysis
The 3-year BCR probability from the CAPRA score assigned for
each patient in our cohort was compared to the original CAPRA
score related 3-year BCR from the original CaPSURE cohort,
using a Kaplan Meier survival analyses. The 3-year BCR
probability corresponding to the CAPRA score from the
original CaPSURE cohort was assigned to each patient and
compared to the actual BCR outcome at 3 years. Non
recurring patients who were lost prior to follow-up before 3
years were handled by inferring the survival probability though
Kaplan-Meyer actuarial estimation according to the split-and-
weighting methods described in Zupan et al. (10). Then, a
multivariate predictive model using Cox regression under the
assumption of proportional hazards was performed using the
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variables required for CAPRA score computation (pre-operative
PSA, Gleason score and T stage).

Machine Learning Algorithms
and Models Definitions
The results were compared to predictions of BCR by a set of ML
models. We performed a binary classification using KNN, RF,
logistic regression and DNN. We note that the DNN sequential
architecture comprised several fully connected layers that
included a varying number of nodes. An input layer takes
numeric and one-hot encoded categorical variables and
propagates information through the layers. The last layer
comprises a single node that outputs the three-year BCR as a
single-class probability. All the details of the considered ML
models are reported in Supplementary Material. We considered
the single split, where we divided sample randomly into training
(80%) and testing (20%) set, train the classifier models using the
training sample and test the models using the test samples. The
outcome classes in the training set were weighed to compensate
for the initial imbalance in survival status. To achieve the trade-
off metrics on the test subset, we tuned the hyperparameters on
the training subset using a step-by-step grid search. Area under
the curve (AUC) of the receiver operating characteristics (ROC)
was measured to assess the performance of the predictive models
in predicting 3-year BCR on the test set.

To measure potential improvements to the model
performance due to additional data, each model was trained
once more with an additional set of post-operative surgical data
from definite pathology. Note that the available post-operative
variables were not sufficient to compute the CAPRA-S score. For
this reason, we combined the pathological tumor stage (pT),
pathological lymph nodes dissection status (pN), margin status,
prostate volume and surgical Gleason score and used them as
input to the predictive models. The performance on the test set
was compared with previous results.

The scikit-learn 0.21.2 implementation for Python v3.7.4 was
used to run the conventional ML models. The Cox proportional
hazard model was computed with the Lifelines v0.22.2
implementation for Python v3.7.4 and double-checked with
JMP10.0 (SAS Institute Inc., Cary, NC). We used the Keras
v2.2.4 frontend for TensorFlow v1.14 (18) to develop the neural
network model. The TensorBoard callback library was used for
visualization of the results and optimization. For each
hyperparameter, the range and step used in the grid search,
over numeric parameters, as recommended, are summarized in
the Supplementary Material.
RESULTS

Patient Characteristics
Among 5,043 patients, 803 cases were excluded due to missing
clinical (n=83), biochemical (n=9), pathological (n=338) or
follow-up (n=98) data; 275 patients underwent subsequent
adjuvant therapy and were ultimately excluded. Thus, the
complete records of 4246 patients were available for analysis,
Frontiers in Oncology | www.frontiersin.org 3
as reported in Table 1. The characteristics of our cohort were
compared to those of the CaPSUREcohort, whichwas initially used
tobuild theCAPRAscore.Results includingall variablesused inour
data set and in the CaPSURE cohort are presented in Table 2.
Repartition of the CAPRA scores from our cohort and CaPSURE
cohort are summarized inTable3. ThemedianCAPRAscoreofour
cohort was 3, compared to 2 for the CaPSURE cohort. The median
follow-up duration was 49 months, while the minimum follow-up
duration was 12months. Overall, biochemical recurrence occurred
in 817 (19%) of the patients in our cohort with a median of 25
months after RP, compared to 15% with a median of 22 months in
the CaPSURE cohort.

CAPRA Score and Multivariate Analysis
Patients with CAPRA scores of 2 and 3 accounted for 64% of the
population in our cohort (Table 2). Patient survival according to
the CAPRA score is shown in Figure 1. Regarding the
performance of the CAPRA score for predicting biochemical
recurrence at 3 years, the c-index was 0.63. Similarly, Cox
regression analysis using the same variables (age, Gleason
score, involved biopsy percentage, clinical tumor stage, and
PSA) predicted recurrence with a c-index of 0.64.
TABLE 1 | Patient characteristics: pre- and post-operative clinical and
pathological variables from 4246 patients included in the analysis.

Pre-operative variables

Features Median (min-max) Mean (95% CI)

Age (years) 67(41–92) 67 (+/− 7, 6)
PSA (ng/mL) 8.7(2.1–44) 9.4 +/− 4
Number of biopsies 3(2–49) 4
Involved biopsies 3(1–21) 4.0 +/− 3
Average involvement of biopsy (%) 20 (0.2–100) 18
Categorical data Count
CT T1 2,655

T2 1,581
T3 10

Grade Group on biopsy 1 1,101
2 2,153
3 834

Other 169
Post-operative variables
Categorical data Count
Lymph node dissection Yes 1,984

No 2,099
Missing data 163

Gleason grade group 1 665
2 1,623
3 1,498
4 200
5 81

Missing data 178
pT pT2 2,510

pT3a 1,360
pT3b 355

Missing data 12
pT4 8

Margin R0 3,203
R1 1,039

Missing data 4
Prostate volume 47 (8-220) 51 +/− 22
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Figure 2 illustrates the AUC- ROC for the predictive models
when the input features are restricted to CAPRA score variables.
Considering these pre-operative variables, we found that the
DNN model is given the highest AUC value of 0.7 compared to
Frontiers in Oncology | www.frontiersin.org 4
the CAPRA score, logistic regression, KNN, RF, and cox
regression with AUC value of 0.63, 0.63, 0.55, 0.64, and
0.64, respectively.

One more time, we found that the DNN model shows the
highest AUC value of 0.84 compared to logistic regression, KNN,
RF, and cox regression with AUC value of 0.77, 0.58, 0.74 and
0.75, respectively, using the combined pre- and post- operative
variables (pT, pN, margin status, prostate volume and surgical
Gleason score) (Figure 3).
TABLE 3 | Repartition of the patient’s CAPRA scores from our cohort and the
CaPSURE cohort are cohort.

CAPRA
score

Our cohortNumber of
patients (%)

CaPSURE cohortNumber of
patients (%)

0 45 (1) 18 (1.3)
1 464 (10) 383 (26.6)
2 1,566 (37) 432 (30)
3 1,153 (27) 293 (20.6)
4 585 (13) 155 (10.8)
5 274 (6) 84 (5.8)
6 151 (3) 43 (3)
7 8 (0) 21 (1.5)
TABLE 2 | Patient’s variables repartition between our current dataset and the
CaPSURE cohort with the corresponding CAPRA point attribution.

Variable CAPRA point Current dataset CaPSURE cohort

PSA (ng/mL)
2.1–6 0 1,112 (26) 721 (50.1)
6.1–10 1 1,392 (32) 453 (31.5)
10.1–20 2 1,734 (40) 209 (14.5)
20.1–30 3 6 (0) 36 (2.5)
>30 4 2 (0) 20 (1.4)
Biopsy Gleason score (primary/secondary)
(1–3)/(1–3) 0 1,218 (29) 1,068 (74.2)
(1–3)/(4–5) 1 2,160 (51) 239 (16.6)
(4–5)/(1–5) 3 868 (20) 132 (9.2)
Clinical T score
T2-T2 0 4,236 (100) 1,410 (98)
T3a 1 10 (0) 29 (2)
Percentage of positive biopsies
<34 01 2,214 (52) 911 (63.3)
>34 2,032 (48) 528 (36.7)
Age (years)
<50 0 35 (0) 51 (3.5)
>50 1 4,211 (100) 1,388 (96.5)
FIGURE 1 | BCR-free survival probability according to the CAPRA score.
FIGURE 2 | ROC curves measuring the performance of various predictive
models in predicting the 3-year BCR using the five input variables of the
CAPRA score.
FIGURE 3 | ROC curves measuring the performance of various predictive
models in predicting the 3-year BCR using the five input variables of the
CAPRA score and post-operative variables.
February 2021 | Volume 10 | Article 607923
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DISCUSSION

In this retrospective multi-institutional study, we investigated
and compared the potential of CAPRA score and predictive
models in predicting the BCR risk after RP using routine
variables. We note that the CAPRA score is a commonly used
prediction model for the occurrence of biochemical and clinical
recurrences developed from the CaPSURE registry (5) with many
studies providing external validation with other cohorts (7, 19).
In this study, we found that CAPRA score showed a c-index of
0.63 to predict the 3-year-BCR rates with the prognostic variables
obviously differing from those of the original CaPSURE cohort.

Overall, the median CAPRA score of our patient cohort was
higher, compared to the CAPRA score from the CaPSURE cohort,
suggesting a worse prognosis in our series. However, our cohort
revealed better survivals among our patients. Other factors may
further limit the performance of the CAPRA score: despite
substratification of our cohort according to the CAPRA score, most
patients (64%) remained in CAPRA score groups 2 and 3, thus
reducing the discriminatory power of the score. The heterogeneous
nature and prognosis of this intermediary-risk population (2) are not
accurately captured by theD’Amico classification andCAPRA score,
thus reducing the c-index. Interestingly, while the original study
reported a c-index of 0.66 for this score, almost all validation studies
published thereafter have reportedmuchhigher c-indexes, up to0.81,
raising concerns of bias (20).

With the same restricted set of 5 input variables, predictive
models have been able to provide more accurate predictions on a
test set after training and tuning the hyperparameters. Specifically,
a DNN model showcased the best performance metrics compared
to logistic regression, KNN, RF, and cox regression. Our findings
are consistent with many published data. For example, ML models
showed higher c-indexes with a range value of 0.92–0.94
comparing to conventional statistical methods in predicting
biochemical recurrence after prostatectomy (21). Unfortunately,
they considered a limited dataset without imputing the censored
cases. Other sophisticated models based on active learning have
been used to improve Cox regression and to predict prostate
cancer survival among patients in the Surveillance, Epidemiology,
and End Results (SEER) database, with c-indexes over 0.8 (22, 23).

We note that the use of the predictive models in predicting
clinical outcomes (e.g., survival, grade, treatment, etc.) has become
popular (24–26). However, to ensure a common understanding,
data scientists and clinical researchers need to define a common set
of outcomemetrics. Defining ‘accuracy’ performance as the ratio of
correct predictions to the total number of predictions is seldom
appropriate in comparing predictive models, especially for survival
analysis (27, 28). So far, the AUC and c-index, sensitivity and
specificity, provide better performance metrics.

Whether deep learning performs better than conventional
ML and statistical models in survival analysis remains unclear.
The binary classification of tabular data is not the strength of
neural network models (23). Recent breakthroughs based on
deep learning (e.g., convolutional neural networks) and neural
network algorithms rely primarily on deep analysis of medical
images for a computer aided diagnosis (29, 30). Furthermore, the
development of rigorous methods like neural networks to handle
Frontiers in Oncology | www.frontiersin.org 5
censored data with follow-up imaging may provide much better
survival analyses for the future. Thus, the accuracy of our model
is modest and could be enhanced by using a more contemporary
approach such as MRI guided biopsies, with a central pathology
review and a validation cohort.

Themainasset of suchmodels relies on their ability tobenurtured
with prospectively acquired data, in order to gradually improve
predictions. Moreover, a model could be shaped “locally” (learning
from specific local databases) to take into account local specificities
thus better be applicable to certain populations of patients.
Nevertheless, there is still a need of prospective validation of these
models before their integration from bench to bedside. Also, one of
thedownsides couldpotentiallybe related to the “blackbox”natureof
algorithms such as DNN. Indeed, it is very difficult as an observer to
decipher how the model intertwines the variables between them to
eventually come with a prediction, possibly generating reluctancy
among clinicians to use such tools. In daily practice, regarding the
recent studies (31–33) published in the post-operative setting, such
models can enhance the clinician decision making confidence for
proposing adjuvant or salvage radiotherapy.

Our study has some limitations that should be noted. First,
mpMRI data might be a promising addition dataset for
improving the accuracy of the predictive models. The data
analysis is represented by the fact that a standard ultra-sound
guided prostate biopsy was used for most cases in this cohort.
This does not reflect the current standard practice as MRI is now
recommended in first line biopsy setting. Second, the median
follow-up time was relatively short considering the natural
history of the biochemical progression of intermediate-risk
PCa. Third, the modifications to the Gleason score grading
system in 2005 could have also introduced bias. In addition,
the pathology data were not centralized among the different
tertiary centers. However, only dedicated uropathologists
reviewed the RP specimens at these referral centers, and to
limit potential bias, we restricted our analyses to contemporary
patients. Finally, we must admit that the difference found
between AUC results is small.
CONCLUSIONS

The results of this study indicate that predictive models could
improve the prediction of 3-year BCR after RP based on routine
variables used in CAPRA score with a population presenting
intermediate-risk disease. Specifically, a deep neural network
model showcased the highest performance metrics for predicting
the BCR. This model will help clinicians to achieve the goal of
personalized medicine and develop a strategic approach for
prostate cancer treatment.
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