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RNA N6-methyladenosine (m6A) methylation is the most prevalent epitranscriptomic
modification in mammals, with a complex and fine-tuning regulatory system. Recent
studies have illuminated the potential of m6A regulators in clinical applications including
diagnosis, therapeutics, and prognosis. Based on six datasets of breast cancer in The
Cancer Genome Atlas (TCGA) database and two additional proteomic datasets, we
provide a comprehensive view of all the known m6A regulators in their gene expression,
copy number variations (CNVs), DNA methylation status, and protein levels in breast
tumors and their association with prognosis. Among four breast cancer subtypes, basal-
like subtype exhibits distinct expression and genomic alteration in m6A regulators from
other subtypes. Accordingly, four representative regulators (IGF2BP2, IGF2BP3,
YTHDC2, and RBM15) are identified as basal-like subtype-featured genes. Notably,
luminal A/B samples are subclassified into two clusters based on the methylation status
of those four genes. In line with its similarity to basal-like subtype, cluster1 shows
upregulation in immune-related genes and cell adhesion molecules, as well as an
increased number of tumor-infiltrating lymphocytes. Besides, cluster1 has worse
disease-free and progression-free survival, especially among patients diagnosed with
stage II and luminal B subtype. Together, this study highlights the potential functions of
m6A regulators in the occurrence and malignancy progression of breast cancer. Given the
heterogeneity within luminal subtype and high risk of recurrence and metastasis in a
portion of patients, the prognostic stratification of luminal A/B subtypes utilizing basal-
featured m6A regulators may help to improve the accuracy of diagnosis and therapeutics
of breast cancer.
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INTRODUCTION

Breast cancer is the most ubiquitous cancer in women
worldwide. It is a heterogeneous disease and has been classified
into different subtypes according to the gene expression profile.
These subtypes are termed as human epidermal growth factor 2
(HER2)-enriched, basal-like, and luminal subtypes (1, 2).
Standardization of breast cancer classification and optimal
treatment regimens for each subtype have acquired great
progress since the concept of subtype was first proposed.
Patients of HER2-enriched subtype benefit from HER2-
targeted therapy, such as trastuzumab and pertuzumab (3). In
contrast, patients of basal-like subtype have poor prognosis, high
risk of recurrence, and lack efficient therapeutic strategy (1, 4, 5).
Luminal subtype, accounting for 70% of breast cancers, has
positive response to endocrine therapies and the best prognosis
(6). However, substantial heterogeneity still exists within this
subtype (7–9). By utilizing immunohistochemical analysis of
progesterone receptor (PR) and Ki-67, luminal subtype could
be further classified into less-aggressive luminal A and more-
aggressive luminal B subtypes (10). Despite that, the standards of
PR status and Ki-67 index remain controversial across the world
or even among hospitals. Additionally, there also exists
undeniable intragroup heterogeneity bringing about
indeterminacy in clinical management (7, 11). Thus,
continuous efforts have been made to subclassify the intrinsic
subtypes into more precise subgroups. For instance, basal-like
cancers were further classified into 6 (12) or 4 (13) subgroups
based on their genomic and transcriptomic profiling. By taking
advantage of DNA copy number, DNA methylation, and gene
expression data, luminal subtype was successfully segregated into
subgroups with distinct molecular and clinical characteristics (8,
9, 11, 14). Nevertheless, despite the extensive investigations on
breast cancer, genetic variance still brings about different
responses to standard treatment protocol within the same
subtype. Therefore, it is important to comprehensively
understand the regulatory mechanism of gene alterations in
pathological status.

Other than extensively studied genomic, transcriptomic, and
epigenetic modulations, RNA m6A modification (m6A)
represents a vital layer of epitranscriptomic regulation of gene
expression and has drawn much attention in recent years. m6A is
the most prevalent epitranscriptomic modification in mammals.
Its formation is catalyzed by methyltransferase complex (also
called “writers”), which is composed of core components
METTL3, METTL14 (15–17), WTAP (18), and other subunits.
Conversely, RNA m6A methylation can be removed by
Abbreviations: m6A, N6-methyladenosine; TCGA, The Cancer Genome Atlas;
CNV, copy number variation; HER2, human epidermal growth factor 2; PR,
progesterone receptor; MAF, Mutation Annotation Format; t-SNE, t-distributed
Stochastic Neighbor Embedding; SD, standard deviation; CDF, cumulative
distribution function; KEGG, Kyoto Encyclopedia of Genes and Genomes; TILs,
tumor infiltrating lymphocytes; ssGSEA, single sample gene set enrichment
analysis; TSS, Transcription Start Site; NS, not significant; OS, overall survival;
DFS, disease-free survival; PFS, progression-free survival; UTR, untranslated
region; HR, hazard ratio; GEO, Gene Expression Omnibus; ICGC, International
Cancer Genome Consortium; CFEA, Cell-Free Epigenome Atlas.
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demethylases, better known as “erasers,” specifically FTO (19)
and ALKBH5 (20). The effects of m6A on gene expression are
mediated by m6A binding proteins which are usually called
“readers.” So far, m6A regulators have been unveiled to
function in regulating RNA alternative splicing, nuclear export,
degradation, and translation (21). Given their crucial roles in
many different physiological contexts, aberrant expression of
m6A regulators could incur the occurrence or progression of
multiple cancers through disturbing the m6A-dependent RNA
metabolism (22).

Aberrant expression of m6A regulators, including METTL3,
METTL14, WTAP, ALKBH5, and FTO, has been identified in
breast cancer, as well as their potential prognostic values (23, 24).
Mechanistically, upregulation of METTL3, METTL14, and FTO
expression exhibits oncogenic roles by promoting cells
proliferation, migration, or invasion in m6A-dependent
manner (25–28). On the other side, hypoxia-dependent
expression of ALKBH5 and ZNF217 is associated with the
maintenance and specification of breast cancer stem cells via
their inhibitory role on m6A methylation of mRNAs encoding
pluripotency factors NANOG or KLF4 (29, 30). Despite the
progress in the above regulators, there is still a lack of
comprehensive analysis to excavate the roles and clinical
applications of all the known m6A regulators in breast cancer.

Recently, bioinformatics analyses provide convenient tools in
identifying the m6A regulators applicable in tumor classification
and prognosis prediction in multiple cancers (12, 31–35). In this
study, we analyzed the molecular alterations of m6A regulators
and found their distinctive features in breast cancer. Besides,
survival analysis revealed the prognostic values of several m6A
regulators in breast cancer. Our results suggest their critical roles
in the initiation and progression of breast cancer and diverse
regulatory mechanisms of them. Furthermore, according to the
DNA methylation status of 11 probes located on basal-like
subtype-featured m6A regulators, luminal A and luminal B
subtypes were further segregated into two clusters respectively,
which differed in the enrichment of tumor infiltrating
lymphocytes (TILs) and patients’ prognosis. Subclassification
of luminal subtype will provide additional prognostic
information in an attempt to improve personalized treatment
of breast cancer.
MATERIALS AND METHODS

Data Collection
Six types of breast cancer datasets (Table S1) originated from the
Cancer Genome Atlas (TCGA) database (36) were downloaded
from UCSC xena platform (37): the gene expression profiles
obtained were originally generated from the Illunima HiSeq 2000
platform and transformed into log2(RSEM+1) format; somatic
mutation data was compiled in Mutation Annotation Format
(MAF); gene-level copy number variations (CNVs) were
measured experimentally using the Affymetrix Genome-Wide
Human SNP Array 6.0 platform and preprocessed with GISTIC2
method (38); DNA methylation levels estimated by beta values
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were measured based on the GPL13534 platform (Illumina
Infinium HumanMehytlation450 Bead-Chip array). The beta
values of DNA methylation are continuous variables between 0
and 1, representing the percentage of methylated alleles; miRNA
expression data was generated from IlluminaHiseq platform,
while the miRNA-target interactions were downloaded from
miRTarBase database (39); phenotype data contained the
survival and subtype information of each sample.

Proteomic datasets were obtained from another two
independent studies. The first proteomic study applied a
quantitative liquid chromatography/mass spectrometry-based
proteome analysis to 65 breast tumors and 53 adjacent non-
cancerous tissues (40). This dataset was used for comparing
expression between tumor and normal samples. The other study
utilized high-resolution accurate-mass tandem mass
spectrometry method and contained 105 breast tumors with
explicit information of subtyping and prognosis, which was
applied for comparison among subtypes and for survival
analysis (41).

Correlation Analysis
The Pearson correlation coefficients between gene expression
and DNAmethylation, copy number, or miRNA expression were
computed in R with cor.test function, respectively. Only the DNA
methylation probes that had missing values in less than 50% of
samples were included for the analysis. Different versions of
miRNA IDs were converted through miRBaseVersions.db R
package (42).

Determination of Basal-Featured m6A
Regulators
The importance of m6A regulators in distinguishing basal-like
samples from other subtypes was ranked by performing random
forest algorithm based on their gene expression levels. This
procedure was processed in R with RandomForest package
(43). Furthermore, the variable selection was determined by
using varSelRF R package (44).

Samples Clustering Analysis
Based on phenotype data, only normal samples and breast tumor
samples allocated to explicit subtypes were included in sample
clustering analysis. t-Distributed Stochastic Neighbor
Embedding (t-SNE) analysis was performed with the
expression values of all 28 m6A regulators using the tsne R
package (45). Unsupervised hierarchical clustering analysis was
performed with filtered DNA methylation probes, whose beta
values should meet the below criteria (1): absolute value of
Pearson correlation coefficient with gene expression was
greater than 0.3; (2) standard deviation (SD) among all
samples was higher than 0.2. Consensus clustering that
determined the number of clusters for luminal and basal-like
samples was implemented with ConsensusClusterPlus package in
R by resampling iteration (50 iterations, resampling rate of 80%).
The cluster number was determined according to the relative
change in area under the cumulative distribution function (CDF)
curve (46). The heatmap corresponding to the consensus
clustering was generated with pheatmap R package.
Frontiers in Oncology | www.frontiersin.org 3
Differential Expression Analysis
Differentially expressed genes between cluster1 and cluster2
samples were defined with DESeq2 R package (47). Briefly, the
original log2(RSEM+1) values were transformed into RSEM
values and grounded to integers, then the expression matrix
was imported using the DESeqDataSetFromMatrix function.
Genes that met the criteria of adjusted P < 0.05 and
FoldChange > 1.5 or < 0.66 were regarded as differentially
expressed genes between cluster1 and cluster2 samples.

Functional Enrichment Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis of the differentially expressed genes between
cluster1 and cluster2 samples was implemented with
clusterProfiler R package (48). Marker genes for each immune
cell population were curated from published research (49), the
relative abundance of different types of TILs in each sample was
assessed by single sample gene set enrichment analysis (ssGSEA)
method (50) in GSVA R package.

Statistical Analysis
All analyses were implemented with R computing framework
(v3.6.1). Wilcoxon rank-sum test was employed to compare the
difference in expression of m6A regulators between control and
breast tumor samples. The comparison of gene expression
among the four subtypes was implemented by Kruskal-Wallis
analysis. Univariate cox proportional hazard regression analysis
was performed to evaluate the correlation between gene
expression level, CNV, DNA methylation level and survival
time using the coxph function with survival R package. Kaplan-
Meier survival analyses and log-rank test were performed for
comparison of survival time between the two clusters which was
processed with survival R package (51).
RESULTS

Alterations of m6A Regulators Exhibited
Prognostic Values in Breast Cancer
Accumulating evidence has confirmed that aberrant expression
of m6A regulators is associated with tumorigenesis and
progression in multiple cancers. Thereby, we asked whether
this phenomenon could be observed in breast cancer. At
present, 28 genes have been identified as m6A regulators due
to their direct or indirect functions in m6A deposition, removal,
or recognition (Figure S1A). First, we examined the expression
of those m6A regulators in breast cancer and normal samples.
Among them, 17 out of 28 genes exhibited significantly
differential expression (P < 0.001), including KIAA1429,
FMR1, HNRNPA2B21, HNRNPC, IGF2BP1, PRRC2A,
YTHDF1, ZNF217 being upregulated and METTL14, WTAP,
ZC3H13, METTL16, ZCCHC4, FTO, EIF3A, IGF2BP2,
YTHDC1 being downregulated in breast cancer samples
(Figure 1A and Figure S1B), suggesting their potential
involvement in tumorigenesis of breast cancer.
January 2021 | Volume 10 | Article 611191
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To our knowledge, gene expression could be manipulated by
multi-layered genomic features, such as DNA mutation, CNV,
DNA methylation, and miRNA expression. To find out the
abnormal regulatory elements for each m6A regulator in breast
cancer, comparisons were implemented sequentially in breast
cancer versus normal samples. The frequencies of gene mutation
in all 28 m6A gene regulators were relatively low (Table S2). In
contrast, their CNVs were prevalent for most m6A regulators.
Particularly, in contrast to their low CNV frequencies (< 5%) in
normal samples, CBLL1, METTL14, RBM15, IGF2BP1,
YTHDC1, and YTHDF2 exhibited more than 20% difference
in their frequencies of CNVs between tumor and normal samples
(Figure 1B and Table S2). Next, we performed correlation
analysis between copy numbers and gene expression levels to
evaluate the possible effect of CNVs on gene expression. Eight
regulators, including KIAA1429, METTL16, WTAP, ZCCHC4,
ALKBH5, YTHDF1, YTHDF2, and YTHDF3 exhibited
significant correlations (R > 0.6) between gene expression
levels and copy numbers in breast tumors (Figure 1C and
Table S3). It indicated that CNVs of these eight genes might
be one of the causal factors to perturb their gene expression in
the tumors.

In parallel, we also compared the DNA methylation levels of
m6A regulators between tumor and normal samples. Among the
593 probes located in these 28 genes, 23 probes located on 6
genes, including CBLL1, FTO, IGF2BP1, IGF2BP2, IGF2BP3,
and ZNF217, showed significant differences in their methylation
patterns between tumor and normal samples (|Dbeta-value| > 0.2
and P < 0.05) (Figure 1D). Correlation analysis between the
levels of DNA methylation and gene expression was further
performed with all the breast cancer samples. Significant
correlation (|R| > 0.3 and P < 0.05) was observed in WTAP,
ZC3H13, ZCCHC4, FTO, ALKBH5, YTHDC2, IGF2BP2, and
IGF2BP3, implying a possible role of DNA methylation in
shaping their gene expression in breast cancer (Table S4).
Markedly, negative correlation with gene expression levels was
solely observed in the probes located on potential promoter
regions, while positive correlation existed in gene body and
3’UTR regions only (Figure 1E and Table S4). This
phenomenon implied that the DNA methylation in different
genomic regions might have opposite effects on the gene
expression (52, 53). In terms of miRNA regulation, despite the
positive and negative relation observed between miRNA and
m6A regulator expression, their correlation seemed to be weaker
than that with copy number and DNA methylation (Table S5).

Given the roles of m6A regulators in predicting prognosis
observed in various cancers, we further sought to explore their
potential prognostic values in breast cancer. Univariate cox
regression analysis was performed with gene expression, copy
number, and DNA methylation. In terms of gene expression,
METTL3, RBM15B, HNRNPC, YTHDC1, and ZNF217
appeared to be protective factors with HR < 1, while IGF2BP1
and YTHDF3 were risky genes with HR > 1. Notably, higher
expression of IGF2BP1 was a risky factor for overall survival
(OS), disease-free survival (DFS) and progression-free survival
(PFS) (Figure 2A). Additionally, it turned out that CNVs of m6A
Frontiers in Oncology | www.frontiersin.org 4
regulators also had prognostic values. Thereinto, copy number
loss of FTO was a protective factor, while copy number gain of
another 9 m6A regulators marked a worse prognosis (Figure 2B).
Particularly, copy number loss of ZNF217 was associated with
shorter OS, DFS and PFS of breast cancer patients. Regarding
DNA methylation, we identified a total of 74 CpG sites located
on 19 genes whose DNA methylation levels were associated with
the OS, DFS or PFS of breast cancer patients (Figure 2C). Most
of the methylation sites exhibited protective roles in prognosis.
Conversely, higher methylation levels of 16 CpG sites located on
WTAP, RBM15B, EIF3A, FMR1, HNRNPA2B1, IGF2BP1,
IGF2BP2, IGF2BP3, and YTHDF3 were associated with poor
prognosis. Intriguingly, although located on the same genes,
methylation levels of distinct sites had opposite roles in
predicting prognosis. Inconsistently, all significantly predictive
methylation sites on FTO and YTHDC1 exhibited protective
values in prognosis.

In addition to the genetic and transcriptional alterations of
m6A regulators, we further explored whether we could detect any
changes at protein level. By comparing tumor and normal
samples, we found that six proteins were differentially
expressed in breast cancer significantly (P < 0.001), including
EIF3A, HNRNPA2B1, HNRNPC, RBMX, YTHDF1, YTHDF2
(Figure 3A). Among them, three genes (HNRNPA2B1,
HNRNPC, YTHDF1) exhibited consistently aberrant
expression in both RNA and protein levels while EIF3A had
reverse change direction in RNA and protein levels. Besides, we
performed cox regression analysis to evaluate the prognostic
values of m6A regulators at protein level (Figure 3B). As a result,
IGF2BP2 and IGF2BP3 showed significant prognostic values of
being risk factors (HR > 1) for OS of breast cancer patients.

Together, we offered a comprehensive view of genetic,
transcriptional, and post-transcriptional alterations of 28 known
m6A regulators in breast cancer, indicative of their possible roles in
tumorigenesis and diverse regulatory mechanisms. Moreover, a
few genes were identified to be potential predictors for patient
survival based on their changes in gene expression, copy numbers,
DNA methylation, or protein levels.
Diverse Expression Patterns and
Regulations of m6A Regulators Among the
Four Subtypes Revealed the Unique
Characters of Basal-Like Subtype
Given the undeniable diversity in molecular mechanisms and
clinical characteristics among the four subtypes of breast cancer,
we next explored whether those m6A regulators exhibited any
differences among them. First, by comparing the protein
expression of all regulators, only IGF2BP2 exhibited differential
expression among the four subtypes (Figure S2).

To further investigate the variance among different subtypes,
we turned to compare them at the transcriptional level.
Ultimately, we found that 23 out of 28 m6A regulators
exhibited significantly distinct expression levels among the four
subtypes (Figure 4A). Next, to further explore and visualize the
dispersion of m6A regulators in all subtypes, we adopted t-SNE
January 2021 | Volume 10 | Article 611191
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A

B

D

E

C

FIGURE 1 | Expressions and genetic variations of m6A regulators in breast cancer. (A) Boxplot showing the m6A regulators with highly significant difference in their
RNA expression between normal and tumor samples (***P < 0.001). Different colors of axis labels stand for the changing direction of gene expression in tumor, with
red labels representing upregulation and blue labels representing downregulation. (B) Frequencies of the copy number gain/loss of each m6A regulator in normal and
tumor samples. (C) Correlation analysis between the gene expression levels and copy numbers of two representative genes (YTHDF1 and WTAP) with the highest
correlation coefficients. (D) Unsupervised hierarchical clustering heatmap showing the beta-values of 23 differentially methylated DNA probes between normal and
tumor samples. (E) Correlation analysis between IGF2BP2 expression level and its DNA methylation levels at two sites (cg12781915 and cg19952454).
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method to reduce the high dimensional expression data into a
lower-dimensional subspace. This result showed that breast
cancer samples could be segregated from normal samples
judged by the expression of m6A regulators. Strikingly, basal-
like subtype displayed evident segregation from another three
subtypes as well (Figure 4B). These results implied that the
function of those m6A regulators in the four subtypes varied
from each other. Particularly, basal-like subtype might exploit
unique regulatory mechanisms in malignant progression driven
by RNA m6A modification.

Next, we examined the frequencies of copy number gain/loss
in each subtype, respectively (Table S6). Although most genes
showed high frequencies of CNV without apparent discrepancy
among the four subtypes, we noticed that several genes involving
CBLL1, RBM15, PRRC2A exhibited particularly high frequencies
of copy number gain event in basal-like subtype. Of note, 51.1%
of basal-like samples contained copy number gain of CBLL1, and
other subtypes showed much lower proportion (23.9% of HER2,
18.3% of luminal A, and 19.8% of luminal B). Additionally, the
frequency of copy number loss in METTL3 was higher (60.0%)
in basal-like subtype than that in another three subtypes (HER2:
20.9%; luminal A: 11.6%; luminal B: 20.3%); copy number loss of
Frontiers in Oncology | www.frontiersin.org 6
YTHDC2 occurred in 75.6% of basal-like tumors while
significantly less in other samples (HER2: 40.3%; luminal A:
7.2%; luminal B: 24.0%) (Figure 4C). In short, CNVs of m6A
regulators were prevalent in breast tumors, and the basal-
like subtype exhibited the highest frequencies compared to
other subtypes.

Next, DNA methylation status of the m6A regulators was
compared among the four subtypes. Among all the probes
detected in the 28 regulators, we observed that most of the
CpG loci exhibited similar methylation levels among all samples
(Figure S3). Therefore, only the highly variable methylation loci
that met the criteria of standard deviation greater than 0.2 (SD >
0.2) across all tumor samples were included for subsequent
analysis. Unsupervised hierarchical clustering was performed
on both samples and probes to reveal the diverse methylation
patterns among tumor samples. As shown in Figure 4D, DNA
methylation patterns of a cluster of CpG sites on IGF2BP1,
IGF2BP2, and IGF2BP3 exhibited prominent variance among all
clustered groups. As for the clustering results, the sharpest
distinction was drawn between basal-like and other subtypes.
Nevertheless, parts of luminal samples were clustered together
with most basal-like samples and they shared similarities in
A

B

C

FIGURE 2 | Univariate cox regression analysis of m6A regulators. (A–C) Univariate cox regression analysis of the association between overall survival (OS), disease-
free survival (DFS), or progression-free survival (PFS) and gene expressions (A), copy number variations (B), or DNA methylation levels (C). Blue box, protective
factors (HR < 1 and P < 0.05); Red box, risky factors (HR > 1 and P < 0.05); white box, P > 0.05. The sample size used in each cox regression analysis was marked
in brackets.
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methylation levels. The discrete distribution of luminal samples
reflected the noticeable intragroup heterogeneity within luminal
A/B subtype revealed by the DNA methylation levels of
m6A regulators.

In general, the above results indicated that most m6A
regulators examined in this study possessed distinct molecular
characteristics among the four subtypes. Particularly, the basal-
like subtype displayed a unique feature in the aspect of gene
expression, CNV and DNA methylation. Of note, DNA
methylation analysis distinguished a cluster of samples
consisting of basal-like subtype and a part of luminal samples
due to their similar DNA methylation patterns.

Subclassification of Luminal Subtype
Breast Cancers Based on DNA
Methylation of m6A Regulators
Although it is widely accepted that basal-like breast cancers have
the highest tendency of recurrence and metastasis, some patients
allocated to luminal subtype also suffer from early recurrence
and metastasis which poses a big challenge in clinical practice.
Given the unique profile of m6A regulators in basal-like subtype
and high intragroup heterogeneity within luminal subtype, we
asked if the m6A features of basal-like subtype could be applied
to subclassify the luminal subtype and to distinguish the luminal
Frontiers in Oncology | www.frontiersin.org 7
samples which resembled basal-like subtype in the recurrent and
metastatic property. To address this question, we firstly made
efforts to obtain the basal-like subtype-featured m6A regulators.
Based on the gene expression of 28 regulators, random forest
machine learning was used to rank the gene importance and
varSelRF method for variable selection. We consequently
identified four genes (IGF2BP2, IGF2BP3, YTHDC2, and
RBM15) as important predictors in distinguishing basal-like
subtype from other subtypes (Figures 5A, B). Then, the
expression values of those four genes were imported to
consensus clustering analysis for both basal-like and luminal
breast cancers. Unexpectedly, we failed to subclassify luminal
samples in this way (Figures S4A, B).

Our previous clustering analysis of DNA methylation sites
revealed that a certain number of luminal samples exhibited
similar patterns to basal-like subtype in their DNA methylation
patterns of highly variable CpG loci (Figure 4D). Therefore, we
examined the possibility of using the DNAmethylation status on
those four genes for patients’ subclassification. Following the
criteria of large standard deviation (SD > 0.2) and high
correlation with gene expression (|R| > 0.3), 11 probes located
on IGF2BP2 and IGF2BP3 were screened out. Consensus
clustering was subsequently implemented in R with the beta
values of 11 probes, and k = 2 was the optimal result, with
A

B

FIGURE 3 | Expressions and survival analyses of m6A regulators at protein level. (A) Comparison of m6A regulators between tumor and normal samples at protein
level. The change direction was exhibited by label colors, with red representing for upregulation and blue representing for downregulation. ns, P > 0.05; *P < 0.05;
**P < 0.01; ***P < 0.001. (B) Univariate cox regression analysis of the association between protein expression levels and OS of patients. Blue box, protective factors
(HR < 1 and P < 0.05); Red box, risky factors (HR > 1 and P < 0.05); white box, P > 0.05.
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A

B

D

C

FIGURE 4 | Expressions and genetic variations of m6A regulators among the four subtypes in breast cancer. (A) Heatmap showing the expression of m6A
regulators and their differences among the four subtypes. ns, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. (B) t-SNE plot of normal and breast tumor samples
showing the separation of normal and Basal-like samples from other groups. The colors were assigned according to sample type. (C) Frequencies of copy number
gain/loss of m6A regulators in each subtype. The upper triangle of a single rectangle displays the frequency of copy number gain of each gene in each subtype, and
the lower triangle displays the frequency of copy number loss. (D) Unsupervised hierarchical clustering analysis for four subtypes of tumors based on 40 highly
variable DNA methylation probes (SD > 0.2). LumA, luminal A; LumB, luminal B; Her2, HER2-enriched; Basal, Basal-like.
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clustering stability increasing from k = 2 to 9 (Figures 5C, D).
Strikingly, according to the clustering results, luminal subtypes
were successfully divided into two clusters, in which cluster1 was
composed of all basal-like samples and parts of luminal samples,
while cluster2 was composed of luminal samples only (Figure
5E). As for these two clusters, the methylation patterns of 11
probes in luminal-cluster1 samples were similar to basal-like
samples rather than luminal-cluster2 samples. Interestingly, both
luminal A and luminal B subtypes were divided into two groups
and distributed in the two clusters.

To better understand the differences between the two clusters,
we performed differential expression analysis and identified
Frontiers in Oncology | www.frontiersin.org 9
2,071 upregulated and 655 downregulated genes (adjusted P <
0.05 and FoldChange > 1.5 or < 0.66) (Table S7). Next, KEGG
functional enrichment analysis revealed that the upregulated
genes in cluster1 of both luminal A and luminal B subtypes
were mostly enriched in immune-related and cell adhesion-
related pathways (Figure 6A and Table S8). To further
decipher the distinct immune traits between the two clusters,
we took advantage of GSVA method to evaluate the relative
quantity of immune cell populations infiltrated in each sample.
The results showed that samples in cluster1, similar to that in
basal-like subtype, had higher enrichment in most kinds of
immune cells than those in cluster2 (Figure 6B).
A B

D

E

C

FIGURE 5 | Identification and consensus clustering analysis of basal-featured m6A regulators. (A) Random forest analysis ranking the importance of m6A regulators
in basal subtype segregation based on their gene expression levels. (B) Importance spectrum plots for optimizing the number of relevant variables according to
random forest analysis. (C) Relative change in area under cumulative distribution function (CDF) curve based on results of consensus clustering for k = 2 to 9.
(D) Consensus clustering matrix for k = 2. (E) Heatmap showing the methylation levels of 11 probes utilized for samples classification in the two clusters.
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Given that cluster1 possessed similar m6A features with
basal-like subtype and higher expression of immune-related
genes, we further examined their clinical relevance in the two
clusters. Comparison of survival status revealed that patients
fitting in cluster1 had worse DFS than those in cluster2 (Figure
6C), but the difference of OS and PFS between the two clusters
was indistinct (Figures S5A, B). To rule out the impact of
different subtypes on prognosis, we next compared the two
clusters within each subtype separately. It turned out that
Frontiers in Oncology | www.frontiersin.org 10
within luminal B subtype, patients in cluster1 had worse DFS
than cluster 2 (Figure 6D), although no significant difference
was observed in luminal A subtype (Figures S5C–E).
Furthermore, in further consideration of the impact of
disease stage to patient prognosis, comparisons were
processed within each stage of luminal B subtype.
Consequently, the most significant difference in both DFS
and PFS was observed within the patients diagnosed with
stage II of luminal B subtype (Figures 6E, S5F–G).
A

B

D E

C

FIGURE 6 | Comparison of functional and clinical relevance between the two clusters in luminal samples. (A) KEGG enrichment analysis of genes upregulated in
cluster1 within luminal A and luminal B subtypes, respectively. (B) Heatmap showing relative quantities of infiltrated lymphocytes in the two clusters. (C) Comparison
of DFS between the two clusters. (D) Comparison of DFS between cluster1 and cluster2 samples in luminal B subtype. (E) Comparison of PFS between the two
clusters among patients diagnosed as stage II in luminal B subtype. The sample size of each group was marked in brackets.
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Overall, we identified basal-like subtype-featured m6A
regulators, and further utilized their methylation patterns to
successfully subclassify the luminal A/B tumors into two clusters,
respectively. In line with the enrichment of immune-related genes,
cell adhesion molecules and higher enrichment of tumor infiltrating
lymphocytes, cluster1 samples, especially those allocated to luminal
B subtype, had higher risk of disease recurrence.
DISCUSSION

With our increasing knowledge of m6A methylation in
modulating RNA metabolism, how dysregulated m6A is
involved in cancer has attracted much more attention than ever.
Here, we examined the distinctive expression of m6A regulators
and the multilayered regulation on them in breast cancer.
Comparison among the four subtypes revealed a unique m6A
feature of basal-like subtype from others. Furthermore, according
to the DNA methylation status of 11 probes located on basal-
featured m6A regulators, luminal subtypes were subclassified into
two clusters with significantly different prognosis.

Till now, a few of studies have shown aberrant expression of five
m6A regulators in breast cancer and clarified the molecular
mechanism of ALKBH5- and ZNF217-mediated tumor
occurrence (23, 25, 26, 28–30). Here we found a total of 17 m6A
regulators exhibiting aberrant gene expression in breast cancer.
Despite that some of them have been confirmed an oncogenic or
tumor-suppressive role in hepatocellular carcinoma, leukemia,
glioblastoma, and others (21), how these regulators are involved
in the onset and progression of breast cancer remains elusive yet.
Besides, we reported for the first time that CNV and DNA
methylation change of m6A regulators might participate in
tumorigenesis of breast cancer by shaping the gene expression.
For instance, the highest correlation between copy numbers and
gene expression levels was observed in YTHDF1, while IGF2BP2
has the strongest negative correlation between its DNAmethylation
and gene expression levels. Therefore, characterization of their
functions and associated regulatory mechanism will shed new
light into the mechanistic study of breast cancer from the
viewpoint of RNA m6A methylation. In addition, we found that
gene expression, copy numbers, DNA methylation levels and
protein expression of several m6A regulators had significant
correlation with either poor or improved disease outcomes, which
could provide additional prognostic information and assist with
precise medicine of breast cancer. It’s worth noting that, since gene
expression and copy numbers or DNA methylation levels are not
always correlated, they may have different or even opposite
prognostic values. This inconsistency may arise from the
complicated regulatory network of gene expression. For instance,
multiple copies of a gene could be regulated differentially due to
their corresponding chromatin environments (54). Furthermore,
gene duplications that do not include distal regulatory elements
important for the gene expression will not contribute to higher
expression (55). On the other side, the effects of DNA methylation
on gene expression are dependent to a large extent on the genomic
locations of DNA methylation sites. Concretely, methylation in
Frontiers in Oncology | www.frontiersin.org 11
promoter region usually negatively correlates with gene expression,
while methylation in the gene body does not block and might even
stimulate transcription elongation (56). For example, among the 15
DNA methylation probes of IGF2BP3 identified in our study, the
levels of 10 methylation occurring in the promoter region showed a
strong negative correlation with gene expression, while the opposite
trend was observed with the four methylation sites in the gene body.
Hence, although luminal subtype could be subclassified into two
clusters based on the methylation levels at specified CpG loci of
IGF2P2 and IGF2BP3, we did not observe apparent difference in
their gene expression levels between the two clusters.

Among the 28 regulators, IGF2BP2, IGF2BP3, YTHDC2, and
RBM15 were identified as basal-like subtype-featured m6A
regulators. Among them, IGF2BP2, IGF2BP3 and RBM15 were
highly expressed in basal-like tumors while YTHDC2 was lowly
expressed in them (Figure 4A). Consistent with our findings,
Barghash et al. reported that increased expression of IGF2BP2
was regarded as a feature of basal-like subtype and correlated
with short survival (57). In addition, suppressed IGF2BP2 could
hinder cell proliferation and invasion in breast cancer (58). As to
IGF2BP3, despite the comparable expression between breast cancer
and normal samples in our data, its expression in basal-like subtype
was significantly higher than that in other subtypes (Figure 4A). In
agreement with that, tumors with higher IGF2BP3 expression were
characterized by increased tumor size, advanced tumor stage, and
lymph node metastasis (59). Similarly, higher protein levels of
IGF2BP2 and IGF2BP3 were also proved to be associated with
high-risk prognosis in our results (Figure 3B). Different from
IGF2BP2 and IGF2BP3, although the oncogenic roles of
YTHDC2 and RBM15 have been identified in colon cancer (60)
and acute megakaryoblastic leukemia (61–63), their functions in
breast cancer await to be identified.

Breast cancer is a complex disease with large degree of
intertumoral and intratumoral heterogeneity. In recent years,
molecular subtyping distinguished by gene expression profiling in
breast cancer has contributed a lot to prolong patients’ survival due
to the improvement in precise diagnosis and targeting therapy (6).
Nevertheless, within each subtype, there still exists substantial
heterogeneity and therefore requires more extensive and thorough
investigation of breast cancer. In this study, in addition to the
significant difference between normal and cancer samples, the
performances of these m6A regulators in the four subtypes were
distinct from each other as well. Particularly, basal-like subtype is
unique in its gene expression, copy number, and DNAmethylation.
Given the fact that basal-like subtype is more aggressive and has a
worse prognosis than other subtypes (1, 4, 5), the unique features of
m6A regulators in basal-like subtype suggest their possible
involvement in tumor invasion and metastasis. In line with that,
higher expression of cell adhesion molecules was detected in
samples assigned to cluster1, further indicating the correlation
between m6A regulators and breast cancer malignancy.

Luminal breast tumors are the most common subtypes (64);
meanwhile, they are also highly heterogeneous in the aspect of
histology, gene expression profiles, genetic alterations, and clinical
outcomes (65). Despite endocrine therapy and chemotherapy
available for them, some patients of this subtype still suffer from
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relapse and poor prognosis (7, 66), thereby highlighting the
emergent need for early prediction for those latent patients.
Effective biomarkers can accurately instruct patients to access
suitable therapies, thus helping advanced patients to achieve
positive clinical response to treatment in a short time. As DNA is
more stable than RNAs or proteins and easily quantified, DNA
methylation is considered as a robust biomarker and promising
biomarker for early detection and diagnosis (67). In this study,
based on DNA methylation of m6A regulators, luminal samples
were subclassified into two clusters with distinct expression levels of
immune-related genes. According to previous studies, immune
environment of breast tumors has profound effects on patients’
prognosis and varies among the four subtypes. Accordingly, basal-
like subtype has the highest rate of TILs than other subtypes (68). In
the luminal-HER2- patients, a higher TIL number was associated
with shorter overall survival as well (69). This is consistent with our
results that cluster1 in luminal samples had higher number of TILs
and worse prognosis. Since the presence of TILs indicates better
sensitivity to neoadjuvant chemotherapy (69), our subclassification
strategy may provide a clue to recognize those luminal tumors more
suitable for neoadjuvant therapy. The unveiled immune variance
within luminal subtype in our study was also illustrated in two
published research. One of them performed segregation analysis of
luminal group based on immune-related genes and identified three
immune subtypes which owned distinct clinical characteristics (11).
The other study highlighted that even within luminal A subtype,
immune heterogeneity could not be ignored either, as revealed by a
large-scale transcriptome analysis. Both gene expression and DNA
methylation profiles were successfully applied to segregate luminal
A samples into two biologically distinct subgroups with different
expression patterns of immune-related genes (14). However, this
method exploited a large number of partitioning genes for
subclassification, which made it difficult to be translated into
clinical application. By contrast, our study put forward a small
gene set that could be applied to luminal subtype partition and
thereby is of more practical use. Mechanistically, as sample
clustering was implemented with DNA methylation of m6A
regulators, the different enrichment of TILs in luminal tumors
between the two clusters may be associated with the m6A RNA
methylation. RNAm6Amethylation has already been reported to be
correlated with immune responses, such as T cell homeostasis (70,
71), inflammatory response (72), antiviral immunity (73–77), and
anti-tumor immune response (78). Thereby, intensive mechanistic
studies are necessary to uncover the mechanism of how m6A
impacts tumor relapse or metastasis via its modulatory roles on
immune response.

Although our strategy could be successfully applied to subclassify
the luminal subtype and has predictive value in clinical, some
limitations should be noted here. First, given the existing
inconsistency between RNA and protein levels observed in other
types of cancers (79–81), it is important to depict the performance of
m6A regulators in breast cancers at protein level. Although the
additionally obtained two proteomic datasets provided certain
information about the function of m6A regulators in breast cancer
at protein levels, the sample size was not sufficient. So the conclusions
needed to be assured by well-designed experiments later on. Second,
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there was a lack of validation cohorts in our study. We searched out
for Gene Expression Omnibus (GEO), International Cancer Genome
Consortium (ICGC) and Cell-Free Epigenome Atlas (CFEA)
databases to filter the datasets that provided detailed clinical
information including intrinsic subtypes, survival status and
supported by platform Illumina HumanMethylation450 BeadChip.
While in consideration of all kinds of criteria, no proper data was
available. Third, due to the limited information of miRNA-mRNA
interactions available from database, miRNA-mRNA regulatory
network specifically existing in breast cancer may not be
completely included in our datasets. So extended interaction
information, particularly breast tissue-specific data is necessary for
more thorough studies. Last, the heterogeneity of breast tumors
represents a formidable challenge of successful cancer treatment.
Although our research has made efforts to explain the intertumoral
heterogeneity in luminal subtype, the intratumoral heterogeneity
remains elusive yet since the data analyzed here was obtained
based on mixed cell population rather than single cells.

In summary, our study explored the alteration of m6A regulators
at multiple levels in breast cancer and revealed their potential
prognostic values. Furthermore, by taking advantage of DNA
methylation of basal-featured m6A regulators, luminal A and
luminal B subtypes were both segregated into two clusters, which
are associated with different abundance of immune infiltrating
lymphocytes and prognosis of patients. Together, our study
expands the realm of mechanistic study in breast cancer and
discovers novel strategy in subclassifying luminal subtype for the
sake of personalized treatment.
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