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Recurrent mutations in splicing factor 3B subunit 1 (SF3B1) have been identified in several
malignancies and are associated with an increased expression of 3’ cryptic transcripts as a
result of alternative branchpoint recognition. A large fraction of cryptic transcripts associated
with SF3B1 mutations is expected to be sensitive for RNA degradation via nonsense-
mediated mRNA decay (NMD). Several studies indicated alterations in various signaling
pathways in SF3B1-mutated cells, including an impaired DNA damage response (DDR) in
chronic lymphocytic leukemia (CLL). In this study, we investigated isogenic cell lines and
treatment naïve primary CLL samples without any TP53 and/or ATM defect, and found no
significant effects of SF3B1mutations on the ATM/p53 response, phosphorylation of H2AX
and sensitivity to fludarabine. Cryptic transcripts associated with SF3B1 mutation status
were observed at relatively low levels compared to the canonical transcripts and were
validated as target for mRNA degradation via NMD. Expression of cryptic transcripts
increased after NMD inhibition. In conclusion, our results confirm involvement of NMD in the
biological effects of SF3B1 mutations. Further studies may elucidate whether SF3B1-
mutant patients could benefit from NMD modulatory agents.
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INTRODUCTION

Splicing factor 3B subunit 1 (SF3B1) is frequently mutated in
different malignancies. In chronic lymphocytic leukemia (CLL),
different studies reported a lower incidence (5–11%) of SF3B1
mutations at diagnosis, which increased with therapy resistance to
15–20% (1, 2), and an association with poor prognosis (3, 4). In
various other cancers, notably myelodysplastic syndrome (MDS;
25–30%) (5–7) and uveal melanoma (UM; 10–21%) (8–10),
heterozygous SF3B1 mutations are also highly prevalent. SF3B1
mutations cause altered splice branchpoint recognition which
results in increased 3’ cryptic splicing, and concomitant
frameshifts (11, 12). Alternative transcripts with a premature
termination codon (PTC) ≥50–55 nucleotides before the last
exon-exon junction are normally targeted for degradation via
nonsense-mediated mRNA decay (NMD) (11, 13). Consequently,
a substantial fraction of the SF3B1-associated cryptic transcripts is
expected to be NMD-sensitive. The pathobiology of SF3B1
mutations is of interest because the (defective) splicing machinery
might be a therapeutic target (14). Homozygous splicing factor
mutations are not observed and mutations in splicing factor
genes show mutual exclusivity (15). The enhanced sensitivity of
SF3B1-mutated cells to the splicing inhibitor H3B-8800 which is
currently tested in phase I clinical trials (16) is in agreement with a
therapeutic window of splicing factor inhibitors. Various studies
have described the effects of SF3B1 mutations on alternative
branchpoint recognition and indicated alterations in several
signaling pathways including the DNA damage response (17–19),
telomere maintenance (18), NF-kB (15, 20), NOTCH1 (18) and
MYC signaling (21), but there is no clear view or consensus on the
resulting pathological mechanism(s).

Here, we expand on our earlier observation that SF3B1
mutations in CLL associate with an altered response to DNA
damage (DDR), with certain aspects resembling an ATM defect
(17). Outcomes of this previous study included effects of SF3B1
mutations on the ATM/p53 response after irradiation, higher
phosphorylation of variant histone H2AX on Ser139 [gH2AX; a
marker for DNA double stranded breaks (22)] at baseline and in
response to irradiation, and a decreased sensitivity to fludarabine
(17). To gain more insight into the underlying pathobiological
mechanism of SF3B1 mutations, we now investigated isogenic
cell lines and an additional cohort of treatment-naïve primary
CLL samples without a confounding TP53 and/or ATM defect.
Secondly, we analyzed the effect of NMD on SF3B1-associated
cryptic transcripts in various primary cancer cells and isogenic
cell lines.
METHODS

Cell Culture
NALM-6 isogenic knock-in cell lines including different hotspot
mutations in the HEAT domain of SF3B1 (parental, K700E,
K666N, and H662Q) were from a previous study (11) and
mutations were confirmed by Sanger sequencing. UM cell lines
92.1 (SF3B1wt) and Mel202 (SF3B1mut) were acquired from
Martine de Jager (department of ophthalmology LUMC, The
Frontiers in Oncology | www.frontiersin.org 2
Netherlands). Pancreas carcinoma (PDA) cell line panc1
(SF3B1wt) was obtained from the LEXOR group (Amsterdam
UMC, The Netherlands) and panc05.04 (SF3B1mut) was directly
bought from ATCC and CLL cell lines PGA (SF3B1wt) and CII
(SF3B1mut) were a kind gift from Tanja Stankovic (Bournemouth,
UK). Cell lines were maintained in RPMI 1640 medium
(Thermo Fisher Scientific, Waltham, MA, USA) with HEPES and
L-glutamine (92.1, Mel202, PGA, CII, panc05.04, and NALM-6 cell
lines) or IMDM (Lonza, Basel, Switzerland) with HEPES,
L-glutamine (panc1), and supplemented with 10% fetal calf serum
(FCS) and penicillin-streptomycin (Invitrogen) and incubated in
5% CO2 at 37 °C. Panc05.04 was cultured in the presence of 1%
Insulin-Transferrin-Selenium (ITS -G) (Thermo Fisher Scientific,
Waltham, MA, USA). Primary CLL cells were thawed and cultured
in IMDM (Lonza, Basel, Switzerland) with HEPES, L-glutamine,
10% FCS, and Penicillin-Streptomycin (Invitrogen) for functional
experiments and incubated in 5% CO2 at 37 °C.

RNA Extraction and Quantitative Real-
Time Polymerase Chain Reaction
Total RNA was isolated using the GeneEluteTM Mammalian
Total RNA Miniprep kit (Sigma-Aldrich #RTN70) and cDNA
was transcribed by RevertAid (Fermentas Inc., Hannover, Md
#EP0451) using Random Hexamer Primers (Promega, Madison,
USA #C1181) according to manufacturer’s instructions. Primers
used for detection of 3’ cryptic transcripts associated with SF3B1
mutation were designed based on results from transcriptomic
analyses (12, 23) of SF3B1 mutated cancer cells and are listed in
Supplemental Table 1. Expression was normalized to
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and
qPCRs were performed using SYBR Green master mix
(Applied Biosystems #4385617). Linear regression (LinReg)
software was used for data processing. Relative expression was
calculated by the comparative DCt method (24).

Sequencing of SF3B1
Cell lines and primary cells were sequenced with Sanger or next-
generation DNA sequencing at the SF3B1locus. Primary MDS,
CLL and UM cells were considered as SF3B1 mutated when a
mutation was detected in the HEAT domain of SF3B1 with a
variant allele frequency (VAF) ≥20%. Only treatment-naïve
primary CLL cells negative for ATM (no del11q/and or ATM
mutation) and TP53 defects (no del17p and/or TP53 mutation),
at date of sampling were included for functional analysis of the
DDR in SF3B1 mutated samples. Patients characteristics and
results of mutation analyses of samples used in this study are
listed in Supplemental Tables 2–5.

Reverse Transcriptase Multiplex Ligation
Dependent Probe Amplification
For RT-MLPA analysis cells were treated with or without
irradiation (1Gy or 5Gy) and cultured for 16 h. RT-MLPA
(MRC-Holland) was performed as described before, using an
earlier validated RT-MLPA probe set, which includes several p53
and ATM target genes (CD95, BAX, PUMA, p21, FDXR, PCNA,
NME1, ACSM3) (17). Expression was normalized to a panel of
housekeeping genes.
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Western Blot Analysis
Cells were lysed in Laemmli sample buffer and western blotting was
performed using standard conditions. The following antibodies
were used: PUMA (Sigma-Aldrich #PRS3043), p53 (Calbiochem
#OP43), serine 15 phosphorylated-p53 (Cell Signaling #9284S),
MDM2 (Santa Cruz #sc-965), KAP (Cell Signaling #5868), serine
824 phosphorylated-KAP (Cell Signaling #4127), p21 (Cell Signaling
#2947), and b-actin (Santa Cruz #sc-1616). IRDye 800CW Goat
anti-Rabbit IgG (LI-COR #926-32211), IRDye 800CW Donkey
anti-Goat (LI-COR #926-32214), IRDye 680LT Donkey anti-
Goat (LI-COR #926-32224), IRDye 680LT Goat anti-Mouse
IgG (LI-COR #926-68020). Protein expression was quantified
with Odyssey software (Li-Cor Biosciences) and corrected for
the expression of b-actin.

Apoptosis Induction by Fludarabine or
Doxorubicin
Cells were cultured in the presence of fludarabine (Sigma-
Aldrich #F2773) for 48 h, and doxorubicin (Selleckhem
#S1208) for 24 h at indicated concentrations. Apoptosis was
measured by flow cytometry. Cells were stained with 0.01 mM of
the viability dye Dihexyloxacarbocyanine Iodide (DiOC6,
Molecular Probes #D-273) for 20 min at 37 °C and prior to
analysis, TO-PRO-3 (Thermofisher Scientific #T3605) was added
as a marker for cell death. Signals were measured on a FACS
Calibur (BD). Specific cell death was calculated as [(% apoptosis
treated cells - % apoptosis untreated cells)/% viable untreated
cells]*100. Flow cytometry data were analyzed using FlowJo
software (Treestar, Ashland, OR, USA).

gH2AX and CD95 Expression
Expression of gH2AX was measured using flow cytometry. Cells
were irradiated (1Gy or 5Gy) and at indicated times, cells were
permeabilized (Foxp3 staining kit; eBioscience) and stained using
the following antibodies: isotype-AF488 (BD Biosciences #557782)
or gH2AX-AF488 (phosphorylated-H2AX-ser-139; Cell Signaling
#9719S). CD95 expression on NALM-6 cells was determined by
flow cytometry using anti-CD95-FITC (BD biosciences #555673)
following irradiation (1Gy or 5Gy) and 16 h culturing. Data were
normalized for isotype control (isotype-AF488).

Statistical Analysis
Analyses were performed using Graphpad Prism software
version 8. (Graphpad, La Jolla, CA, USA). Kruskal–Wallis test
with Dunn’s multiple comparison post hoc analysis was used for
analysis of RT-MLPA data. A two-sided Mann–Whitney U test
was used to identify differences between two groups. For
apoptotic responses with >2 groups, one-way ANOVA with
Dunnet’s post hoc test was used. P-values <0.05 were
considered statistically significant.
RESULTS

First, we studied the ATM/p53 response in isogenic NALM-6
cells with heterozygous SF3B1 mutations (11). Confirmation of
Frontiers in Oncology | www.frontiersin.org 3
altered SF3B1 function in three SF3B1-mutated NALM-6 cell
lines against their parental cell line was obtained through
increased expression of the SF3B1-associated cryptic transcripts
of ATM, FOXP1 and TTI1 (Supplemental Figure S1A).These
transcripts were previously reported to be increased in SF3B1
mutated cells (12, 23, 25), and were considered as signature genes
that might also be linked with pathobiological consequences.
Various aspects of DDR functionality (17) were investigated: 1)
irradiation (IR) followed by quantification of ATM/p53 target
genes by RT-MLPA and analysis of proteins by western blot, 2)
ATM functionality via KAP phosphorylation on Ser824, 3)
gH2AX following IR, and 4) treatment with DNA damaging
agents fludarabine and doxorubicin, followed by assessment of
the apoptotic response by flow cytometry. In all of these aspects,
the three SF3B1-mutated NALM-6 cell lines behaved identical
to the parental cells (Supplemental Figures S1B-C, S2-4).
Influence of cell cycle status was investigated with the cyclin-
dependent kinase inhibitor palbociclib. Palbociclib induced
growth arrest without cell death induction, but did not
influence the ATM/p53 response following IR (Supplemental
Figure S5).

Since our earlier studied CLL cohort contained a mix of
untreated and chemotherapy-treated CLL patients, we next
analyzed treatment-naïve primary CLL cells harboring SF3B1
mutations (median VAF of 41.8%; Supplemental Table S2) for
potential effects on the DDR using the same set of assays as
applied previously (17). RT-MLPA revealed a significantly
increased p21 mRNA in non-irradiated SF3B1-mutated CLL
cells (p < 0.001; Figure 1A). This is in accordance with a
recently identified link of SF3B1 mutations with senescence
and increased p21 protein levels (19). Non-irradiated SF3B1-
mutated CLL cells showed a trend towards a higher expression of
ACSM3 with large variation between patients, which could not
be linked with VAF of the mutation. Also, the response of ATM
target genes ACSM3 and NME1 to IR was not affected by SF3B1
mutation status (Figure 1A) (17). Identical effects of wild type
(WT) and SF3B1-mutated samples in response to IR were
observed in this cohort (Figure 1A). This was unlike the
previous data on the mixed treatment cohort, where differences
between WT, and SF3B1-mutated samples were apparent (17).
Levels of Ser15 phosphorylated p53 and p53 (Figure 1B), gH2AX
baseline/formation (Figure 1C) and sensitivity to fludarabine
(Figure 1D) appeared unaffected in treatment-naïve SF3B1-
mutated CLL cases. In summary, we could not detect
mechanistic clues relating to a potential link between SF3B1
mutation and altered DDR responses, using isogenic cell lines
and a treatment-naïve CLL cohort.

Another possible pathological mechanism is increased
expression of SF3B1 associated 3’ cryptic transcripts at the
expense of the canonical mRNA and protein, as reported
earlier (11). In addition, SRSF2 mutations have been shown to
affect both splicing and NMD, suggesting a role for NMD in the
pathogenic effect of splicing factor mutations (26). Five
cryptically spliced genes (ANKHD1, ATM, FOXP1, MAP3K7,
and TTI1; Figure 2A), identified in previous transcriptomic
analyses in SF3B1-mutated patients (12, 15, 18), were analyzed
January 2021 | Volume 10 | Article 609409
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in different cancer types. Percentages of cryptic transcripts versus
canonical transcripts were quantified in primary material from
genotyped CLL (Supplemental Table S3), MDS (Supplemental
Table S4) and UM (Supplemental Table S5), and in cancer cell
lines from different origin -/+ SF3B1 mutation (Figures 2B, C,
respectively). Increased expression of SF3B1-associated
transcripts was indeed observed in all SF3B1-mutated cells
compared to SF3B1 WT cells in primary cancer cells and
cancer cell lines. Ratios of cryptic versus canonical transcripts
were gene-specific and differed between the investigated cancer
cells. Cryptic transcripts were mostly present at 10–1,000-fold
lower levels than the canonical transcripts, only for MAP3K7 it
reached appreciable, though still modest levels.

NMD and its potential altered function/contribution in cancer
has recently become of interest as a therapeutic target (13). To
explore the effect of NMD on the expression of SF3B1-associated
cryptic transcripts, we inhibited NMD in different cell lines -/+
SF3B1 mutation. Cells were treated with the translation inhibitor
cycloheximide (CHX), known for its ability to inhibit NMD (11), or
pyrimidine related compound 1 (PRC1), a specific inhibitor of the
PI3K related kinase SMG1 which regulates NMD activity via
phosphorylation of UPF1 (27). NMD inhibition with CHX was
confirmed by analysis of an established NMD transcript of the
splicing factor SRSF3 (Figure 2D) (26). As expected, a rapidly
increasing expression of the NMD-sensitive SRSF3 transcript was
observed after CHX treatment in SF3B1-mutated cells originating
from various cancer types (CLL, UM and pancreatic cancer).
Frontiers in Oncology | www.frontiersin.org 4
Expression of the SF3B1-associated cryptic transcript of TTI1 also
increased after NMD inhibition (Figure 2D). SMG1 inhibition with
PRC1 also resulted in an increased expression of SRSF3 and TTI1
transcripts in SF3B1-mutated NALM-6 cells (Figure 2E). These
results suggest that SF3B1-associated cryptic transcripts are
degraded via NMD and suggest a link between NMD and the
pathogenic effects of SF3B1 mutations.
DISCUSSION

Various clinical trials have reported a negative effect of SF3B1
mutations on survival in chemotherapy-treated CLL patients.
Mutations in SF3B1 were associated with decreased survival
after chlorambucil and fludarabine with and without
cyclophosphamide in the UK CLL4 trial (4) and fludarabine,
cyclophosphamide plus rituximab in the German CLL8 trial (3).
To expand our previous study, we therefore selected treatment-
naïve samples with a high VAF of SF3B1 mutation. Our results
demonstrate that SF3B1mutations do not directly affect the ATM/
p53 response, at least not in uncompromised, untreated patients.
The seeming differences between earlier reported data on a mixed
cohort of patients might be explained by effects of chemotherapy;
most likely this resulted in the outgrowth of cells with defects in
genes other than ATM and/or TP53, while still causing a slightly
defective DDR response. Therefore, we should consider that SF3B1
mutations can affect genomic stability via other pathways (28),
A

B

D

C

FIGURE 1 | Analysis of DDR response in treatment-naïve SF3B1-mutated CLL cells. (A) Results of RT-MLPA with specific probes for the detection of ATM/p53
target genes. Relative expression is shown of treatment-naïve SF3B1wt (WT, n = 12) and SF3B1mut (SF3B1, n = 9) primary CLL cells -/+ IR (5Gy) and 16 h
culturing. Data is represented as mean ± SEM. Significance was determined by Kruskal-Wallis test with Dunn’s multiple comparison post hoc analysis, ***p < 0.001.
(B) Effects of IR (5Gy) followed by 16 h culturing on p-p53, p53, and b-actin measured by western blotting. (C) Formation of gH2AX measured by flow cytometry at
baseline (left) and after irradiation (5Gy) and 2 h incubation (right). Data were normalized for isotype control and represented as mean ± SEM. ns, not significant.
(D) CLL cells of SF3B1wt (n = 12) and SF3B1mut (n = 8) patients were treated with different concentrations of fludarabine as indicated. Cell death was assessed by
DIOC6/TO-PRO-3 staining and calculated as described in material and methods. Error bars are ± SEM. No significant differences were observed (Mann-Whitney).
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or that other factors are associated with progression of SF3B1-
mutant CLL patients. For example, mutations in splicing factors in
MDS were linked with augmented R-loops and alternative
transcripts were observed in genes involved in the suppression of
R-loop formation (29). In addition, various altered transcripts
Frontiers in Oncology | www.frontiersin.org 5
resulting from SF3B1 mutation were linked with diverse
signaling pathways; decreased MAP3K7 expression leading to
increased NF-kB activity (15), decreased expression of the uveal
melanoma tumor suppressor gene BRD9 resulting in disruption of
the non-canonical BAF chromatin-remodeling complex (30),
A

B

D

E

C

FIGURE 2 | Levels of SF3B1-associated 3’ cryptic transcripts are often low and sensitive nonsense-mediated mRNA decay. (A) Schematic overview of five 3’ cryptic
transcripts associated with SF3B1 mutation and the effect of alternative splicing on the introduction of a premature termination codon (PTC) in these transcripts. (B)
Percentage ALT spliced (percentage cryptically spliced compared to the canonical transcript; % ALT spliced; y-axis) for qPCR analysis of ANKHD1, ATM, and FOXP1 in
primary CLL cells divided in SF3B1wt (n = 15) and SF3B1mut (n = 12), myelodysplastic syndrome (MDS) divided in SF3B1wt (n = 10) and SF3B1mut (n = 10) and uveal
melanoma (UM) patients divided in SF3B1wt (n = 8) and SF3B1mut (n = 4). Primers specific for the 3’ cryptic transcript and the canonical transcript were used. Bars
represent mean ± SEM. Significant differences are presented as *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (Mann-Whitney U test). (C) Percentage ALT spliced
was calculated for ANKHD1, ATM and FOXP1, MAP3K7 and TTI1 in the CLL cell lines PGA (SF3B1wt) and CII (SF3B1mut), pancreas carcinoma (PDA) cell lines panc1
(SF3B1wt) and panc05.04 (SF3B1mut) and UM cell lines 92.1 (SF3B1wt) and mel202 (SF3B1mut). Bars represent mean ± SEM of at least two independent experiments,
three for ANKHD1 in mel202 and six for FOXP1 in mel202). (D) Fold induction of NMD-sensitive transcript of SRSF3 (left) and cryptic transcript of TTi1 (right) 1, 2, and 4 h
after cycloheximide (CHX; 100 mg/ml) treatment in CLL, PDA and UM cell lines -/+ SF3B1 mutation. (E) Relative expression of NMD-sensitive transcript of SRSF3 (above)
and cryptic transcript of TTI1 (below) 6 h after DMSO, 100 mg/ml CHX or SMG1 inhibition by 1 mM pyrimidine related compound 1 (PRC1) in isogenic NALM-6 cells -/+
SF3B1 K700E mutation. Bars represent mean ± SEM of three independent experiments.
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decreased phosphatase 2A subunit PPP2R5A leading to MYC
stability (21), and an alternative transcript of DVL2 was linked to
overexpression of NOTCH1 in CLL (18). As hundreds of genes are
associated with increased levels of cryptically spliced transcripts in
SF3B1 mutants (11, 12, 15, 18), it is to be expected that SF3B1
mutations may have widespread effects on cancer cells. Indeed,
differences in numerous pathways have been identified in a recent
transcriptomic analysis (18). We observed a distinct increase in
expression of cryptic transcripts associated with SF3B1 mutations.
Cryptic transcripts were mostly at 10–1,000-fold lower levels than
the canonical transcripts, which may in most cases decrease the
likelihood this would reach pathological levels. Yet, such transcripts
could be augmented upon NMD inhibition, a finding that warrants
further study. Hypothetically, the increased expression of cryptic
transcripts observed in SF3B1 mutants could be used
therapeutically as NMD inhibition might result in the
presentation of tumor specific neoantigens (31).

In conclusion, our results suggest a role for NMD in the
biological effects of SF3B1 mutations and indicate that SF3B1
mutant patients could potentially benefit from NMD
modulatory agents.
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