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Glioblastoma multiforme (GBM) is the most common primary brain malignancy and is
often resistant to conventional treatments due to its extensive cellular heterogeneity. Thus,
the overall survival of GBM patients remains extremely poor. Insulin-like growth factor (IGF)
signaling entails a complex system that is a key regulator of cell transformation, growth
and cell-cycle progression. Hence, its deregulation is frequently involved in the
development of several cancers, including brain malignancies. In GBM, differential
expression of several IGF system components and alterations of this signaling axis are
linked to significantly worse prognosis and reduced responsiveness to temozolomide, the
most commonly used pharmacological agent for the treatment of the disease. In the
present review we summarize the biological role of the IGF system in the pathogenesis of
GBM and comprehensively discuss its clinical significance and contribution to the
development of resistance to standard chemotherapy and experimental treatments.

Keywords: insulin/insulin-like growth factor system, insulin-like growth factor signaling pathway, IGF-binding
protein, glioblastoma, drug resistance
INTRODUCTION

Malignant gliomas represent 30% of all intracranial tumors and include a heterogeneous group of
neoplasms that arise from multiple cell types with neural stem cell-like properties (1). In the US, the
annual incidence of gliomas is 3.2 cases for every 100,000 individuals and about half of them are
classified as glioblastoma or glioblastoma multiforme (GBM) (2). Incidence increases with age and
is more common in men than in women and in individuals of caucasian ethnicity (3). Disease
prognosis is poor, with a 35% survival rate at 1 year and <5% at 5 years (4). GBM can be classified as
primary when it develops within a few months without known precursor states, or secondary, when
a low-grade tumor evolves in a GBM. Surgery, radiation therapy and chemotherapy with alkylating
agents such as temozolomide (TMZ) represent the mainstay of GBM treatment (5). Additionally,
several small molecules have been tested in the last few years (6, 7). However, none of these
strategies represent an effective cure for GBM, as this malignancy displays extensive intra-tumoral
heterogeneity that favors disease recurrence (8, 9). Genomic profiling carried out by the The Cancer
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Genome Atlas (TCGA) consortium on 200 GBM samples as well
as a complementary study by Pearson and colleagues revealed
recurrent genetic alterations involving TP53, retinoblastoma
(Rb) and different receptor tyrosine kinases (RTK) pathways
(10, 11).

RTKs are a family of cell surface receptors, comprising the
epidermal growth factor receptor (EGFR), the fibroblast growth
factor receptor (FGFR), the hepatocyte growth factor receptor
(HGFR/c-MET), the platelet-derived growth factor receptor
(PDGFR), the vascular endothelial growth factor receptor
(VEGFR) and the insulin-like growth factor 1 receptor (IGF-
1R). The latter is part of the insulin and insulin-like growth
factor (IGF) family that includes three ligands (insulin, IGF-I and
IGF-II), different cell surface receptors (the insulin receptor, the
IGF-IR, IGF-IIR and hybrid heterodimer receptors between the
insulin receptor and IGF-IR) and six IGF-binding proteins
(IGFBP 1 to 6). This complex system promotes the release of
IGFs modulating their interaction with receptors and different
IGFBP proteases (12–15).

In the extracellular compartment, insulin and IGFs activate
intracellular signaling pathways by binding—with different
affinity—their cognate and/or non-cognate receptors. The
interaction between ligands and receptors results in the
recruitment of downstream insulin receptor substrates (IRSs)
and SRC homologous and collagen-like (SHC) proteins. These
cytoplasmatic proteins modulate the activation of the PI3K/
AKT/mTOR axis and the RAS/RAF/MEK/ERK pathway
involved in the transcription of genes regulating cell
proliferation, cell-cycle progression, cell motility and
apoptosis (16).

Aberrant activation of the Insulin/IGF signaling plays a
crucial role in dysregulation of multiple cellular pathways in
different tumors and its atypical activation is usually associated
with a poor prognosis (17–21).

In the present review we summarize current research on the
role of the IGF system in the pathogenesis of GBM and discuss
the clinical significance and therapeutic implications of this
pathway in the development of resistance to both currently
approved and experimental treatments.
EXPRESSION OF IGF SYSTEM
COMPONENTS IN GBM

Studies on the expression of Insulin/IGF system components in
human GMB samples are often conflicting and depend on the
detection technique employed.

Use of in situ hybridization (ISH) or immunohistochemistry
(IHC) techniques for the detection of IGF-I and II revealed high
levels of these two ligands in GBM samples compared to normal
glial tissue (22–25). On the contrary, analyses conducted by real-
time PCR on tissue microarrays showed no change in IGF-I or
IGF-II transcripts between normal glial samples and high-grade
gliomas, including GBMs (23, 25).

Both IGF-IR and IGF-IIR are overexpressed in GBMs
compared with normal brain and this overexpression is often
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associated with inferior survival and a less favorable response to
therapy (23, 26).

IGFBPs overexpression is also well documented in
glioblastoma. Different studies demonstrate that IGFBP-2 is
overexpressed in glioma cells showing a distinct progression-
related expression change from low- to high-grade gliomas (27–
29). Indeed, high IGFBP-2 levels promote both proliferation and
invasion of glioma cells and have been linked to an adverse
prognosis in high-grade gliomas (30–32).

IGFBP-3, IGFBP-4 and IGFBP-5 transcripts are significantly
higher in GBM compared to low-grade gliomas or normal
samples, supporting their role in the pathogenesis of gliomas.
Furthermore, IGFBP-4 up-regulation favors epithelial-
mesenchymal transition (EMT), proliferation, migration and
invasion (29, 33, 34). Unlike other IGFBPs, the expression of
IGFBP-6 inversely correlates with glioma grade and higher
plasma IGFBP-6 levels have been associated with a better
prognosis (15, 35).

Therefore, dysregulation of several IGF system components is
usually associated with a more aggressive disease displaying poor
response to therapy and a shorter survival (15).
THE IGF SIGNALING PATHWAY IN GBM

IGF-I interaction with IGF-IR appears to trigger low-grade
glioma progression to GBM (Figure 1A). Specifically, IGF-IR
stimulation by IGF-I promotes glioma cell proliferation and
migration by negatively or positively modulating PI3K/AKT
signaling through a mechanism conditioned by a specific
cellular context (36, 37). In a subpopulation of glioma stem
cell-like cells identified as recurrence-initiating stem-like cancer
(RISC) cells, IGF-IR maintains cell survival through an autocrine
activation that downregulates both AKT and ERK signaling
leading to slow-growth but high-self-renewal (38, 39). On the
contrary, this mechanism is not observed in non-glioma stem
cells. Furthermore, Hagerstrand and colleagues demonstrated that
glioma cells showed ligand-independent AKT phosphorylation and
that combined inhibition of IGF-IR and PI3K ormTOR reduces cell
viability (37). These data are also supported by recent evidence
suggesting that, IGF-I or IGF-IR overexpression causes AKT
phosphorylation while its inhibition reduces IGF-mediated anti-
apoptotic effects (40).

Involvement of the AKT pathway in GBM pathogenesis is also
connected to activation of the insulin receptor (InsR) that promotes
proliferation and survival of glioma cells both in an insulin-
dependent and -independent manner (Figure 1A). Insulin
signaling is robustly activated in human glioma cells
independently of insulin stimulation, since the catalytic subunit of
the InsR strongly phosphorylates and recruits IRS-1 leading to the
activation of AKT and ERK2 (41) (Figure 1A). Furthermore,
experiments conducted in insulin-stimulated IRS-1-transfected
glioma cell showed high phosphorylation levels of AKT, ERK1/2
and overexpression of Grb2 resulting in increased cell viability (42).

The compensatory mechanism within the InsR/IGF signaling
network was widely described in different tumor types (43, 44).
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FIGURE 1 | Expression and function of the insulin/insulin-like growth factor system in glioblastoma cells. (A) The pathogenesis and progression of glioblastoma multiforme
(GBM) is mainly linked to the activation of Insulin-like growth factor 1 receptor (IGF-IR) and insulin receptor (InsR). The stimulation of IGF-IR and the activation of InsR promote
the recruitment of IRS-1 and the activation of the mitogenic and pro-survival mediators Akt and ERK1/2 that contribute to increase (upward red arrow) GBM cell growth, cell
proliferation and cell migration. (B) A pivotal role in regulating IGF-system action in GBM pathogenesis is provided by IGFBP-2. (1) The improper activity of protease that
cleaves IGFBP-2 causes an increase of circulating-free IGFs (upward red arrow) and the subsequent activation of downstream pathway causing an increase on cell growth,
cell proliferation and cell migration. The intracytoplasmatic and intranuclear activity of IGFBP-2 determines the activation of EGFR-STAT-3 (2) or HIF1a (3) signaling and the
improvement of the transcription of their target genes. IGFBP-2 activates also the integrin signaling (4) which lead to the activation of the IGFBP-2/Integrin/ILK/NF-kB pathway
that is responsible of the transcription of genes linked to adhesion and migration. Finally, stimuli induced by IGF-I, NF-kB, HIF1a, steroid and growth hormones (5) increase
IGFBP-2 expression (upward red arrow) causing the activation of pathway linked to GBM progression.
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Gong and colleagues found predominant InsR mitogenic
isoform-A in GBM surgical specimens and xenograft tumor
lines. Interestingly, they observed that InsR-A depletion
compromised Akt activation repressing orthotopic tumor
growth, but this event has been restored by stimulated IGF-IR
expression. These data confirm the cooperation between InsR
and IGF-IR also in glioma cells, suggesting a compensatory
crosstalk addressed to balance potential defective activity in
one of two signaling (45).

Crosstalk between InsR/IGF systems and other RTK
pathways has been demonstrated in many human cancers,
including GBM (46–50). It was reported that Hedgehog-IGF-I
crosstalk preserves the self-renewal properties in GBM. This
interaction causes VEGF expression and increases survival and
proliferation in Glioma Stem Cell (GSC) involving Gli1 but not
Gli2 proteins (51, 52). A crosstalk between InsR/IGF-IR and
EGFR linked to an Akt-mediated compensatory intracellular
mechanism was also described (53).

IGFBPs have multiple and complex functions playing a
pivotal and significant role in regulating IGF-system action in
GBM. Different authors reported IGFBP-2 as central mediators
in GBM pathogenesis and two controversial mechanisms have
been hypothesized (Figure 1B). The first one includes an
improper protease activity of IGFBP-2 that determines an
increase of circulating-free IGFs and the activation of EGFR-
STAT3 signaling in an IGF-independent manner, involving the
intracytoplasmic and intranuclear IGFBP2 functions (54). The
second mechanism is more complex. In GBM cells IGFBP-2
expression is inversely correlated with PTEN levels, thus
promoting Akt-mediated signaling. In addition, stimuli
induced by IGF-I, NF-kB, hypoxia-inducible factor 1a (HIF1a),
steroid and growth hormones increase IGFBP-2 expression
eventually causing GBM progression. Furthermore, increased
IGFBP-2 levels have been directly associated to enhanced cell
proliferation and correlates with HIF1a-mediated stimulation of
VEGF pathway (55). Moreover, IGFBP-2 and integrin alpha5
interaction seem necessary to promote glioma cell migration in a
JNK-dependent manner (56). Finally, IGFBP-2 was also
identified as critical component of a complex network (IGFBP-
2/Integrin/Integrin-Linked Kinase (ILK)/NF-kB) able to drive
glioma progression. Kristen and colleagues proposed that
IGFBP-2 is request for the formation of integrin complex
which lead to ILK and NF-kB activation responsible of diffuse
glioma progression (27).

As well as IGFBP-2, also IGFBP-3 improves glioma cell
migration, invasion and proliferation in an IGF-independent
manner. The tumor promoting properties of IGFBP-3 are linked
to its ability to increase STAT-1 expression that, in turn, result
associated with reduced patients overall survival (OS) (57).
Furthermore, Chia-Hua Chen demonstrated that IGFBP-3
silencing suppresses glioma cell proliferation by G2/M cell
cycle arrest (58). On the contrary, the anti-tumorigenic and
anti-angiogenetic functions of IGFBP-4 in glioma cells depend to
its ability to induce dibutyryl cyclic AMP (dB-cAMP) that
antagonize the VEGFs action in an IGF-independent
manner (59).
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IGFBP-5 is highly expressed in GBM, indeed its depletion
results in an inhibition of cell invasion and concomitant increase
in cell proliferation. The double role of IGFBP-5 is
mechanistically associated with Akt and EMT signaling (60).

Lastly, IGFBP-6 is a member of a paracrine signaling circuit
involving the IGF-II-IGF-IR axis present in TMZ-resistant
glioma cells. IGFBP-6, released by TMZ-sensitive cells, reduces
the expansion of the counterpart resistant cell population by
sequestering IGF-II that results in IGF-IR-Akt signaling
inactivation (15).
MicroRNAs AS REGULATORS
OF THE IGF SYSTEM IN GBM

MicroRNAs (miRNAs) are a class of small non-coding RNAs
that are usually classified into tumor-suppressive miRNAs (TS-
miRNAs) and onco-miRNAs depending on their ability to
suppress or favor tumorigenesis. MiRNA dysregulation is
associated with initiation and progression of several forms of
cancer, including GBM (61, 62).

It has been reported that miRNA miR-128, miR-422a and
miR-603 inhibit IGF-I expression in glioma cells as
overexpression of these miRNAs suppresses cell proliferation,
migration and invasion (63) and enhances apoptotic death
through the inhibition of the mTOR signaling pathway (64).
Furthermore, a plethora of TS-miRNAs (including miR-7, miR-
15b, miR-181b, miR-186, miR-320a, miRNA-323-5p, miR-383,
miR-422a, miR-503, miR-505, and miR603) target IGF-IR
messenger RNA in the non-neoplastic brain, thereby acting as
tumor-suppressors. In GBM the expression of these miRNAs is
reduced resulting in activation of the IGF-IR/AKT axis. In vitro
studies demonstrated that TS-miRNAs overexpression also
induces cell-cycle arrest and apoptosis (63, 65–74). Several
miRNAs modulate IGF/IGF-IR signaling by targeting its
downstream effectors. Indeed, miR-204-3p and miR-491-3p
inhibit IGFBP-2 expression and are downregulated in glioma
cells (75, 76). MiR-302b indirectly inhibits IGFBP-2 activity by
downregulating the expression of its direct target Nuclear factor
IA (NFIA), which transcriptionally regulates IGFBP-2
expression (77). MiR‐7 potently inhibits EGFR, IRS‐1 and IRS‐
2 expression (78), while the brain-specific miR-153
downregulates IRS-2 (79). Moreover, the tumor suppressor
miR-128-3p indirectly regulates IRS−1 expression by
modulating the expression of Neuronal Pentraxin 1 situated
upstream of the IRS−1/PI3K/AKT pathway (80). The reported
downregulation of these TS-miRNAs in malignant glioma results
in IRS overexpression and activation of the PI3K/AKT pathway
(78, 79).

Finally, among the onco-miRNAs, only miR-21 and miR-
513a-5p are overexpressed in human GBM cell lines and tumor
tissue (81, 82). Yang and colleagues reported that high levels of
miR-21 lead to downregulation of IGFBP-3, restraining its
antiproliferative activity. Interestingly, miR-21 expression levels
are inversely correlated with GBM survival (82).
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THE IGF SYSTEM AND TREATMENT
RESISTANCE IN GBM

Several pre-clinical evidences suggest that the IGF system plays a
pivotal role in the development of resistance to chemotherapy,
radiation and targeted therapies, eventually resulting in GBM
recurrence and/or progression (83).

Differences in both protein expression and miRNA
production related to the IGF pathway have been found in
TMZ-sensitive and -resistant GBM cells. These differences
could be exploited to restore chemo-sensitivity in resistant
cells. Indeed, compared with TMZ-sensitive malignant glioma
cells, the resistant ones express higher miR-497 levels. This
difference may play a role in the induction of TMZ resistance
through the activation of the IGF-IR/IRS-1 pathway-related
proteins, that are IGF-IR, IRS1, mTOR and Bcl-2 (84).
Furthermore, TMZ-resistant cells display lower IGFBP-6
expression than TMZ-sensitive cells, with the latter down-
regulating both IGF-II and IGF-IR as IGFBP-6 acts as a suicide
substrate binding IGF-II with high affinity and preventing its
interaction with IGF-IR. Although the site of IGFBP-6
endogenous production remains unclear, this model suggests a
paracrine secretion from TMZ-sensitive cells. Hence, by
depleting the sensitive population, TMZ selects the resistant
one, ultimately promoting growth of the tumor mass (15, 84).
The IGF-system also seems to determine resistance to alkylating
agents through a miRNA-mediated activation of WNT/b-
catenin signaling. In detail, IGF-I up-regulates miR-513a-5p,
which in turn represses NEural precursor cell-expressed
Developmentally Downregulated 4-Like (NEDD4L), ultimately
leading to WNT/b-catenin activation (81). NEDD4L is a tumor
suppressor gene encoding for a ubiquitine ligase, which regulates
ion channel expression and intracellular signaling (85). Indeed,
low NEDD4L levels correlate with TMZ resistance and poor
prognosis in gliomas (86).

The induction of a stem-cell phenotype is one of the main
causes of resistance to radiation therapy in GBM. IGF signaling is
involved in this process trough mechanisms only partially
understood (39, 87). MiR-603 targets IGF-I and IGF-IR,
facilitating the exit from the stem-cell condition and conferring
sensitivity toward radiation. However, ionizing radiation reduces
miR-603 expression by enhancing its extracellular vesicle-
mediated export. Hence, lower levels of MiR-603 induced by
radiotherapy may promote a stem-cell state. miR-603 also
suppresses O6-MethylGuanine-DNA-MethylTransferase
(MGMT). Consequently, decreased miR-603 activity
determines MGMT up-regulation, which ultimately leads to
cross-resistance toward alkylating agents in glioma cells (74).
Recently, Simpson et al. further supported the involvement of the
IGF-IR in the radiation resistance of high grade gliomas
describing radio-sensitization after IGF-IR inhibition in
pediatric patients (88).

Even though the EGFR represents a potential target for GBM
treatment, its inhibition led to dismal results due to intrinsic
tumor resistance to this approach (89, 90). Indeed, activation of a
compensatory IGF pathway exerts a pivotal role in the lack of
Frontiers in Oncology | www.frontiersin.org 5
sensitivity toward EGFR inhibition. Simultaneous targeting of
the EGFR and IGF-IR was effective in GBM cell lines and patient
derived xenografts (PDX) (53, 91). On a different note, miR-7
overexpression sensitizes GBM cells to the antitumor effect of
erlotinib via blockage of the IRS/AKT pathway (92). Thus,
quantification of IGF-IR tissue levels may be employed as a
predictive biomarker to improve the selection of GBM patients
likely to benefit from EGFR inhibitors as reported in the
NCT00897663 trial.

The PDGFR is another RTK involved in gliomas
development. As for EGFR, PDGFR inhibition has marginal
activity in GBM (89, 93, 94). Again, the InsR and IGF-IR seem
key effectors of resistance to PDGFR inhibitors and combining
an anti-PDGFR and an anti IGF-IR decrease the viability of
primary mouse tumor sphere PDGFR-resistant clones obtained
from glioma samples in vitro (95).

Inhibition of key components within the GBM tumor micro-
environment may also represent an attractive strategy. To this
end, colony-stimulating factor-1 receptor (CSF-1R) inhibitors,
which block the tumor-associated macrophages and microglia,
are currently under development (96, 97). Quail and colleagues
investigated the mechanism of resistance to CSF-1R inhibition in
murine models of GBM, discovering that it is mediated by
activation of the PI3K pathway via the IGF-I/IGF-IR system.
Hence, coupling CSF-1R and PI3K or IGF-IR inhibition elicits a
sustained response in mice (98).

Recently, a molecule targeting the sarcoendoplasmic
reticulum Ca2+ ATPase (SERCA) has been tested on patient-
derived GBM neurospheres, identifying responder and non-
responder cell lines. The latter seem to bypass SERCA activity
via a mechanism mediated by IRE1 (derived from ERN1 gene),
IGFBP-3 and IGFBP-5. Indeed, CRISPR-mediated deletion of
the ERN1, IGFBP3, IGFBP5 genes in a human GBM cell line
increased responsiveness to drugs (99).
ANTI-IGF THERAPEUTIC STRATEGIES
IN GBM

Despite the many advances in the field of molecular targeted
therapy, the use of small molecules agents or monoclonal
antibodies for the treatment of GBM is extremely limited and
some promising pre-clinical results have yet to translate into
meaningful therapeutic benefits (100–103).

Many approaches have been tested to inhibit IGF signaling in
GBM including anti-sense oligonucleotides, tyrosine kinase
inhibitors (TKIs) or monoclonal antibodies targeting the IGF-
IR (Figure 2). In a pilot study, inhibition of IGF-IR expression by
antisense strategy failed to produce any clinical benefit for
patients with recurrent GBM (104). An improvement was
obtained by employing the combination of IGF-I antisense/
triple helix vector strategy to create immunogenic cells that
were injected in GBM patients where they induced an
antitumor immune response and stopped tumor progression.
The survival of two treated GBM patients reached 2 years
(105, 106).
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Promising results were also obtained with a treatment based
on autologous glioma cells treated ex vivo with an antisense
oligodeoxynucleotide targeting the IGF-IR (IGF-1R/AS ODN)
and re-implanted in patients. Seventeen out of 33 individuals
enrolled in a phase Ib trial (NCT02507583) remained
progression-free and 12 of them are still alive, demonstrating
that an autologous cell vaccine may significantly prolong
progression free survival (PFS) and OS compared to standard
of care (107).

Several IGF-IR-directed TKIs have been tested in GBM
patients with promising pre-clinical results. PQ401,
GSK1838705A and PPP (picropodophyllin/AXL1717) all
reduced cell viability and proliferation in vitro, while the
administration in mice led to inhibition of glioma tumor
growth in vivo (26, 108, 109). Notably PPP causes dramatic
tumor regression not only in subcutaneous but also in
intracerebral xenograft models, indicating that it crosses the
blood-brain barrier. Hence a phase I/II clinical trial was
initiated (NCT101721577) but results have not yet been
posted. NVP-AEW541 is another IGF-IR-specific TKI that in
combination with dasatinib significantly increases BAX
activation inducing more apoptosis than either agent alone in
glioma cells (110).

Multiple IGF-IR blocking antibodies are currently in clinical
development (111) but - to date - only cixutumumab (IMC-A12)
has been clinically tested on patients diagnosed with GBM.
Frontiers in Oncology | www.frontiersin.org 6
Cixutumumab binds IGF-IR or IGF-IR/IR hybrid receptors
blocking the interaction with their ligands and inducing
receptor internalization and degradation. Zamykal and
colleagues demonstrated that cixutumumab inhibits GBM
progression in in vivo xenograft models (112). A phase I study
of IMC-A12 in combination with temsirolimus was also
conducted in a group of pediatric patients including four with
refractory GBM demonstrating that this combination was well
tolerated (113). However these results were deemed insufficient
to pursue further development of this compound.
CONCLUSIONS

GBM is an aggressive disease, with a dismal prognosis and scarce
therapeutic resources. Hence, understanding the biological features
underlying disease pathogenesis, maintenance and progression
represents urgent and unmet medical need. To date, a plethora of
pre-clinical evidence demonstrates a crucial role for the IGF system
in GBM. Altered IGF signaling as well as cross-talk with multiple
pathways are complex and far from being fully understood.
However, the IGF system could potentially be exploited for both
diagnostic and therapeutic purposes. For example, the expression
level of many components of the IGF signaling axis or their serum
concentration in GBMpatients may become prognostic biomarkers,
eventually guiding therapeutic choices. Unfortunately, thus far the
FIGURE 2 | Therapeutic strategies to block insulin-like growth factor signaling in glioblastoma multiforme cells. Approaches tested to inhibit insulin-like growth factor (IGF)
signaling in glioblastoma (GBM) patients include antisense oligonucleotides against IGF-I and IGF-IR mRNA (1) or the employ of IGF-I triple helix gene therapy (2) to induce
a block of tumor progression. IGF-IR direct inhibitors, IGF-IR TKIs (3) and IGF-IR mAbs (4) are also tested on GBM cell lines to reduce IGF downstream signaling.
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clinical efficacy of treatment strategies directed against the IGF
system remains limited and inconsistent. Inter- and intra-tumor
heterogeneity, cross talk between IGF and RTK signaling and
limited drug distribution to the central nervous system, are some
of the potential reasons for the lack of substantial anti-cancer
activity. Hence, further development of innovative therapeutic
approaches is warranted in order to expand the therapeutic
armamentarium for GBM patients.
Frontiers in Oncology | www.frontiersin.org 7
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