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m6A RNA methylation, which serves as a critical regulator of transcript expression, has
gathered tremendous scientific interest in recent years. From RNA processing to nuclear
export, RNA translation to decay, m6A modification has been studied to affect various
aspects of RNA metabolism, and it is now considered as one of the most abundant
epitranscriptomic modification. RNA methyltransferases (writer), m6A-binding proteins
(readers), and demethylases (erasers) proteins are frequently upregulated in several
neoplasms, thereby regulating oncoprotein expression, augmenting tumor initiation,
enhancing cancer cell proliferation, progression, and metastasis. Though the potential
role of m6A methylation in growth and proliferation of cancer cells has been well
documented, its potential role in development of therapy resistance in cancer is not
clear. In this review, we focus on m6A-associated regulation, mechanisms, and functions
in acquired chemoresistance, radioresistance, and resistance to immunotherapy
in cancer.
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INTRODUCTION

Cancer remains a key public health concern posing a major threat to the world’s population.
According to Siegel et al. each year approximately1,806,590 new cases of cancer are being diagnosed
and around 606,520 people lose their life to cancer alone in the United States (1). The most
frequently used therapeutic regimens for cancer include surgery, chemotherapy, radiotherapy, and
more recently immunotherapy (2, 3). Although there have been breakthroughs and successes in
treating specific types of cancer, most strategies have not proven as efficacious as hoped or predicted.
One of the major causes of failure to treat cancer is a lack of understanding of the molecular
mechanism behind the therapy resistance. Chemoresistance is one of the major factors for treatment
failure in cancer. The chemotherapy drugs efficiently eradicates the rapidly dividing cells but poorly
eliminates the slow dividing cells, particularly when lower dose of drug is provided to balance its
cytotoxic effect on normal or non-transformed cells. This population of cells, which partially
responds to chemotherapy drug, contributes to development of chemoresistance. Ultimately, the
patients experience tumor relapse, which culminates with continued tumor growth and metastatic
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spread (4). The chemoresistance can be divided into two
categories: “intrinsic chemoresistance” where cancer cells are
inherently resistant prior to chemotherapy and “acquired
chemoresistance” where cancer cells acquire resistance during
prolonged treatment with agents that they initially displayed
sensitivity. The chemoresistant phenotype of cancer cells can be
attributed due to impaired apoptosis, altered cellular metabolism,
decreased drug accumulation, reduced drug-target interactions,
and increased populations of cancer stem cells (2). However,
these are the endpoint events and the causative factors
responsible for acquired chemoresistance is yet to be known.
Similarly, cancer cells develop resistance against ionizing
radiation (radioresistance) by enhancing DNA damage
response, altering the expression of oncogene/tumor
supressors, manipulating the tumor microenvironment, and by
regulating the cell cycle (5). Understanding the molecular
mechanisms behind the therapy resistance will enable us to
overcome the drug resistance in cancer.

With the discovery of methylation of O6-methylguanine-DNA
methyltransferase (MGMT) that sensitizes glioblastoma
multiforme (GBM) cells to temozolomide, epigenetic alterations
have been extensively studied to uncover the molecular
mechanism behind therapy resistance (6, 7). Approximately 100
different types of modifications can be observed at RNA level, but
m6A modification of RNA has gathered much attention. Since
then, researchers pushed their focus and discovered Writer,
Reader, and Erasers for RNA modification (8). Advancement of
techniques like high throughput sequencing enabled the scientific
community to uncover m6A enrichment at RNA. Modification of
m6A in transcriptome is not random, but happens at a consensus
sequences like DRACH (D =G, A, or U; R =G or A; H =A, C, or U),
which are enriched mostly in CDS as well as 3’UTR region (9, 10).
RNA methylation occurs on several sites including 5-methylcytosine
(m5 C), 7-methylguanosine (m7G), m1G,m2 G,m6G, N1 -methyl
adenosine (m1A), andm6A (11). Them6Amodification occurs via
“writers” (i.e., m6A methyltransferases), recognized by “readers”
(i.e., m6A-binding proteins), and removed by “erasers” (i.e., m6A
demethylases) in eukaryotes (12). Methyltransferase-like 3
(METTL3), METTL14, Wilms tumor 1-associated protein
(WTAP), KIAA1429, RNA-binding motif protein 15 (RBM15),
and zinc finger CCCH domain-containing protein 13 (ZC3H13)
forms the “writer” complex that initiates the m6A modification
(13, 14). YT521-B homology(YTH) proteins, insulin-like growth
factor 2 mRNA binding proteins (IGF2BPs), eukaryotic initiation
factor 3 (eIF3), heterogeneous nuclear ribonucleoproteins
(HNRNPs), and fragile X mental retardation proteins (FMRPs)
are included under “reader” complex that recognizes the m6A
RNA modification and initiates downstream signaling (13).
Obesity-associated protein (FTO) and alkB homolog 5
(ALKBH5) stimulate the demethylation process and are
included under “eraser” complex (15, 16). Extensive studies on
m6A modification indicated toward its contribution in regulation
of mRNA (17), long non-coding RNA (lncRNA) (18), microRNA
(19), and circular RNA (circRNA) (20). m6A modification being
an important RNA regulatory mechanism has been proved to play
a critical role in regulating RNA processing, transportation,
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translation, and decay. Methyltransferase-like 3 (METTL3)
methylates pri-miRNAs, enabling them to be recognized by
RNA-binding protein DGCR8 and thereby leading to miRNA
maturation (21). The global RNA modification study suggests that
RNA demethylase FTO was found to regulate pre-mRNA
processing including alternative splicing and 3′ UTR processing
(22). Studies also revealed that m6A is added to exons in nascent
pre-mRNA and its addition in the nascent transcript is a
determinant of cytoplasmic mRNA stability (22). Interestingly,
selective down regulation of METTL3 reduces the translation of
mRNAs bearing 5’ UTR methylation. In this study, it was found
that ABCF1 coordinates with METTL3 in m6A-facilitated and
eIF4F independent mRNA translation (23), demonstrating the
role of m6A methylation in mRNA translation. m6A-binding
protein YTHDC1 mediates export of methylated mRNA from the
nucleus to the cytoplasm, demonstrating the potential role of m6A
modification in RNA translocation (24). There is emerging
evidence indicating that m6A modification is strongly associated
with acquired therapy resistance in cancer. In this review, we have
focused on the mechanisms of RNA m6A modification-associated
therapy resistance and possible approaches to overcome it.
IMPLICATION IN CHEMORESISTANCE

Reprogramming chemoresistant cells to undergo drug induced
apoptosis is a viable approach to treat recurrent neoplastic
diseases. This can be achieved by selective downregulation of
anti-apoptotic factors or activation of pro-apoptotic factors in
tumor cells (2). Among several novel approaches, modulation of
N6-methyladenosine(m6A) RNA modification was found to be
an important strategy in various types of cancer cells to
overcome drug induced cell death. Various studies indicate
that m6A modification confers drug resistance by regulating
ABC transporters directly on transcript level or via upstream
signaling pathways (19). Similarly, studies suggested that m6A
modification affects the expression of BCL-2 with variable
outcomes depending on the different cancer types (25, 26).
Recent studies indicate that the m6A modification is involved
in the maintenance of CSCs in tumors, leading to drug resistance
and recurrence. Considering the potential role of m6A RNA
modification in development of chemoresistance, it can be a
viable therapeutic target to overcome chemoresistance.

Cisplatin Resistance and m6A Modification
Cisplatin is the first line of treatment for several neoplasms. In
1965, Barnett Rosenberg accidently discovered the role of
cisplatin in cell division. Further studies substantiated that it
is the most promising agent for treatment of cancer (27).
Writer protein METTL3 is involved in acquired cisplatin
resistance by regulating TRIM11 expression. Methylated RNA
immunoprecipitation (Me-RIP) study suggests that TRIM11
m6A level was higher in cisplatin resistant cells compared to
sensitive cells in nasopharyngeal carcinoma (NPC) lines.
Depletion of METTL3 results in reduced TRIM11 expression
that sensitizes NPC lines to cisplatin (28). Similarly, METTL3
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enhances the YAP1 m6A methylation at mRNA level and
stabilize its expression in human lung cancer lines. The
elevated YAP1 mediates cisplatin resistance in NSCLC (19).
Reader protein YTHDF1 depletion mediates cisplatin
resistance in NSLCC through KEAP1/NRF2/AKR1C1 axis and
higher expression of YTHDF1 showed better clinical outcome of
NSCLC patient (29). Erasers also play an important role in
acquired cisplatin resistance in several neoplasms. FTO
demethylates b-catenin mRNA and stabilizes the b-catenin in
cervical squamous cell carcinoma, thereby inducing chemo-radio
therapy resistance (30). In our study, we found that ALKBH5 is
directly regulated by human RNA helicase DDX3, which leads to
decreased m6A methylation in FOXM1 and NANOG nascent
transcript that contribute to cisplatin resistance in OSCC (31).

Kinase Inhibitor and m6A Modification
Kinase inhibitors have emerged as a potential strategy for
treatment of cancer. Currently, several FDA approved kinase
inhibitors are being evaluated in different phases of clinical trials
to treat cancer (32). m6A RNA modifications play an important
role in acquiring resistance against kinase inhibitors. A
comparative study in NSCLC cell lines suggests that higher
m6A enrichment scores can be found in afatinib resistant lines
as compared with sensitive cells (33). Similarly, RNA
methylation status was compared between TKI (tyrosine kinase
inhibitor) resistant and sensitive cells and it was found that cells
having hypomethylation showed greater tolerance for TKI and
better growth rate. FTO- enhances mRNA stability of prosurvival
transcripts and further induces resistance to tyrosine kinase
inhibitors (TKIs) in leukaemia cells (26). Depletion of
METTL3 induces sorafenib resistance in human liver cancer
lines. Mechanistically, it was found that depletion of METTL3
reduces the stabilization of FOXO3 mRNA and ectopic
overexpression of FOXO3 restores sorafenib sensitivity (34).

5-Fluorouracil Resistance and m6A
Modification
5-Fluorouracil (5FU) is a widely used anticancer drug in many
cancers. It is an analogue of uracil, which gets incorporated into
nucleic acids and interfere with nucleotide metabolism (35, 36).
For treatment of several neoplasms, the common chemotherapy
regimen involves TPF (Taxol, Platinum, and Fluorouracil) or
FOLFOX (Folinic acid, Fluorouracil and Oxaliplatin) (37). The
role of m6A in 5 FU resistance is not well studied except few
reports, which indicates m6A RNA modification augments the
chemosensitivity of 5 FU. METTL3 knockdown increases the
5FU sensitivity in pancreatic ductal adeno carcinomas (38).
Similarly, reader protein YTHDF1 knockdown results in
enhanced 5FU sensitivity in colorectal cancer (39).

PARP Inhibitor and m6A Modification
DNA damage is a common mode of action for most of the
anticancer drugs and absence of an efficient DNA repair system
in cancer cells leads to drug induced death. PARP (poly (ADP-
ribose) polymerase) is a key enzyme that plays important roles in
DNA damage response. PARP1 identifies and interacts with
single stranded DNA damage through its DNA binding
Frontiers in Oncology | www.frontiersin.org 3
domain. Further, PARP1 synthesizes poly(ADP) ribose (PAR)
and transfers it to acceptor proteins. PAR recruits repair proteins
to the damaged DNA site. Henceforth, PARP1 has been
established as an important target for cancer therapy. As many
as 8 different PARP inhibitors are in different phases of clinical
trial against various neoplasms (40–42). PARP inhibitors
generally bind to the cofactor and catalytic domain and
inhibits its enzyme activity (43). The most commonly used
PARP1 inhibitors are Olaparib, Rucaparib, Niraparib, and
Talazoparib (44). Olaparib is the first inhibitor used for clinical
trial in BRCA 1 mutant solid tumor (45). Only few studies with
m6A modification and PARP1i resistance are available in
literature. Fukumoto et al. (2019) performed a global m6A
modification profiling and found that in BRCA-mutated lines,
m6A modification stabilizes the expression of FZD10 mRNA,
which ultimately contributes to PARP inhibitor resistance.
Mechanistically it was found that enhanced expression of
FZD10 leads to activation of Wnt/b-Catenin signalling.
ALKBH5 and FTO knockdown decreased FZD10 mRNA
stability and sensitize the cell to PARP inhibitor (46). This
study clearly indicated that m6A modification plays a crucial
role during the development of PARPi resistance.

Gemcitabine and m6A Modification
Gemcitabine, a pyrimidine analogue, is used as chemotherapeutic
regimen in several neoplasms including pancreatic, ovarian,
breast, bladder, and small lung carcinoma. Moreover,
Gemcitabine enhances the survival rate of pancreatic cancer
patients up to 20% (47). Interestingly, Gemcitabine decreased
the expression of ALKBH5 in PDAC xenografts. Ectopic
overexpression of ALKBH5 sensitizes PDAC lines to
Gemcitabine. On the other hand, knockdown of ALKBH5 in
PDAC lines enhanced cell growth, proliferation, and migration.
RNA immunoprecipitation followed by sequencing data suggests
that in ALKBH5 knock down cells, increased m6Amodification at
the 3′ UTR region of the WIF-1 (Wnt inhibitory factor 1) mRNA
can be observed. Henceforth, the expression of WIF-1 is down
regulated in ALKBH5 KD cells, which in turns activate
Wnt pathway and enhances the expression of Wnt target genes
like C-MYC, Cyclin D1, and MMP-2 (48). On the contrary, knock
down of METTL3 enhanced the sensitivity towards many
chemotherapeutic drugs including gemcitabine (38).
IMPLICATION IN IMMUNOTHERAPY

Interestingly, m6A RNA modification also plays an important
role in regulating immune response in cancer patients. He et al.
analyzed the RNA sequencing data of 24 different m6A
regulators in 775 breast cancer patients from TCGA database
and categorized them in two subgroups. One group had a lower
RNA methylation status (RM1) and other had a high
methylation status (RM2). The RM1 group showed shorter
overall survival rate and higher enrichment of PI3K and KRAS
signalling. On the other hand, the RM2 group showed higher
numbers of tumor-infiltrating CD8+ T cells, helper T cells, and
activated NK cells, but lower expressions of PD-L1, PD-L2,
February 2021 | Volume 10 | Article 612337
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TIM3, and CCR4 than RM1 group (49). Similarly, the study by
Winkler et al. suggested that m6A modifications serve as a
negative regulator of interferon response by modulating the
turnover of interferon mRNAs (50). Writer, reader, and erasers
play important roles in immune surveillance. Rubio et al. suggest
that writer METTL14 depletion induces IFNb1 production,
whereas ALKBH5 depletion reduces IFNb1 production (51). T
cell homeostasis is very important for any kind of defense
balance, but depletion of writer METTL3 in CD4 cells
hampered the homeostasis of T cells (52). METTL3 depletion
in dendritic cells resulted in impaired maturation of dendritic
cell and led to weak costimulatory signal by CD40-CD80 as well
as exerted reduced T cell stimulation (53).The reader protein
YTHDF1 regulates immune response in melanoma cancer.
YTHDF1 deletion in mice showed slower growth of melanoma
and higher survival rate compared to WT YTHDF1 by
enhancing antigen specific CD8+ T cell antitumor response.
With depletion of YTHDF1 in dendritic cells, increased cross-
presentation of tumor antigens and the cross-priming of CD8+ T
cells was observed in vivo. It was found that lysosomal protease
enzyme in dendritic cells with m6A was recognized by
YTHDF1 (54).

After landmark discovery of PD1/PD-L1 and its role in
immune evasion of cancer cells, the immune check point
inhibitors (PD-1 inhibitors) have been established as potential
anti-tumor agents. Immunotherapy has contributed immensely
in terms of survival and quality of life in addition to
chemoradiotherapy. The m6A modifications are also reported
to play a key role in acquiring therapy resistance against
checkpoint inhibitors. FTO inhibition suppresses melanoma
Frontiers in Oncology | www.frontiersin.org 4
tumorigenicity and increased the m6A methylation in PD-1,
CXCR1, and SOX10 mRNA, henceforth enhancing the decay of
mRNA by YTHDF2. Selective blocking of FTO restores IFN-g
response and sensitizes anti-PD-1 treatment in vivo (55). A study
by Yi L et al. (56) suggest that m6A regulators are upregulated in
HNSCC as compared to normal counterpart. Further they have
demonstrated that m6A regulators show positive correlation
with PDL-1 in tumor immune microenvironment (TIME),
hence presenting the m6A regulators as viable therapeutic
targets in HNSCC (56). Zhang et al. (57) suggested that low
m6A scores activate immune cells to infiltrate TIME and
increases the survival rate of gastric cancer patient compared
with high m6A score with low survival rate. Low m6A score
increased the neoantigen load as well as sensitized anti PDL-1
immunotherapy. Eraser protein ALKBH5 modulates TIME,
deletion of ALKBH5 in colon and melanoma syngeneic tumor
model enhances the immune cells infiltration in TIME.
Mechanistically ALKBH5 modulates Mct4/Slc16a3 expression
and lactate content in TIME, which ultimately suppressed the
Treg and myeloid derived Cell. Deletion of ALKBH5 sensitizes
the tumor against the anti PD-1 treatment and GVAX vaccine
(58). Overall, these studies suggest that m6A methylation is a
major regulator of immune response in tumor cells and TIME.
IMPLICATION IN RADIOTHERAPY

Other than chemotherapy, radiation therapy is a major treatment
regimen for cancer patients that target cancer cells by damaging the
DNA. The concurrent chemo radio therapy is the most common
FIGURE 1 | Overview of m6A regulation in Chemotherapy, Immunotherapy, and Radiotherapy- 1) Chemotherapeutic drugs Cisplatin, Kinase inhibitor modulates
m6A regulator (Writer-METTL3, Raeder-YTHDF1, Eraser-ALKBH5, FTO) stabilizes the oncogene mRNA and induces chemoresistance. 2) Tumor immuno
microenvironment (TIME) (B cells, dendritic cells, T cells, NK cells, fibroblast) activated by m6A regulator and induces immunotherapy resistance for cancer cells. 3)
Radiation induces m6a regulator and stabilizes mRNA of cancer stem cell. In the figure, the small upward black arrow indicates “upregulation” and the downward
black arrow indicates “down regulation”.
February 2021 | Volume 10 | Article 612337

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Shriwas et al. m6A Modification in Therapy Resistance
therapeutic regimen followed by surgery (59). Radiation in GBM
(glioblastoma) cells enhances the METTL3 expression and it
increases the stability of SOX2 by recruiting hUR (human antigen
R) and induces resistance against radiation (60). Similarly, selective
knock down of METTL3 results in sensitizing pancreatic cancer
lines to radiotherapy (38). Eraser protein FTO also induces chemo
radio resistance in cervical squamous carcinoma by demethylation
of b-catenin mRNA, which stabilizes its expression (30).
CONCLUSION

Therapy resistance in cancer is a consequence of multiple factors
such as individual variability in sensitivity to the drug, location of
the tumor, tissue lineage, tumor aggressiveness, and intracellular
molecular alteration. As discussed earlier, deciphering the
consequences of m6A modification on selective transcripts can
lead to understanding the molecular mechanism of the therapy
resistance (Figure 1 and Table 1), thereby enabling us to optimize
the combination therapy of existing drugs or to design specific
drugs to overcome resistance property. However, the disadvantage
lies on the insufficient studies regarding the selectivity of target
Frontiers in Oncology | www.frontiersin.org 5
mRNA by m6A methyltransferases, demethylases, and binding
reader proteins. Along with that localization of m6A modified
target transcripts, target specificity of m6A writer, reader, and
eraser protein and their varied mode of action in different
neoplasms remain unclear.
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