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Background: Histologic phenotype identification of Non-Small Cell Lung Cancer
(NSCLC) is essential for treatment planning and prognostic prediction. The prediction
model based on radiomics analysis has the potential to quantify tumor phenotypic
characteristics non-invasively. However, most existing studies focus on relatively small
datasets, which limits the performance and potential clinical applicability of their
constructed models.

Methods: To fully explore the impact of different datasets on radiomics studies related to
the classification of histological subtypes of NSCLC, we retrospectively collected three
datasets from multi-centers and then performed extensive analysis. Each of the three
datasets was used as the training dataset separately to build a model and was validated
on the remaining two datasets. A model was then developed by merging all the datasets
into a large dataset, which was randomly split into a training dataset and a testing dataset.
For each model, a total of 788 radiomic features were extracted from the segmented
tumor volumes. Then three widely used features selection methods, including minimum
Redundancy Maximum Relevance Feature Selection (MRMR), Sequential Forward
Selection (SFS), and Least Absolute Shrinkage and Selection Operator (LASSO) were
used to select the most important features. Finally, three classification methods, including
Logistics Regression (LR), Support Vector Machines (SVM), and Random Forest (RF)
were independently evaluated on the selected features to investigate the prediction ability
of the radiomics models.

Results: When using a single dataset for modeling, the results on the testing set were
poor, with AUC values ranging from 0.54 to 0.64. When the merged dataset was used for
modeling, the average AUC value in the testing set was 0.78, showing relatively good
predictive performance.
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Yang et al. Machine Learning for Histologic Subtype
Conclusions: Models based on radiomics analysis have the potential to classify NSCLC
subtypes, but their generalization capabilities should be carefully considered.

Keywords: non-small cell lung cancer, radiomics, machine learning, feature selection, classification

INTRODUCTION all models were able to classify tumor histology, of which

Lung cancer is the leading cause of cancer death in many
countries (1, 2). Especially in China, lung cancer is the most
common cancer with more than 430,000 deaths per year (3).
According to the characteristics of cancer cells under the
microscope, lung cancer is broadly classified into two types:
small cell lung cancer (SCLC) and non-small cell lung cancers
(NSCLC). NSCLC is the most common type of lung cancer,
accounting for about 80% of all lung cancers. Squamous cell
carcinoma (SCC) and adenocarcinoma (ADC) are the most
common histological subtypes of NSCLC. The classification
criteria is based on the histologic features, i.e., ADC appears as
carcinoma of acinar/tubular structure or mucin production,
while SCC appears as carcinoma with keratinization or
intercellular bridges (4).

Since the treatment methods of SCC and ADC are quite
different, it is of great significance to accurately distinguish SCC
from ADC in patients with lung cancer (5, 6). For instance,
pemetrexed (a multiple-enzyme inhibitor) has greater efficacy in
ADC patients than in SCC patients (7). Pathological diagnosis is
commonly regarded as the gold standard for distinguishing ADC
from SCC. However, it is invasive and requires needle biopsy or
surgery. The tumor may be heterogeneous, which may lead to
sampling errors and affect biopsy results. In addition, the risk of
complications is also an important factor that must be
considered. These limitations of pathological diagnosis prompt
us to develop non-invasive and accurate alternative methods.

Radiomics refers to extracting high-throughput features from
medical images and mining the potential relationships between
quantitative image features and pathophysiology characteristics.
Radiomics analysis can be used for predicting various clinical
outcomes, such as survival, distant metastases, and molecular
characteristics classification (8-10). Several studies have focused
on the identification of histologic subtype of NSCLC based on
radiomics. Wu et al. (11) constructed two study cohorts with 350
patients and extracted 440 radiomic features for each sample.
They applied 24 feature selection methods and 3 classification
methods to identify SCC and ADC, of which the Naive Bayes
method achieved the highest AUC of 0.72. Zhu et al. (12)
retrospectively studied 129 patients with NSCLC and extracted
485 features from manually labeled tumor regions. Five features
were selected to construct a radiomics signature by using a logistic
regression method. This radiomic signature achieved an AUC of
0.893 in the test set. Chaunzwa et al. (13) retrospectively studied
157 patients with NSCLC to classify ADC or SCC. They used a
VGG-16 neural network to extract deep features from CT images
and classify them with fully connected layers. Besides, they also
independently evaluated the extracted features using three
machine learning classification models. The results showed that

the neural network achieved the highest performance with an
AUC of 0.751.

Although these studies have achieved excellent results, there
are still some critical problems that need to be solved: 1) Many
radiomics studies generally have small size datasets, thus limiting
the performance and the potential clinical applicability of these
models. 2) The research methods are relatively simple, and there
are few methods of feature selection and classifier for comparison.
The differences between different research methods are not
fully discussed, which reduces the credibility of the model and
limits the application of the models in the clinic.

In order to solve the above problems, we collected three
datasets from different centers. Each dataset was used as the
training set to build a model and tested in the remaining two
datasets. Then, we combined all the datasets into one large dataset
to build a model; this dataset was randomly divided into a training
set and a testing set. For each dataset, a total of 788 radiomic
features were extracted from the segmented tumor volumes of
corresponding CT images. Three widely used features selection
methods, minimum Redundancy Maximum Relevance Feature
Selection (mRMR), Sequential Forward Selection (SFS), Least
Absolute Shrinkage and Selection Operator (Lasso) were used to
select the most important features. Three widely used
classification models were independently evaluated on the
selected features: Logistics Regression (LR), Support Vector
Machines (SVM), and Random Forest (RF). We aim to build
models through multi-center datasets to thoroughly study the
potential of radiomics in identifying SCC and ADC.

MATERIALS AND METHODS

Figure 1 presents the workflow of this study, including image
acquisition and segmentation, feature extraction, feature selection,
classifier construction and evaluation. In the following sections, we
will describe these steps in detail.

Datasets
We utilized 3 independent datasets in this study that were collected
from China institution and open-access online repositories.

Dataset 1

This retrospective study has been approved by our institutional
review board and does not require patient informed consent. From
June 2014 to June 2019, 324 patients with a diagnosis of lung
cancer were retrospectively collected. The inclusion criteria are as
follows: (1) pathologically confirmed lung cancer; (2) CT images
can be obtained before treatment. Exclusion criteria were as
follows: (1) small cell lung cancer (n = 3); (3) grade of
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FIGURE 1 | Workflow of this study.

preoperative biopsy evidence was not available (n = 17). Finally,
302 patients were selected for this study. Tumors were classified
into ADC or SCC based on pathological information. All
pulmonary CT examinations were performed using four CT
scanners, with tube voltage of 120 kVp, tube current of 220
mAs, and inter-layer slice thickness of 4-5 mm. For each
patient, the tumor region was contoured in a slice-by-slice
manner on CT images by an experienced radiologist (with eight
years of experience) using Medical Imaging Interaction Toolkit
(MITK) software (14) (version 2013.12.0; http://www.mitk.org/),
and then confirmed by another experienced radiologist (with 15
years of experience). The final consensus was reached by group
discussion if there were discrepant interpretations.

Dataset 2

This dataset was obtained from The Cancer Imaging Archive
(TCIA) (15) and included 422 patients with NSCLC treated at
Maastricht University Medical Center (16). All patients
underwent a CT scan. Depending on the patient’sbody type,
the scanning scheme was slightly different. The tube voltage was
120-140 kVp and the tube current was 40-80 mAs. The
reconstructed pixel size was 0.977x977mm, the matrix size was
512x512, and the layer thickness between slices was 3 mm. For
all CT images, the doctor performed manual tumor region
segmentation. From all the samples, 203 samples that meet the
requirements of this study were selected.

Dataset 3

This dataset was obtained from TCIA (15) and included 211
NSCLC patients (17). This is a retrospectively collected dataset
through different CT equipments and different imaging
parameters, with tube voltage of 80-140 kVp, tube current of
124-699 mAs, and inter-layer slice thickness of 0.625-3 mm. For
all CT images, an undisclosed automatic segmentation algorithm
was used for segmentation and then manually adjusted by the
doctors. From all the samples, 140 samples that meet the
requirements of this study were selected.

Some slices from the above datasets are displayed in Figure 2
to show the variety in cancer locations, shapes, and appearances
of the different datasets.

Feature Extraction and Selection

Before feature extraction, we resampled all the CT images to a
1x1x1 mm’ voxel size. According to the radiomic features described
by Imaging Biomarker Standardization Initiative (IBSI), a wide
range of features including intensity features, shape features, texture
features, and wavelet features were extracted from the segmented
cancer regions (18).

Intensity features use first-order statistics (energy, entropy,
standard deviation, skewness, kurtosis, etc.) to quantify the
tumor intensity feature, which are calculated from the histogram
of all tumor voxel intensity values. Shape features describe the
shape of the tumor, such as sphericity or compactness of the tumor.
Texture features can quantify intratumor heterogeneity differences
in the texture that is observable within the tumor volume. These
features are calculated in all three-dimensional directions within
the tumor volume, thereby taking the spatial location of each voxel
compared with the surrounding voxels into account. Texture
features quantify the intratumor heterogeneity by using the Gray
Level Cooccurrence (GLCM), Gray Level Run Length Matrices
(GLRLM), Gray Level Size Zone Matrix (GLSZM), Neighbouring
Gray Tone Difference Matrix (NGTDM) and Gray Level
Dependence Matrix (GLDM). Wavelet features calculate the
intensity and textural features from wavelet decompositions of
the original image, thereby focusing the features on different
frequency ranges within the tumor volume. All feature extraction
algorithms were implemented in Pyradiomics toolkit (19).

To eliminate the differences in the value scales of the radiomic
features, feature normalization was performed before feature selection.
For features in the training group, each feature for a specific patient
was subtracted by the mean value and divided by standard deviation
value from this group. The same normalization method was applied
to features in the validation group using the mean values and
standard deviation values calculated based on the training group.
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Too many features will increase the computational cost, and
the redundancy between features will reduce the accuracy of the
classification. Furthermore, the number of features is more than the
number of samples in this work, which will increase the probability
of overfitting. Therefore, feature selection is essential. There are three
main types of feature selection algorithms: filter methods, wrapper
methods, and embedded methods. Based on previous works, we
selected three widely used feature selection methods, namely:
minimum redundancy maximum correlation method (mRMR)
(20), sequential forward selection method (SES) (21), and least
absolute shrinkage and selection operator (Lasso) (22).

mRMR is a multivariate filtering feature selection algorithm,
which finds the optimal subset of features by considering both
the importance of features and the correlation between them,
that is, maximizing the correlation between features and
categorical variables, while minimizing the redundancy
between features. In the set S with N features, the correlation
D of the features is calculated as follows:

1
D=-— Y 1I(x5c) (1)
|S‘ FASN
Where I represents mutual information and the redundancy
between features is expressed as:

FIGURE 2 | Examples from different datasets. Each row represents three axial slices of different datasets; (A) Dataset 1. (B) Dataset 2. (C) Dataset 3. A red contour
that outlined by the physician is displayed to identify the cancer area in each patient scan.

R=rr S I(xx) @)

‘S| XX ES

The goal of mRMR is to find the feature subset where D — R
takes the maximum value. SFS is a kind of wrapper method that
uses a bottom-up search strategy that starts from an empty
feature set and gradually adds features selected by evaluation
function. At each iteration, the feature to be added is selected
from the remaining available features that have not been added
to the feature set. Then, the final selected features should produce
the best classification performance compared with the any other
feature set (23). Lasso is a kind of embedded method that is
widely used in radiomic feature selection of high dimensional
data with relatively small sample size. It is based on £;-norm of
the coefficient of a linear classifier. Some of the coefficients of the
learned classifier may equal zero. Since each coefficient is
associated with a feature, so feature selection is achieved by
retaining features with non-zero coefficients.

Classifiers Construction

We evaluated three classification algorithms: logistic regression
(LR), support vector machine (SVM), and random forest (RF).
LR is a classical machine learning algorithm that was usually
used for binary classification tasks. The model attempts to
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estimate the probability p(y = 1|x), that is, the probability of a
positive result y = 1 under the given data x. The advantage of
logistic regression is that the training speed is fast, and discrete
and continuous variables can be used as inputs. The disadvantage
is that it is a linear model, and the classification effect is not good
enough in the face of complex data problems, but the logistic
regression model can achieve good results on many datasets, and
it is easy to implement and can be used as a basic modeling
method (24). SVM is another widely used classification
algorithm that attempts to separate the data by computing the
decision boundary. This decision boundary, also called the
hyperplane, is orientated in such a way that it is as far away as
possible from the closest data points (support vectors) from each
class (25). SVM is a powerful method for obtaining good
classification results by using only a few data points (26). RF is
an ensemble learning method, known for its high performance
and generalizability. It uses bootstrap resampling to extract
multiple samples from the original sample, and constructs a
decision tree for each bootstrap sample, and then combines these
decision trees together to obtain the final classification (27).

Statistical Analysis

The statistical analyses were performed with R 3.1.2 (http://www.
R-project.org) and Python (version 3.6.4) machine learning
library scikit-learn (version 0.19.1). Univariate analysis for
clinical data was performed by using the Chi-square (x°) test
or Mann-Whitney U test, as appropriate. The categorical variable
(such as gender and category probability) was analyzed using the
% test. The continuous variable (such as age) was analyzed using
the Mann-Whitney U test.

RESULTS

Patients Statistics
Table 1 lists the clinical data of the patients in the three datasets. The
percentages of SCC in dataset 1, 2, and 3 were 29, 75, and 20%,
respectively. Among them, the category probability between dataset
1 and dataset 2 is statistically different (P < 0.001, x2 test); the
category probability between dataset 1 and dataset 3 is statistically
different (P = 0.04959, % test); the category probability between
dataset 2 and dataset 3 is statistically different (P < 0.001, . test).
The percentages of males in dataset 1, 2, and 3 are 62, 71, and
74%, respectively. Among them, the probability of gender in

dataset 1 is statistically significant difference (P < 0.001, y” test);
the probability of gender in dataset 2 is not statistically
significant difference (P = 0.01365, % test); the probability of
gender in dataset 3 is not statistically significant difference (P =
0.01219, ” test).

There is a statistically significant difference between the age of
SCC and ADC in dataset 1 (P < 0.001, Mann-Whitney U test);
there is no statistical difference between the age of SCC and ADC
in dataset 2 (P = 0.06693, Mann -Whitney U test); there is no
statistical difference between the ages of SCC and ADC in dataset
3 (P = 0.1501, Mann-Whitney U test). As can be seen from the
above results, there exist significant differences between
different datasets.

Feature Extraction and Selection Results

A large number of features were extracted from the tumor
volume, where each sample contains 788 features. To select the
most distinguishing feature subset, we applied three widely used
feature selection methods. For each method, we applied Grid
search and 5-fold cross-validation to select the best hyper-
parameters. The feature selection process is shown in Figure 3,
where (I)-(IV) represent the feature selection process based on
dataset 1, dataset 2, dataset 3, and merged dataset, respectively.
The blue dashed line represents the average AUC value of the 5-
fold cross-validation, and the shading represents the standard
deviation. For mRMR and SFS, the hyperparameter is the
number of features, and for Lasso, the hyperparameter is the
regularization parameter o. Using the AUC value as the criterion
for hyperparameter selection, it can be seen from the figure that
for models 1-3, the AUC value is relatively low, and the standard
deviation is larger, the Lasso feature selection method shows the
best stability.

Table 2 lists the number of features selected by the three feature
selection methods in the four training sets and the jointly selected
features. For the model trained in dataset 1, mRMR, SFS, and Lasso
selected 24, 28, and 28 features, respectively, and 1 feature was
jointly selected. It is wavelet-LLH firstorder_Skewness, which
measures the asymmetry of value distribution of the tumor area
under wavelet transform. For the model trained in dataset 2,
mRMR, SFS, and Lasso selected 17, 13, and 9 features,
respectively, and there were no features that were jointly selected.
For the model trained in dataset 3, mRMR, SFS, and Lasso selected
17, 24, and 7 features, respectively, and there were no features that
were jointly selected. For the model trained in the merged dataset,

TABLE 1 | Patients statistics.

Dataset 1 Dataset 2 Dataset 3

ADC (n = 215) SCC (n =87) ADC (n = 51) SCC (n =152) ADC (n =112) SCC (n = 28)
age
range (median) 36-89 (59) 32-81 (65) 45-85 (68) 33-88 (70) 43-87 (68) 57-83 (71)
mead+std 59+10 64+9 67+9 70+10 68+9 716
sex
male 108 79 32 112 80 24
female 107 8 19 40 32 4
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FIGURE 3 | Feature selection process performed on different datasets through different feature selection methods. Each row represents different datasets;
() Dataset 1. (Il) Dataset 2. (lll) Dataset 3. (IV) Merged dataset. Each column represents feature selection methods; (A) mRMR. (B) Lasso. (C) SFS.

mRMR, SFS, and Lasso selected 29, 46, and 29 features, respectively,
and 1 feature was jointly selected, which is wavelet-HHL_glem_
ClusterShade, that measures the skewness of GLCM features under
wavelet transform. A higher ClusterShade indicates greater
asymmetry. According to the above results, it can be seen that
different feature selection methods select different features, and
there is a great inconsistency between the selected features.

TABLE 2 | Commonly selected features.

mRMR SFS Lasso Common features
dataset 1 24 28 28 wavelet-LLH_firstorder_Skewness
dataset 2 17 13 None
dataset 3 17 24 7 None
merged dataset 29 46 29 wavelet-HHL_glcm_ClusterShade
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Classification Result

It can be seen from the previous section that different feature
selection methods selected distinct feature subsets. To evaluate these
feature subsets, we used three classifiers for modeling and analysis.
Taking the SVM method as an example, Figures 4-6 show the
ROC curves of different datasets that obtained by three feature
selection methods. The left column of each figure shows the 5-fold

cross-validated ROC curves of the training dataset, and the right
column shows the ROC curves of the testing dataset.

When dataset 1 was used to build the model and mRMR method
was used to select features, the average AUC value of 5-fold cross

validation was 0.71, and the AUC value in dataset 2 and 3 were 0.56
and 0.59, respectively. When SES feature selection method was used,
the average AUC value of 5-fold cross validation was 0.87, and the
AUC value in dataset 2 and dataset 3 were 0.56 and 0.56,
respectively. When Lasso feature selection method was used, the
average AUC value of 5-fold cross validation was 0.79, and the AUC
values in dataset 2 and dataset 3 were 0.61 and 0.64, respectively.
When dataset 2 was used to build the model and mRMR
method was used to select features, the average AUC value of 5-
fold cross-validation was 0.54, and the AUC values in dataset 1
and dataset 3 were 0.54 and 0.55, respectively. When SFS feature
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selection method was used, the average AUC value of 5-fold
cross-validation was 0.73, and the AUC values in dataset 1 and
dataset 3 were 0.55 and 0.57, respectively. When Lasso feature
selection method was used, the average AUC value of 5-fold
cross-validation was 0.70, and the AUC values in dataset 1 and
dataset 3 were 0.64 and 0.57, respectively.

When dataset 3 was used to build the model and mRMR
method was used to select features, the average AUC value of 5-
fold cross-validation was 0.65, and the AUC values in dataset 1
and dataset 3 were 0.60 and 0.57, respectively. When SFS feature
selection method was used, the average AUC value of 5-fold
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FIGURE 5 | ROCs of different datasets achieved through SFS and SVM. Each row represents different datasets; (I) Dataset 1. (Il) Dataset 2. (Ill) Dataset 3.

cross-validation was 0.85, and the AUC values in dataset 1 and
dataset 3 were 0.58 and 0.57, respectively. When the Lasso
feature selection method was used, the average AUC value of
5-fold cross-validation was 0.75, and the AUC values in dataset 1
and dataset 3 were 0.60 and 0.57, respectively.

When the merged dataset was used to build the model and
mRMR method was used to select features, the average AUC value
of 5-fold cross-validation was 0.78, and the AUC value in the
testing set was 0.76. When the SFS feature selection method was
used, the average AUC of 5-fold cross-validation was 0.86, and the
AUC value in the test set was 0.79. When the Lasso feature
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selection method was used, the average AUC value of 5-fold cross-
validation was 0.82, and the AUC value in the test set was 0.79.
It can be seen from the above results that although different
feature selection methods selected different features, relatively
consistent classification results were obtained under different
classifiers, among which Lasso feature selection method achieved
the best classification results. When using datasets 1-3 for
modeling, the results on the testing set were poor, with AUC
values ranging from 0.54 to 0.64. According to the definition of
AUC value, in the range of [0.5-0.7], although the model has
certain prediction ability, its prediction level is relatively poor.
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FIGURE 6 | ROCs of different datasets achieved through Lasso and SVM. Each row represents different datasets; (I) Dataset 1. (ll) Dataset 2. (lll) Dataset 3.

The AUC values of 0.76, 0.78, and 0.79 in the testing set of the
merged dataset were obtained respectively, showing good

predictive performance.

For further analysis, we evaluated the accuracy, sensitivity,
specificity and AUC values of different models. The results are
shown in Table 3. When modeling with dataset 1, the average
accuracy, sensitivity, specificity, and AUC values on dataset 2
were 0.45, 0.73, 0.36, and 0.58, respectively; the average accuracy,
sensitivity, specificity, and AUC values on dataset 3 were 0.64,
0.70, 0.43, and 0.59, respectively. When modeling with dataset 2,
the average accuracy, sensitivity, specificity, and AUC values on
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dataset 1 were 0.48, 0.40, 0.69, and 0.57, respectively; the average
accuracy, sensitivity, specificity, and AUC values on dataset 3
were 0.46, 0.41, 0.67, and 0.56, respectively. When modeling with
dataset 3, the average accuracy, sensitivity, specificity and AUC
values on dataset 1 were 0.62, 0.72, 0.38, and 0.58, respectively;
the average accuracy, sensitivity, specificity, and AUC values on
dataset 2 were 0.47, 0.69, 0.40, and 0.58, respectively. When
modeling with the merged dataset, the average accuracy,
sensitivity, specificity and AUC values on the testing set were
0.74,0.77,0.68, and 0.78, respectively. Based on the above results,
it can be seen that the classification results are the best when
using the merged dataset for modeling.

DISCUSSION

This paper studied the subtype differentiation of NSCLC based on
radiomics analysis. The identification of histological types of
NSCLC is essential for treatment, and many studies have been
conducted and demonstrated the potential ability of radiomics.
However, existing studies usually focus on relatively small datasets
and lack multi-center external validation datasets, resulting in a
high risk of over-fitting, so the model’s generalization performance
cannot be adequately verified. Besides, the methods used in many
studies are relatively simple, and few feature selection and classifier
methods are compared. The differences between different methods
are not fully discussed, which reduces the credibility of the model
and limits its clinical application.

To solve the above problems, we retrospectively studied three
independent datasets from different centers, where each dataset
was used to train the model and tested in the remaining two
datasets. Then all the datasets were combined into a large dataset
and randomly divided into training and testing sets for modeling
and analysis. For each form of dataset division, a corresponding
radiomics model was constructed. The experimental results show
that each model’s performance is quite different, and the model
based on the merged dataset obtains the best performance.

The feature subsets selected by different feature selection
methods vary greatly, which is also the difficulty of radiology
research. How to select the most effective feature subset is a
complex feature engineering problem, especially in radiomics
research. Besides, how to ensure the interpretability of features is
another difficulty in applying radiomics models to the clinic. In
future work, we will continue to conduct research in this field by
combining doctors’ qualitative semantic features and deep learning

features, and using ensemble methods to select interpretable and
distinguishable features.

Generalization ability is an important index in radiomics
research. The samples we studied came from different centers,
with different imaging methods and a wide range of demographic
information. The experimental results show that the performance
of the other centers’ datasets was poor when only one dataset was
used for modeling. The results put forward a requirement for future
radiomics research; that is, to better apply it to clinical practice, it is
necessary to collect as much multi-center datasets as possible in
order to learn the common feature representation. When using
multi-center datasets, the imaging quality is another issue that
needs to pay attention. Some notable works have discussed imaging
quality issues (28-30), which inspire us to carry out future work.

The curse of dimensionality is a huge challenge in the
radiomics analysis, so feature selection is an essential step. Many
studies have discussed the performance of different feature
selection methods. Qian et al. (31) evaluated 12 feature
selectionmethods and 7 classification methods to distinguish
glioblastoma from solitary brain metastases and found that the
Lasso feature selection and SVM classifier obtained the highest
AUC. Wu et al. (11) investigated 24 filter-based feature selection
methods and 3 classification methods for the classification of lung
cancer histology, and found that the ReliefF feature selection
method has higher prediction accuracy than other methods. In
this study, we studied three widely used feature selection methods,
namely mRMR, Lasso and SFS. The experimental results
demonstrated that although different feature selection methods
selected different features, relatively consistent classification results
were obtained under different classifiers, among which Lasso
feature selection method achieved the best classification results.

Since the samples we studied came from different institutions, the
process of tumor segmentation by different radiologists and the
repeatability of radiomic features may vary significantly. Subjectivity
may occur in the determination of tumor volume and tumor
boundaries, leading to uncertainties of tumor segmentation, which
may adversely affect the repeatability of radiomic features. It is
widely acknowledged that it is difficult to precisely delineate the
tumor volume due to the similar characteristics between organs and
tumors, as well as the differences in shape and size of the tumor.
Moreover, medical images are far from perfect because they have
limited resolution and may contain artifacts. Physicians often
interpret tumors differently based on their skills and experiences.
Since radiomic features are calculated based on the tumor masks,
the uncertainties of the tumor segmentation significantly affect
the features, resulting in poor generalization performance of the

TABLE 3 | Classification results of different testing sets.

Training set Testing set Accuracy Sensitivity Specificity AUC
Dataset 1 Dataset 2 0.45 0.73 0.36 0.58
Dataset 3 0.64 0.70 0.43 0.59
Dataset 2 Dataset 1 0.48 0.40 0.69 0.57
Dataset 3 0.46 0.41 0.67 0.56
Dataset 3 Dataset 1 0.62 0.72 0.38 0.58
Dataset 2 0.47 0.69 0.40 0.58
Merged training set Merged testing set 0.74 0.77 0.68 0.78
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prediction models (32). With the development of computer vision
and deep learning, automatic tumor segmentation may help
radiomics studies. One of our recent work shows that the
classification results based on automated segmentation and
ground truth segmentation have no significantdifferences in
computer-aided glioma grading task (33). In the future work, we
will combine the automatic segmentation method for
radiomics research.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Ethics Committee of Shandong Cancer
Hospital. The patients/participants provided their written

REFERENCES

1. BrayF, Ferlay ], Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: Globocan estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer ] Clin (2018) 68:394-424.
doi: 10.3322/caac.21492

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin (2020)
70:7-30. doi: 10.3322/caac.21590

3. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics
in china, 2015. CA Cancer ] Clin (2016) 66:115-32. doi: 10.3322/caac.21338

4. Inamura K. Lung cancer: Understanding its molecular pathology and the 2015
who classification. Front Oncol (2017) 7:193. doi: 10.3389/fonc.2017.00193

5. Zhan C, Yan L, Wang L, Sun Y, Wang X, Lin Z, et al. Identification of
immunohistochemical markers for distinguishing lung adenocarcinoma from
squamous cell carcinoma. J Thorac Dis (2015) 7:1398-405. doi: 10.3978/
j.issn.2072-1439.2015.07.25

6. Kadota K, Nitadori JI, Rekhtman N, Jones DR, Adusumilli PS, Travis WD.
Reevaluation and reclassification of resected lung carcinomas originally
diagnosed as squamous cell carcinoma using immunohistochemical analysis.
Am ] Surg Pathol (2015) 39:1170-80. doi: 10.1097/pas.0000000000000439

7. Huang T, Li ], Zhang C, Hong Q, Jiang D, Ye M, et al. Distinguishing lung
adenocarcinoma from lung squamous cell carcinoma by two hypomethylated
and three hypermethylated genes: A meta-analysis. PloS One (2016) 11:
€0149088. doi: 10.1371/journal.pone.0149088

8. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM,
Granton P, et al. Radiomics: Extracting more information from medical
images using advanced feature analysis. Eur ] Cancer (2012) 48:441-6.
doi: 10.1016/j.ejca.2011.11.036

9. Lambin P, Leijenaar RTH, Deist TM, Peerlings ], de Jong EEC, van Timmeren J,

et al. Radiomics: the bridge between medical imaging and personalized

medicine. Nat Rev Clin Oncol (2017) 14:749-62. doi: 10.1038/nrclinonc.

2017.141

Limkin EJ, Sun R, Dercle L, Zacharaki EI, Robert C, Reuzé S, et al. Promises

and challenges for the implementation of computational medical imaging

(radiomics) in oncology. Ann Oncol (2017) 28:1191-206. doi: 10.1093/

annonc/mdx034

Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink J, et al.

Exploratory study to identify radiomics classifiers for lung cancer histology.

Front Oncol (2016) 6:71. doi: 10.3389/fonc.2016.00071

10.

11.

informed consent to participate in this study. Written
informed consent was obtained from the individual(s) for the
publication of any potentially identifiable images or data
included in this article.

AUTHOR CONTRIBUTIONS

FY and WC collected and analyzed the data, wrote the initial
draft, and accomplished the final version. HW and XZ analyzed
the data. SY, XQ, and YC conceptualized, designed, and
supervised the study, and revised the article. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant nos. 81872475, 81372413, and
U1806202), the Department of Science and Technology of
Shandong Province (2017CXGC1502), and the Taishan
Scholars Project in Shandong Province (ts201511106).

12. Zhu X, Dong D, Chen Z, Fang M, Zhang L, Song J, et al. Radiomic signature as
a diagnostic factor for histologic subtype classification of non-small cell lung
cancer. Eur Radiol (2018) 28:2772-8. doi: 10.1007/s00330-017-5221-1
Chaunzwa TL, Christiani DC, Lanuti M, Shafer A, Diao N, Mak RH, et al.
Using deep-learning radiomics to predict lung cancer histology. J Clin Oncol
(2018) 36:8545-5. doi: 10.1200/JCO.2018.36.15_suppl.8545

Wolf I, Vetter M, Wegner I, Bottger T, Nolden M, Schébinger M, et al. The
Medical Imaging Interaction Toolkit. Med Image Anal (2005) 9:594-604.
doi: 10.1016/j.media.2005.04.005

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The cancer
imaging archive (tcia): Maintaining and operating a public information
repository. ] Digit Imaging (2013) 26:1045-57. doi: 10.1007/s10278-013-9622-7
Aerts H, Rios Velazquez E, Leijjenaar RTH, Parmar C, Grossmann P, Carvalho S,
et al. Data from nsclc-radiomics. Cancer Imaging Arch (2015). doi: 10.7937/K9/
TCIA.2015.PFOM9REI

Bakr S, Gevaert O, Echegaray S, Ayers K, Zhou M, Shafiq M, et al. Data for
nsclc radiogenomics collection. Cancer Imaging Arch (2017). doi: 10.7937/K9/
TCIA.2017.7hs46erv

Zwanenburg A, Vallieres M, Abdalah MA, Aerts HHWL, Andrearczyk V, Apte A,
et al. The Image Biomarker Standardization Initiative: Standardized Quantitative
Radiomics for High-Throughput Image-based Phenotyping. Radiology (2020)
295:328-38. doi: 10.1148/radiol.2020191145

van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,
et al. Computational radiomics system to decode the radiographic phenotype.
Cancer Res (2017) 77:€104. doi: 10.1158/0008-5472.CAN-17-0339

Ding C, Peng H. Minimum redundancy feature selection from microarray
gene expression data. In: . Computational Systems Bioinformatics. CSB2003.
Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003. Stanford,
CA, USA (2003). p. 523-8. doi: 10.1109/CSB.2003.1227396

Gheyas IA, Smith LS. Feature subset selection in large dimensionality
domains. Pattern Recognit (2010) 43:5-13. doi: 10.1016/j.patcog.2009.06.009
Remeseiro B, Bolon-Canedo V. A review of feature selection methods in
medical applications. Comput Biol Med (2019) 112:103375. doi: 10.1016/
j.compbiomed.2019.103375

Marcano-Cedefio A, Quintanilla-Dominguez J, Cortina-Januchs MG, Andina D.
Feature selection using sequential forward selection and classification applying
artificial metaplasticity neural network. In: . IECON 2010 - 36th Annual
Conference on IEEE Industrial Electronics Society, Glendale, AZ (2010). p.
2845-50. doi: 10.1109/IECON.2010.5675075

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Frontiers in Oncology | www.frontiersin.org

January 2021 | Volume 10 | Article 608598


https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21590
https://doi.org/10.3322/caac.21338
https://doi.org/10.3389/fonc.2017.00193
https://doi.org/10.3978/j.issn.2072-1439.2015.07.25
https://doi.org/10.3978/j.issn.2072-1439.2015.07.25
https://doi.org/10.1097/pas.0000000000000439
https://doi.org/10.1371/journal.pone.0149088
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.1093/annonc/mdx034
https://doi.org/10.3389/fonc.2016.00071
https://doi.org/10.1007/s00330-017-5221-1
https://doi.org/10.1200/JCO.2018.36.15_suppl.8545
https://doi.org/10.1016/j.media.2005.04.005
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI
https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI
https://doi.org/10.7937/K9/TCIA.2017.7hs46erv
https://doi.org/10.7937/K9/TCIA.2017.7hs46erv
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1109/CSB.2003.1227396
https://doi.org/10.1016/j.patcog.2009.06.009
https://doi.org/10.1016/j.compbiomed.2019.103375
https://doi.org/10.1016/j.compbiomed.2019.103375
https://doi.org/10.1109/IECON.2010.5675075
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Yang et al.

Machine Learning for Histologic Subtype

24.

25.

26.

27.

28.

29.

30.

Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B.
Radiomics and artificial intelligence for biomarker and prediction model
development in oncology. Comput Struct Biotechnol ] (2019) 17:995-1008.
doi: 10.1016/j.csbj.2019.07.001

Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of
support vector machine (svm) learning in cancer genomics. Cancer Genomics
Proteomics (2018) 15:41-51. doi: 10.21873/cgp.20063

Zhou H, Dong D, Chen B, Fang M, Cheng Y, Gan Y, et al. Diagnosis of distant
metastasis of lung cancer: Based on clinical and radiomic features. Trans
Oncol (2018) 11:31-6. doi: 10.1016/j.tranon.2017.10.010

Abdoh SF, Rizka MA, Maghraby FA. Cervical cancer diagnosis using random
forest classifier with smote and feature reduction techniques. IEEE Access
(2018) 6:59475-85. doi: 10.1109/ACCESS.2018.2874063

Chen Y, Ma J, Feng Q, Luo L, Shi P, Chen W. Nonlocal Prior Bayesian
Tomographic Reconstruction. J Math Imaging Vision (2008) 30:133-46.
doi: 10.1007/s10851-007-0042-5

Yin X, Zhao Q, Liu J, Yang W, Yang J, Quan G, et al. Domain progressive 3d
residual convolution network to improve low-dose ct imaging. IEEE Trans
Med Imaging (2019) 38:2903-13. doi: 10.1109/TMI1.2019.2917258

Hu D, Wu W, Xu M, Zhang Y, Liu J, Ge R, et al. Sister: Spectral-image
similarity-based tensor with enhanced-sparsity reconstruction for sparse-view
multi-energy ct. IEEE Trans Comput Imaging (2020) 6:477-90. doi: 10.1109/
TCI.2019.2956886

31.

32.

33.

Qian Z, Li Y, Wang Y, Li L, Li R, Wang K, et al. Differentiation of
glioblastoma from solitary brain metastases using radiomic machine-
learning classifiers. Cancer Lett (2019) 451:128-35. doi: 10.1016/j.canlet.2019.
02.054

Owens CA, Peterson CB, Tang C, Koay EJ, Yu W, Mackin DS, et al. Lung
tumor segmentation methods: Impact on the uncertainty of radiomics
features for non-small cell lung cancer. PloS One (2018) 13:¢0205003.
doi: 10.1371/journal.pone.0205003

Chen W, Liu B, Peng S, Sun J, Qiao X. Computer-aided grading of gliomas
combining automatic segmentation and radiomics. Int J Biomed Imaging
(2018) 2018:2512037. doi: 10.1155/2018/2512037

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Yang, Chen, Wei, Zhang, Yuan, Qiao and Chen. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Oncology | www.frontiersin.org

January 2021 | Volume 10 | Article 608598


https://doi.org/10.1016/j.csbj.2019.07.001
https://doi.org/10.21873/cgp.20063
https://doi.org/10.1016/j.tranon.2017.10.010
https://doi.org/10.1109/ACCESS.2018.2874063
https://doi.org/10.1007/s10851-007-0042-5
https://doi.org/10.1109/TMI.2019.2917258
https://doi.org/10.1109/TCI.2019.2956886
https://doi.org/10.1109/TCI.2019.2956886
https://doi.org/10.1016/j.canlet.2019.02.054
https://doi.org/10.1016/j.canlet.2019.02.054
https://doi.org/10.1371/journal.pone.0205003
https://doi.org/10.1155/2018/2512037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Machine Learning for Histologic Subtype Classification of Non-Small Cell Lung Cancer: A Retrospective Multicenter Radiomics Study
	Introduction
	Materials and Methods
	Datasets
	Dataset 1
	Dataset 2
	Dataset 3

	Feature Extraction and Selection
	Classifiers Construction
	Statistical Analysis

	Results
	Patients Statistics
	Feature Extraction and Selection Results
	Classification Result

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


