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Solid tumors are dependent on vascularization for their growth. The hypoxic, stiff, and pro-
angiogenic tumor microenvironment induces angiogenesis, giving rise to an immature,
proliferative, and permeable vasculature. The tumor vessels promote tumor metastasis
and complicate delivery of anti-cancer therapies. In many types of tumors, YAP/TAZ
activation is correlated with increased levels of angiogenesis. In addition, endothelial YAP/
TAZ activation is important for the formation of new blood and lymphatic vessels during
development. Oncogenic activation of YAP/TAZ in tumor cell growth and invasion has
been studied in great detail, however the role of YAP/TAZ within the tumor endothelium
remains insufficiently understood, which complicates therapeutic strategies aimed at
targeting YAP/TAZ in cancer. Here, we overview the upstream signals from the tumor
microenvironment that control endothelial YAP/TAZ activation and explore the role of their
downstream targets in driving tumor angiogenesis. We further discuss the potential for
anti-cancer treatments and vascular normalization strategies to improve tumor therapies.
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Angiogenic therapy, tumor angiogenesis
Abbreviations: AMOT, Angiomotin; Ang1, Angiopoietin-1; Ang2, Angiopoietin-2; ANKRD1, Ankyrin repeat domain 1;
CAFs, Cancer-associated fibroblast; CTGF, Connective tissue growth factor; CYR61, Cysteine-rich angiogenic inducer 61;
ECM, Extracellular matrix; EndoMT, Endothelial to mesenchymal transition; ECs, Endothelial cells; FA, Focal adhesion; FAK,
Focal Adhesion Kinase; FGFR, FGF receptor; FGF2, Fibroblast growth factor 2; GPCR, G-protein-coupled receptor; HIF1a,
Hypoxia inducible transcription factor 1a; IFP, Interstitial fluid pressure; LATS, Large tumor suppressor kinase; MMPs,
Matrix metalloproteases; RTK, Receptor tyrosine kinase; SAV1, Salvador family WW-domain-containing-protein-1; STAT3,
Signal Transducer and Activator of Transcription-3; STK, Serine/threonine kinases; TAZ, Transcriptional Co-Activator With
PDZ-binding Motif; TEAD, TEA domain family member; TME, Tumor microenvironment; VEGF, Vascular endothelial
growth factor; VEGFR2, VEGF receptor 2; YAP, Yes-associated protein.
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INTRODUCTION

It is estimated that solid tumors can grow to a size of approximately 2
mm3 without being vascularized (1). For further growth, tumors
require blood vessels that deliver oxygen and nutrients. Tumors use
several mechanisms for neovascularization, including angiogenesis,
vessel co-option, vascular mimicry, trans-differentiation of cancer
cells into endothelial cells (ECs), and through the recruitment of
endothelial progenitor cells (2, 3).Angiogenesis, the formationofnew
vessels from pre-existing ones, is essential for tumor progression and
growth and is promoted by pro-angiogenic signals secreted by the
tumor cells and the tumor microenvironment (TME) (4, 5). The
TME consists of cancer-associated fibroblast (CAFs), mesenchymal
stromal cells, immune cells, ECs, as well as extracellular matrix
(ECM) components, growth factors and cytokines (6–8). The
tumor cells together with the TME, generate a hypoxic, acidic and
inflammatory environment that further drives tumor angiogenesis,
tumor growth and contributes to drug resistance (8, 9).

The tumor vasculature ismorphologically different compared to
the normal blood vessels (5, 9–11). Tumor angiogenesis gives rise to
a dense and disorganized vessel network, in which the vessels are
immature, dilated, hyperpermeable, and lack the support of
pericytes or normal basement membrane. Tumor vessels are
further characterized by irregular blood flow, which fails to
supply sufficient oxygen and nutrients to the tumor tissue (12,
13).The tumor vessels contribute tomalignancy bymaintaining the
hypoxic, acidic, and inflammatory environment, thereby fueling a
vicious cycle that prevents normalization of the tumor vasculature
and maintains a pro-metastatic environment (14, 15).

Targeting of tumor angiogenesis as treatment for cancer has been
extensively investigated in pre-clinical and clinical settings. The first
commercially available anti-angiogenic drug, Bevacizumab improves
survival of patients with metastatic colorectal cancer by targeting of
vascular endothelial growth factor (VEGF) (16). Currently, several
VEGF-targeting FDA-approved drugs are used as anti-angiogenic
cancer treatments, including for gastrointestinal cancer,
glioblastoma, non-small lung carcinoma, breast cancer, and renal
cancer (17, 18). Patient studies have shown increased survival after
combining anti-VEGF therapy with chemotherapy (17, 19, 20).
Unfortunately, long term administration of anti-VEGF treatments
raises therapy resistance (21, 22) and major reductions in tumor
blood vessels are not achieved, likely due to the activation of
alternative neovascularization events in tumors (23, 24).
Furthermore, pre-clinical in vivo studies have shown that after
termination of anti-VEGF treatments, the tumor vessels rapidly
return to an angiogenic and disorganized state (25).

Anti-angiogenic agents are often prescribed in high doses, which
effectively leads to tumor vessel pruning and consequently decreases
drug delivery to the TME (26). Moreover, local hypoxia in the TME,
such as induced by vascular regression, enhances tumor invasiveness,
chemo- and immunotherapy resistance, and metastasis (27).
Hypoxia also induces expression of alternative angiogenic
cytokines and compensatory mechanisms of neovascularization,
further limiting the anti-angiogenic potential of anti-VEGF
treatments (2, 28). Alternative angiogenic pathways are suspected
to enhance tumor invasion andmetastasis in response to anti-VEGF
treatment (29).
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Upon anti-angiogenic treatments, there is typically a short
“window” during which vascular normalization is achieved,
restoring normal blood vessel function and reducing hypoxia
in the TME (21, 30–32). During this time frame, radiation- and
immunotherapies were found to be most effective (33, 34).
Because high doses and long-term treatment of anti-angiogenic
drugs promote hypoxia in the tumor tissue, it is thought that
lowering of drug dosage may reduce the levels of angiogenic
factors and normalize the tumor vasculature accordingly (30).
Experimental tumorigenesis studies using low doses or short-
term treatments of anti-angiogenic drugs, indeed observed
increased functional blood vessels, improved immunotherapy
efficacy, and reduced metastatic activity of tumor cells (26, 35,
36). The discovery of additional therapeutic strategies are
pursued to try to overcome anti-angiogenic resistance and to
better control normalization of tumor vessels (37, 38).

The oncogene Yes-associated protein (YAP) and its paralogue
Transcriptional Co-Activator With PDZ-binding Motif (TAZ or
WWTR1) have been considered as attractive pharmacological
targets, as they are highly activated in many forms of cancers and
contribute to tumor growth and invasion (39). YAP/TAZ are also
well known for their regulatory role during physiological and
developmental angiogenesis and have recently gained attention
in the context of endothelial-driven tumor angiogenesis (40–42).
In this review we aim to understand how YAP/TAZ signaling
affects the (tumor) endothelium. We will further discuss the
potential mechanisms of YAP/TAZ activation by the TME and
the downstream transcriptional program of YAP/TAZ that
controls angiogenesis.
MOLECULAR REGULATION OF YAP/TAZ
ACTIVITY

In general, in normal quiescent adherent cells YAP/TAZ are
inhibited by the Hippo pathway and located in the cytoplasm.
Upon various activating signals YAP/TAZ translocate toward the
nucleus and act as transcriptional co-factors for the regulation of
tissue homeostasis and organ growth (43, 44). In addition, YAP/
TAZ respond to mechanical stimuli derived from cell spreading,
contact inhibition, cytoskeletal contractility, ECM stiffness and
fluid shear forces (45, 46).

The Hippo signaling pathway consists of a phosphorylation
cascade with several effectors. Serine/threonine kinases 3 and 4
(STK3 and STK4, also called MST1/2) interact with the scaffolding
protein Salvador familyWW-domain-containing-protein-1 (SAV1).
If Hippo signaling is turned “on”, the MST-SAV1 complex
phosphorylates MOB kinase activator 1A and 1B (MOB1A and
MOB1B). This leads to an interaction of MOB1A andMOB1B with
large tumor suppressor kinase 1 and 2 (LATS1/2) (47, 48). Once in
complex with MOB1A/1B, LATS1/2 become autophosphorylated
and phosphorylated by MST1/2 (47, 49). In turn, active LATS1/2
kinases phosphorylate YAP on 5 serine residues (S61, S109, S127,
S164, and S381) and TAZ on 4 serine residues (S66, S89, S117, S311)
(50). Serine phosphorylated YAP/TAZ bind to 14-3-3 proteins,
which sequesters the proteins in the cytoplasm or targets YAP/
TAZ for ubiquitin-mediated proteasomal degradation (51, 52).
February 2021 | Volume 10 | Article 612802

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hooglugt et al. YAP/TAZ in Tumor Vasculature
Alternatively, YAP/TAZ can be sequestered in the cytoplasm by
Angiomotin(AMOT)proteins that interactwithYAP/TAZorHippo
pathway effectors. If Hippo signaling is turned “off”, YAP/TAZ act as
transcriptional co-activators in the nucleus, where they primarily
interact with TEA domain family member (TEAD) transcriptional
factors to regulate genes involved in proliferation, migration and
survival (53). The Hippo pathway crosstalks with major signaling
routes that control tissue remodeling andgrowth, including theWnt/
b-catenin, TGFb, and Notch pathways (54–56).

YAP/TAZ are also activated in various force-dependent
manners (43, 45, 51). Upon cytoskeletal-driven cellular
adaptations, such as during ECM stiffening, shear stress sensing
or upon G-protein-coupled receptor (GPCR) signaling, the AMOT
proteins enhance their interaction with F-actin, allowing YAP/
TAZ to translocate toward the nucleus (57–60). ECM stiffening
also remodels the integrin-based focal adhesions (FA). Cell
adhesion promotes activation of Focal Adhesion Kinase (FAK)
and SRC tyrosine kinases, that impinge on the Hippo pathway
through direct activation of YAP/TAZ and inhibition of LATS1/2
and MOB1 through FAK/Rac and SRC/PI3K signaling (51, 61).
The stiffness-sensing integrin receptors transduce forces to the
cytoskeleton-anchored nucleus, opening the nuclear pores and
driving YAP/TAZ nuclear translocation (46). Mechanical forces at
cell-cell junctions also control YAP/TAZ, as strain on epithelial
monolayers induce b-catenin and YAP1 nuclear localization (62,
63). Moreover, high tension inferred at the junctional cadherin-
catenin complex, triggers the interaction of a-catenin with TRIP6
and LIMD1, which recruit LATS1/2 to the junctions and inhibit
their kinase activity, leading to nuclear translocation of YAP/TAZ
(64–66). The various Hippo and mechanotransduction pathways
that regulate YAP/TAZ have been elegantly discussed previously
(45, 63, 67, 68). These molecular pathways have been investigated
in great detail in normal epithelia or tumor cells and are expected
to be responsible for YAP/TAZ regulation in the endothelium as
well (45).
THE ROLE OF YAP/TAZ IN
DEVELOPMENTAL ANGIOGENESIS

Angiogenesis is driven by endothelial proliferation, collective cell
migration, and cellular rearrangements (69–71). Angiogenic
stimuli, such as VEGF-A and FGF2, activate the ECs to promote
the formation of endothelial tip cells that migrate toward the
angiogenic cue. Tip cells are followed by proliferative endothelial
stalk cells, which shape the developing sprouts and the vascular
lumen (2, 72, 73). The tip and stalk cell rearrangements are
regulated through feedback loops between VEGF and Dll4/
Notch signaling (74).

YAP/TAZ are activated in the sprouting ECs of the developing
vasculature in the mouse retina (75). YAP/TAZ are expressed in
the entire retinal vasculature, but they reside in the endothelial
cytoplasm in the central vascular region, while YAP/TAZ are
mainly nuclear in sprouting ECs and the remodeling vascular
plexus (76–78). Especially, TAZ nuclear localization is prominent
in spouting ECs of the developing retinal vasculature (76, 77).
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Importantly, the activation of YAP/TAZ in ECs is crucial for
angiogenesis (75, 77). The nuclear translocation of endothelial
YAP/TAZ is regulated by VEGF signaling, VE-cadherin-based
adherens junctions, and cytoskeletal remodeling (45, 75, 79, 80).
The VE-cadherin complex sequesters YAP/TAZ and (force-
dependent) remodeling of the cell-cell junctions leads to YAP/
TAZ activation (81, 82). VEGF-A signaling stimulates YAP/TAZ
through cytoskeletal remodeling and inactivation of the Hippo
effectors LATS1/2 (79). In turn, active endothelial YAP/TAZ
induce a downstream transcriptional program which regulates
proliferation, actin cytoskeleton contractility, cell adhesion, and
collective cell migration (76, 77, 79, 80, 83).

The importance of YAP/TAZ function for vascular
development has been studied by several groups using (inducible)
endothelial-specific YAP/TAZ double knock out mouse models
(76, 77, 79, 83). Endothelial-specific depletion ofYAP/TAZ reduces
the number of tip cells and angiogenic sprouts, and leads to
excessive vessel crossing in the developing vasculature of the
mouse retina (76, 77, 79, 83). Moreover, once the vasculature in
the YAP/TAZ endothelial-specific knockout mice makes it to the
stage of larger vessels, the vessels turn out to be leaky due to
perturbation of endothelial cell-cell junctions (76, 77).
Interestingly, knocking out only the YAP or TAZ genes from the
endothelium resulted in mild vascular defects, indicating that YAP
and TAZ have redundant functions and can compensate for each
other in the endothelium (77).

Endothelial-specific overexpression of YAP or TAZ induced
retinal vessel growth through increased angiogenic sprouting
(77, 84). Interestingly, endothelial-specific YAP overexpression
did not affect the vasculature of quiescent tissue in adult mice
(84). Constitutive activation of YAP/TAZ, induced by knockout
of LATS kinases or overexpression of an activemutant of YAP or
TAZ, resulted in endothelial hypersprouting in vivo (77, 83). In
vitro it was found that overexpression of an active form of YAP
promotes hypersprouting via the angiogenic growth factor
angiopoietin-2 (Ang2) signaling (75).

In agreement with the knockoutmousemodels that demonstrate
an important role for YAP/TAZ in vascular development, depleting
YAP/TAZ from zebrafish resulted in embryonic lethality due to
severe developmental and vascular malformations (85, 86). YAP1
null mutant zebrafish showed a drastic reduction in transcriptional
activity of TEAD2, while in TAZ null mutant zebrafish TEAD2
transcriptional activitywasunaffected (86), suggesting thatYAPis the
major transcriptional regulator for vascular development in
zebrafish. YAP1 null mutant zebrafish showed increased vessel
regression and lumen stenosis, suggesting an important role for
YAP1 in lumen maintenance in response to blood flow (86).
Moreover, truncation of the cranial and ocular vasculature is
observed (85). By contrast, TAZ null mutants did not display clear
vascular defects (85). Transgenic mutant zebrafish in which the
binding of the YAP/TAZ-TEAD complex to the DNA has been
prevented, display altered vascular remodeling (87). Interestingly,
expression of constitutively active YAP (YAP-5SA), TAZ (TAZ-
4SA), or TEAD mutants initially promote vessel sprouting, but the
sprouts fail to anastomoseor stabilize at later stages (85). In summary,
the regulation of endothelial YAP/TAZ activity is critical during
February 2021 | Volume 10 | Article 612802

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hooglugt et al. YAP/TAZ in Tumor Vasculature
vascular development and both the down- and upregulation of YAP/
TAZ activity leads to aberrant sprouting angiogenesis and blood
vessel formation.

After new blood vessels are formed during development,
angiogenic growth factor levels drop and vessels mature through
the stabilization of cell-cell junctions and the recruitment of mural
pericytes. In mature vessels, ECs are quiescent (88–90) and
endothelial YAP/TAZ are inactivated (79). During wound
healing in physiological and pathological conditions, YAP/TAZ
are activated on demand to induce angiogenesis (53). The TME is
somewhat comparable to the tissue of an inflamed wound (91),
but in tumors endothelial YAP/TAZ remain activated and its
vasculature does not evolve into a mature state (79) (Figure 1).
YAP/TAZ ACTIVATION IN TUMOR
ANGIOGENESIS

Many types of cancer are accompanied by increased levels and
activity of YAP/TAZ, including breast, pancreatic, liver and
Frontiers in Oncology | www.frontiersin.org 4
colorectal cancer (39, 92–94). Increased expression or
activation of YAP/TAZ in cancer is associated with poor
prognosis and reduced survival (93, 95). Increased YAP/TAZ
levels are often observed both in tumor and stromal cells,
including the CAFs, ECs, immune cells, and pericytes (96–99).
YAP/TAZ activation in the TME promotes tumor growth,
metastasis and angiogenesis (95, 97–99). For instance, in
glioblastoma, high expression of TAZ in tumor endothelium is
correlated with increased blood vessel density and tumor
malignancy (100). There is an intricate connection between
YAP/TAZ activation in the TME and the tumor vasculature.

Oncogenic activation of YAP/TAZ in tumor cells drives the
ECs toward a pro-angiogenic state (Figure 1). Conditioned
medium from (YAP positive) breast cancer cells induced
endothelial YAP activation, which in turn promoted tumor
angiogenesis (101). Also, ECs treated with conditioned medium
from cholangiocarcinoma cells containing a constitutively active
YAP mutation (YAP S127A), showed increased tube formation
capacity in vitro (102), suggesting enhanced endothelial activity.
Moreover, YAP activation in mesenchymal stromal cells has been
FIGURE 1 | Schematic overview of tumor microenvironment factors that promote endothelial YAP/TAZ activity. (A) During physiological angiogenesis, pro-angiogenic
cytokines and growth factors activate YAP/TAZ signaling in endothelial cells (ECs) through GPCRs and RTKs, such as VEGFR2 or Tie2. (B) Hypoxia induces secretion of
pro-angiogenic factors to promote tumor angiogenesis and consequently YAP/TAZ activity in the tumor microenvironment (TME). Elevated levels of pro-angiogenic factors
promote the formation of a dense and disorganized tumor vasculature, resulting in disturbed blood flow patterns (C) and increased interstitial fluid pressure (D) that
mechanically activate YAP/TAZ. The integrity of the tumor endothelium is weakened due to decreased cell-cell interactions between the ECs and/or pericytes. YAP/TAZ
are further mechanically activated in the TME by ECM stiffening (E), which is promoted by the cancer-associated fibroblasts (CAFs).
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shown to enhance the crosstalk between gastric cancer cells and
the tumor endothelium (103). Importantly, transplantations of
Lewis Lung carcinoma allografts in transgenic mice with
endothelial-specific YAP overexpression, resulted in an increase
in tumor size and tumor vasculature (84). Vice versa, YAP
knockdown in renal cell carcinoma, inhibited the angiogenic
capacity of ECs via paracrine VEGF signaling (104). Overall,
these findings emphasize the critical involvement of endothelial
YAP/TAZ signaling during tumor angiogenesis following the
interplay between tumor tissue and the ECs. Of note, YAP/TAZ
activation does not always increase tumor angiogenesis and
differences between tumor types should be considered. For
instance, in angiosarcoma, a rare type of cancer derived from
the vasculature, inhibition of PECAM-1 raised YAP levels, but
decreased the tubulogenic potential of the angiosarcoma
cells (105).
TUMOR MICROENVIRONMENTAL
FACTORS THAT ACTIVATE YAP/TAZ

In solid tumors many microenvironmental properties have
changed compared to in healthy tissue, for example increased
interstitial fluid pressure (IFP), inflammation and ECM stiffness.
These TME properties are key drivers of YAP/TAZ and promote
the immature characteristics of the tumor vasculature (43, 106)
(Figure 1).

Hypoxia
One of the prominent angiogenic features of solid tumors is
their hypoxic condition. Hypoxia stabilizes hypoxia inducible
transcription factor 1a (HIF1a) in tumor cells, initiating the
transcription and secretion of pro-angiogenic factors, such as
VEGF and Ang2 (107). Also in ECs, HIF1a promotes the
transcription of autocrine pro-angiogenic molecules and
matrix metalloproteases (MMPs) (40). Importantly, the
endothelial-specific depletion of HIF1a resulted in reduced
tumor growth and angiogenesis in experimental Lewis lung
carcinoma (108). The onset of hypoxia in the retinal
vasculature is known to inhibit Hippo pathway effectors and
activates endothelial YAP (109). In turn, YAP is able to interact
with HIF1a to sustain HIF1a signaling (110). In hypoxic
colorectal cancer cells, HIF1a induces the transcription of
GPCR5A, which in turn activates YAP to promote cell
survival (111). Of note, in hepatocellular carcinoma cells,
hypoxia was shown to activate YAP through a HIF1a
independent manner (112). The intricate crosstalk between
YAP/TAZ and HIF1a signaling in cancer has recently been
overviewed (113).

Hypoxia also induces the activation of Signal Transducer and
Activator of Transcription-3 (STAT3), which forms a complex
with YAP in ECs to drive expression of angiogenic factors VEGF
and Ang2 (84, 109) (Figure 2). Furthermore, the transcription
factor SNAIL is a direct target of HIF1a, and hypoxia-induced
expression of SNAIL promotes endothelial to mesenchymal
transition (EndoMT) (114). YAP has been shown to induce
Frontiers in Oncology | www.frontiersin.org 5
EndoMT during cardiac development by upregulating
expression of SNAIL (115). YAP activation potentially
promotes hypoxia-induced EndoMT in the TME by facilitating
SNAIL expression. Taken together, the hypoxic conditions
within tumors activate YAP/TAZ-dependent programs that
promote tumor vascularization. Notably, the described
crosstalk between YAP/TAZ and HIF1a may differ between
tissues, because in the hypoxic environment of the bone
marrow, endothel ia l YAP/TAZ funct ion to inhibit
angiogenesis (116).
Angiogenic Growth Factors and Cytokines
A second important TME property that promotes endothelial
YAP/TAZ activity and angiogenesis is the increased presence of
angiogenic and inflammatory cytokines (i.e., VEGF, TGFb and
TNFa). Key is the (hypoxia-driven) VEGF production by tumor
cells, ECs, and CAFs (117, 118). VEGF interaction with VEGF
receptor 2 (VEGFR2) induces downstream signaling toward SRC
kinases, PI3K/Akt, and MEK/ERK. These signaling pathways
inactivate the Hippo pathway effectors MST1/2 and LATS1/2,
leading to activation of endothelial YAP/TAZ (79, 119). The
stimulation of ECs by VEGF also remodels the actin cytoskeleton
and endothelial cell-cell junctions (120, 121), which further
modulates YAP/TAZ activity (79). Actomyosin contractility is
a well-established regulator of YAP/TAZ activity in a variety of
cell types, acting directly on YAP/TAZ or via Hippo pathway
effectors (45, 46, 122). In summary, VEGF-VEGFR2 signaling
can induce endothelial YAP activation through various
pathways, directly by interrupting the Hippo signaling cascade,
or indirectly by its effect on cell-cell junctions and the actin
cytoskeleton. Similar mechanisms may take place in the
tumor endothelium.

Another important growth factor that affects YAP/TAZ
signaling in tumors is TGFb. Hypoxia together with TGFb-
mediated SMAD transcriptional activation induces complex
formation between Zyxin, LATS2 and SIAH2 (123). The latter
being an E3 ligase that mediates LATS2 ubiquitination and
degradation (123). Furthermore, SMAD2 can interact with
YAP via the RASS1FA scaffold protein, which helps to retain
the SMAD2/YAP complex in the cytoplasm in quiescent cells
(124). TGFb induces the degradation of RASS1FA, which
enables the SMAD2/YAP complex to translocate to the
nucleus, leading to transcription of their target genes (124).
YAP plays a crucial role in the nuclear translocation of
SMADs (125). Most of these molecular mechanisms have been
studied in epithelial or tumor cells. Yet, the tumor ECs express
high levels of Endoglin (126), a BMP9 receptor that is part of the
TGFb receptor complex and an important receptor for
endothelial migration and angiogenesis (127–129). BMP9-
endoglin signaling induces YAP/SMAD nuclear translocation
driving the expression of inflammatory genes in ECs (130),
implying that endothelial YAP-SMAD may regulate tumor
angiogenesis. Taken together, there are multiple angiogenic
growth factors and cytokines within the TME that control
YAP/TAZ and contribute to the immature and proliferative
tumor vasculature.
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Tumor Microenvironment Stiffness
Overall, solid tumors are stiffer in comparison to normal tissue
(106). The stiffening is caused by increased collagen deposition
and cross-linking (131). In tumors, ECM stiffening promotes
sprouting angiogenesis and gives rise to a dense and
hyperpermeable vasculature (106). Integrin adhesion receptors
sense the increased ECM stiffness and induce the assembly of
integrin-based FAs (132, 133). In turn, FAK/SRC signaling
downstream of integrins inhibits LATS1/2 and activates YAP/
TAZ (51, 134–136). The activation of endothelial FAK through
phosphorylation of its autophosphorylated Y397 residue is
crucial for tumor angiogenesis and tumor progression (137).
Interestingly, targeting of endothelial FAK activity improved the
efficacy of DNA-damaging chemotherapeutics, providing proof-
of-principle for normalization of tumor vasculature as an
adjuvant approach in cancer therapies (138). Importantly,
integrin-mediated stiffness-sensing also activates YAP/TAZ
independently of the Hippo pathway through activation of
Rho-GTPases and actomyosin contractility (45, 46). YAP/TAZ
activation, in turn, regulates FA turnover (139), a feedback
mechanism that is crucial for endothelial collective migration
and angiogenic sprouting (80, 140). Taken together, it is likely
that direct stiffness-sensing through the tumor endothelium
promotes endothelial YAP/TAZ activation and tumor
angiogenesis. To prove this concept more experimental work
is needed.

In addition, TME stiffening and tumor cell contractility
promote MMP activity (141). MMP activity and subsequent
Frontiers in Oncology | www.frontiersin.org 6
matrix degradation controls endothelial sprouting through the
stiff ECM (131). Vice versa, inhibition of lysyl oxidase, a matrix
cross-linking enzyme involved in tumor stiffening, was shown
to reduce the tumor stiffness and tumor vasculature in a mouse
mammary tumor model (131). It was recently reported that
metastasis-associated fibroblasts promote TME stiffening and
angiogenesis in particular in liver metastases from colorectal
cancer (142). Intriguingly, inhibition of renin-angiotensin
signaling in combination with the anti-VEGF drug
Bevacizumab, inactivated tumor endothelial YAP and
reduced the fibroblast-induced metastatic TME stiffness
and tumor vasculature (142). Moreover, the activation of
YAP in CAFs is known to increase ECM stiffening, tumor
cell invasion and tumor angiogenesis (97). Thus CAFs
participate in a self-sustaining YAP-dependent feed forward
loop that aggravates tumorigenesis, through a mechanism in
which tumor stiffening and angiogenesis take central roles
(Figure 1).

Interstitial Fluid Pressure and Blood Flow
Tumor vessels are disorganized and hyperpermeable, which
increases interstitial fluid pressure (IFP) and leads to disturbed
blood flow (143), altogether hindering drug delivery to tumors
(144). The high level of IFP also stretches the blood vessels and
promotes metastasis (145–148). Mechanical stretching of tumor
stromal cells, such as fibroblasts and ECs, is a well-known driver
of YAP/TAZ nuclear translocation (46, 77, 149, 150).
Consequently, IFP likely activates endothelial YAP/TAZ
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Angiomotin (AMOT) proteins or the VE-cadherin complex. Alternatively, inactive YAP/TAZ can be targeted for ubiquitin-mediated degradation. External cues from the
tumor microenvironment (TME), including pro-angiogenic growth factors, inflammatory cytokines, stiff extracellular matrix (ECM), hypoxia, and disturbed blood flow
activate YAP/TAZ leading to their translocation to the nucleus (Figure 1). In parallel, multiple TME factors activate the transcription factors STAT3 and AP-1. Within
the nucleus, YAP/TAZ interacts with several transcription factors, most notably the TEA domain family members (TEADs), but also with STAT3 and b-catenin to
induce transcription of downstream target genes. Activated YAP/TAZ induce the expression of angiogenic and inflammatory cytokines, Rho GAPs and GEFs and
extracellular matrix (ECM) remodeling proteins that engage in a positive feedback system that sustains YAP/TAZ activity. (1) angiogenic and inflammatory cytokines
maintain the pro-angiogenic and inflammatory TME. Moreover, the angiogenic effectors of YAP/TAZ (such as Ang2 and VEGF) destabilize VE-cadherin-based
adherens junctions (AJs), further promoting the activity of YAP/TAZ. (2) Rho GAPs and GEFs control the level of Rho-GTPase activities, crucial switches that organize
the actomyosin cytoskeleton, AJs and integrin-based focal adhesions (FA). In turn, the FAs and actomyosin cytoskeleton transduce forces from stiff ECM and
maintain the nuclear translocation of YAP/TAZ. (3) ECM remodeling proteins are secreted and remodel the TME in favor of YAP/TAZ activity.
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signaling in the TME. The tumor vasculature is also poorly
perfused and the blood flow is often turbulent (13, 151).
Disturbed flow patterns activate endothelial YAP/TAZ and
trigger proliferative and inflammatory responses in vitro (152–
154). In the mouse aortic arch, a vascular area exposed to
disturbed blood flow, YAP phosphorylation was lower and its
nuclear localization higher, as in comparison to the thoracic
aorta, an area exposed to laminar blood flow (153).
Consequently, disturbed haemodynamics activate endothelial
YAP/TAZ and we speculate that they sustain YAP/TAZ
signaling in the tumor vasculature.

In summary, the pro-angiogenic, inflammatory, hypoxic, and
stiff TME activates endothelial YAP/TAZ and promotes tumor
angiogenesis. A major challenge is to tackle the essential events
that sustain this oncogenic vascular environment. Investing in
pre-clinical engineered tumor vascular models in which the TME
cues can be manipulated in a defined manner are expected to
greatly propel research aimed at developing anti-angiogenic
therapies for cancer (155).
DOWNSTREAM EFFECTORS OF YAP/TAZ
IN TUMOR ANGIOGENESIS

To date, the mechanisms through which YAP/TAZ control
(tumor) angiogenesis remains unclear. Active YAP/TAZ act as
co-factors and bind to transcription factors to modulate gene
expression (156). YAP/TAZ both contain a TEAD-binding
domain and one WW (TAZ) or two WW domains (YAP) that
mediate the interaction with transcription factors (157). The
interaction of YAP/TAZ with the transcriptional enhancer factor
domain (TEAD) family has been considered as the primary axis
through which YAP/TAZ regulate transcription. TEAD-
dependent transcription include most of the classical YAP/
TAZ target genes, including CTGF, CYR61, and ANKRD1
(158–160). The YAP-TEAD complex is important for
tumorigenesis: mutating the TEAD binding domain in YAP
suppresses its oncogenic capacity in cancer cells (159, 161).
The ability of tumor tissue to promote tumor angiogenesis
through expression of angiogenic factors occurs in a TEAD-
dependent manner (102, 162). Furthermore, pharmacological
inhibition of the YAP-TEAD complex with verteporfin
suppresses tumor growth in pancreatic cancer, by inhibiting
the proliferation of pancreatic ductal adenocarcinoma cells and
through inhibition of the angiogenic activity of associated tumor
ECs (162).

The WW domains of YAP/TAZ bind to proline-rich
sequences such as the PPXY motif, found in a variety of
transcription factors, and they mediate the interaction with
SMADs, AMOTs, ErbB4, b-catenin, RUNXs, and p73 (163).
Mutations in the WW domain perturb YAP-controlled
transcriptional programs and reduce its oncogenic capacity
(161). While not yet investigated directly, the WW domains of
YAP/TAZ are likely to modulate tumor angiogenesis, as YAP/
TAZ WW-binding proteins, such as SMADs and AMOTs, have
readily been linked to angiogenesis (164, 165).
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Promoting gene expression through TEAD-binding or the WW
domains are not the only mechanisms through which YAP/TAZ
may regulate tumor angiogenesis. For instance TBX5, a
transcription factor that lacks a PPXY-motif, can interact with
YAP/TAZ via its carboxyl-terminus (166). Moreover, SMAD2/3
can bind the coiled-coil region of YAP/TAZ (167). Multiple YAP/
TAZ interactors can synergize to promote gene expression. For
instance, ErbB4 binds to YAP through the WW domain (168),
which promotes the binding of TEAD to YAP. In this way, ErbB4
regulates the expression of the canonical YAP/TAZ-TEAD targets,
including CTGF, CYR61, and ANKRD1 (169). AP-1 is a
transcription factor present in most of YAP/TAZ-TEAD genomic
binding sites and its presence greatly enhances oncogenic growth
induced by active YAP/TAZ. Conversely, AP-1 inactivation inhibits
YAP/TAZ-driven proliferation and tumorigenesis (170, 171). AP-1
does not directly bind to YAP/TAZ, but it controls TEAD-
dependent gene expression in a cis-regulatory fashion (170–172)
(Figure 2). Interestingly, TRPS1 also controls YAP/TAZ through
regulatory elements, but decreases YAP transcriptional activity by
recruiting co-repressor complexes (173). This shows that YAP/TAZ
is capable of inducing gene expression, not only through direct
interactions with transcription factors, but also through regulators
which are in close proximity of nuclear YAP/TAZ. Which of these
transcriptional regulators are activated in tumor ECs is currently
still unclear.

Canonical YAP/TAZ Effectors in Tumor
Angiogenesis
Tumor ECs express a different transcriptional program
compared to normal ECs (174). Many genes which are
upregulated during physiological angiogenesis, are also
upregulated in ECs in the TME (175, 176); for example
increased VEGF-VEGFR2 signaling (177, 178). In addition, the
expression of various genes involved in the interaction of ECs
with immune cells are downregulated, suggesting that tumor-
associated ECs play an important role in the immunotherapeutic
resistance of the TME (179, 180). To understand how YAP/TAZ
influences tumor angiogenesis, we need to consider the
(potential) function of their downstream transcriptional targets.

Activation of YAP/TAZ induce the transcription of a
canonical set of genes involved in proliferation, migration and
cytoskeletal rearrangement and suppresses genes related to
apoptosis in a variety of cell types (67, 94). In Table 1 we
summarize the currently known YAP/TAZ target genes and their
possible involvement in (tumor) angiogenesis (Table 1). These
genes were included as part of the endothelial YAP/TAZ target
gene signature if detected in a minimum of three independent
YAP/TAZ transcriptome studies, and have been confirmed at
least once in an endothelial context (77, 79, 153, 158, 244, 245).
For an overview of all YAP/TAZ target genes from these studies,
see Supplemental Table 1.

The well-established YAP/TAZ transcriptional targets
connective tissue growth factor (CTGF), Cysteine-rich
angiogenic inducer 61 (CYR61) and Ankyrin Repeat Domain 1
(ANKRD1) were upregulated in all of the above-mentioned
transcriptome studies. CTGF and CYR61 are part of the CCN
February 2021 | Volume 10 | Article 612802

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hooglugt et al. YAP/TAZ in Tumor Vasculature
TABLE 1 | Selection of YAP/TAZ-regulated genes involved in (tumor) angiogenesis.

Gene Function Role in (tumor) angiogenesis References

CYR61 Matricellular protein of the CCN family, regulates
inflammation, wound healing, and fibrosis.

Promotes angiogenic processes through integrin avb3, which in turn activates
VEGFR2 and downstream MAPK/PI3K signaling pathways.

(154, 181)

ANKRD1 Transcriptional effector, highly expressed in cardiac,
and skeletal muscle and able to interact with
transcription factors of different pathways.

ANKRD1-/- mouse have angiogenic impairments. ANKRD1 has been proposed to
mediate angiogenesis through control of MMP-mediated ECM remodeling.

(182–184)

CTGF Matricellular protein of the CCN family. A known
mediator of fibrosis in multiple diseases. Cofactor
required for TGFb activity.

Activates VEGF signaling by aiding MMP-mediated cleavage of VEGF and prolongs
VEGF signaling. Moreover, CTGF binding to integrin avb3 activates RhoA and
promotes cell migration.

(185–187)

AMOTL2 Scaffold protein, acts as a link between VE-cadherin
and contractile F-actin. AMOTL2 plays a regulatory
role in the Hippo pathway.

AMOTL2 is a negative regulator of YAP/TAZ by preventing their nuclear translocation.
The role of AMOTL2 in tumor angiogenesis is still debated, but it has been shown to
promote proliferation and migration during angiogenesis and to promote
tumorigenesis in specific tissues.

(57, 188,
189)

FGF2 Growth factor, interacts with FGF receptors and
integrins. Plays an important role in the regulation of
cell survival, division, differentiation, and migration.

Angiogenic growth factor implicated in tumor resistance to anti-VEGF tumor
therapies. ECs are activated through MAPK and PI3K/Akt pathways, inducing MMP
production, migration, and proliferation.

(190–192)

SLIT2 Secreted protein that acts as a guidance cue in
cellular migration. Functions through the ROBO
family as an inhibitor in processes neuronal migration
and leukocyte chemotaxis.

SLIT2 has been implicated in tumor angiogenesis and shown to regulate endothelial
migration. SLIT2 was found to suppress endothelial migration in vitro. Loss of SLIT2
resulted in decreased tumor vessel density in a tumor growth mouse model. Loss of
endothelial SLIT2 in mouse models of breast and lung cancer suppressed tumor cell
migration and metastatic events.

(193–196)

DLC1 Rho-GTPase-activating protein, controls RhoA
inactivation, and regulates the actin cytoskeleton, cell
shape, adhesion, migration, and proliferation.

DLC1 has a regulatory role in cell-contact inhibition of proliferation, EC migration and
(tumor) angiogenesis. Interference of the DLC1-RhoA axis in knockout models
disrupted cell migration and caused angiogenic defects.

(140, 197–
199)

SERPINE1 Serine protease inhibitor regulating fibrinolysis
through inhibition of tissue- and urokinase-type
plasminogen activator. Major downstream effector of
TGFb signaling and upregulated in inflammatory,
fibrotic, and thrombotic events.

SERPINE1 expression is positively correlated to tumorigenesis. Independent of its
protease inhibitor activity, SERPINE1 regulates angiogenic related processes, such as
matrix degradation, migration, proliferation, and cytoskeleton changes. Furthermore,
inhibition of urokinase plasminogen activator was shown to inhibit angiogenesis.

(200–203)

CRIM1 (Putative) transmembrame protein containing IGF-
binding domain. Plays a role in development and in
different tissues by binding secreted growth factors.

CRIM1 plays a role in vascular development, capillary formation and angiogenesis by
augmenting VEGF-A signaling through VEFGR2. In cancer, CRIM1 was shown to
regulate cell adhesion and migration.

(204–207)

AXL AXL is a receptor tyrosine kinase (RTK), that upon
binding its ligand (growth factor GAS6) activates the
PI3K/Akt pathway.

AXL plays a role in neovascularization by regulating EC proliferation, survival and
migration. In vivo models demonstrated its importance in angiogenesis and tumor
formation. AXL regulates angiogenesis by modulating Ang2 and DKK3 levels.

(208–212)

BIRC5 Mitotic spindle checkpoint gene, component of the
mitotic apparatus, involved in chromosome alignment
and segregation during mitosis and cytokinesis. Cell
cycle dependent expression, promoting cell
proliferation and inhibition of apoptosis.

Several studies found a correlation between tumor angiogenesis and BIRC5
expression. BIRC5 promotes endothelial proliferation and migration and inhibits
apoptosis. BIRC5-dependent VEGF and FGF expression and modulation of the PI3K/
Akt pathway are the proposed mechanisms for the angiogenic effect of BIRC5.

(213–217)

SHCBP1 Adaptor protein associated with cell surface
receptors, involved in various signaling pathways,
such as FGF, NF-kB, TGFb-1/Smad, and b-catenin
signaling.

SHCBP1 is upregulated in several cancers and promotes proliferation and migration.
SHCBP1 overexpression increased VEGF expression and promoted angiogenesis
through TGFb/SMAD signaling.

(218–221)

SGK1 Serine/threonine-protein kinase, downstream effector
of PI3K/mTORC2 signaling. Anti-apoptotic gene
regulating cell growth, proliferation, survival, and
migration.

Role in angiogenesis through phosphorylation of SGK1 target NDRG1 (also a
transcriptional target of YAP/TAZ), which modulates NF-kB signaling and expression
of VEGF. Activated NDRG1 induces expression of angiogenic CXC cytokines, such as
IL-8. High microvessel density in tumors correlates with NDRG1 nuclear activity.
Knockdown of SGK1/NDRG1 reduced tumor angiogenesis.

(222–225)

DDAH1 Role in the regulation of nitric oxide generation.
Inhibits degradation of nitric oxide synthase.

Upregulated in tumor tissues, increases VEGF expression as a result of elevated nitric
oxide levels and correlates with tumor growth and angiogenesis in vivo. Targeting of
DDAH1 with a therapeutic compound resulted in regression of tumor size and tumor
vasculature density.

(226–232)

TK1 Thymidine kinase, involved in cell division. Activity of
the cytosolic enzyme is highest during the S-phase.
Marker for proliferating cells.

TK1 is upregulated in tumor-associated ECs. Exact role of TK1 in tumor angiogenesis
is still unknown, but it was found to act as both an angiogenic and angiostatic factor.

(233–235)

(Continued)
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protein family (246). CTGF is a known mediator of fibrosis in a
wide range of diseases (247). During tumor progression, CTGF
plays a role in ECM deposition and promotes proliferation and
epithelial to mesenchymal transition (EMT) (159, 248). Stromal
expression of CTGF increases micro-vessel density in prostate
cancer xenografts (249). CTGF was found to promote
angiogenesis by inducing VEGF-A secretion of TGFb-
stimulated fibroblasts (250). CTGF also promotes tumor
angiogenesis through regulation of Ang2 (251).

The YAP/TAZ target CYR61 was demonstrated to promote
angiogenesis and improve tissue perfusion in ischemic models
(252). CYR61 null mice are embryonically lethal caused by
vascular defects (253). CYR61 is expressed in angiogenic ECs
at sites of neovascularization (254). Increased expression of
CYR61 is found in many forms of cancer and is linked to an
increase of size and vascularization of tumors (255–257). CYR61
promotes tumor angiogenesis through its interaction with
integrin avb3, which in turn regulates endothelial adhesions,
migration, proliferation, and activates VEGFR2 (154).

ANKRD1 is a transcriptional effector of YAP/TAZ. ANKRD1
has been shown to have an anti-inflammatory role through
inhibition of NF-kB (182). ANKRD1 may act as a co-activator
of the tumor suppressor p53, and the presence of p53 maintains
the expression levels of ANKRD1 through a positive feedback
loop (183, 258). In cancer ANKRD1 can be epigenetically
inactivated (258), which may explain how such a well-
established YAP/TAZ target does not attenuate YAP/TAZ-
mediated tumorigenesis. ANKRD1 has been proposed to
mediate angiogenesis through MMP-mediated ECM
remodeling (184). ANKRD1 promotes angiogenesis after acute
wounding of mouse skin (259, 260), but currently little is known
about the potential role of ANKRD1 in tumor angiogenesis.

Endothelial-Specific YAP/TAZ Angiogenic
Effectors
YAP/TAZ also induce the expression of endothelial-specific
genes to modulate the tumor vasculature. While not always
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being referred to as YAP/TAZ effectors in the literature, these
pro-angiogenic proteins are readily investigated for their role in
tumor angiogenesis and their potential as therapeutic targets.

Ephrin-Eph System
The Ephrin receptor genes EphA2-4 and EphB4 and Ephrin
genes EFNB2-3 were found to be downstream targets of
endothelial YAP/TAZ in developmental angiogenesis (79).
Ephrins and Eph receptors are upregulated in almost all
tumors and are considered as promising targets for cancer
therapy (261). Interestingly, in YAP/TAZ transcriptome studies
focusing on expression in cancer cell lines, the Ephrin family
does not seem to be a prominent transcriptional target of YAP/
TAZ (158, 244, 245), which indicates that Ephrins may be
specifically derived from YAP/TAZ activation in the
tumor endothelium.

The Eph receptors and Ephrin ligands are crucial for vascular
specification during development via their signaling toward Rho-
GTPases, cytoskeletal remodeling, and cell migration (262).
Expression of the EphA2 receptor has been reported to
promote tumor size and vascular density (263, 264). Genetic
silencing or blocking activation of the EphA receptors attenuated
tumor angiogenesis and decreased tumor vessel density (265,
266). Signaling through EphrinB2 and EphB4 has been directly
associated with tumor angiogenesis and with tumor resistance to
anti-angiogenic therapy (267, 268). Inhibition of EphB4
signaling through the use of soluble ligands, reduced the
growth and vascularization of tumors (269). Another study
showed that EphB4 suppresses sprouting angiogenesis and
induces circumferential growth of blood vessels in tumor
xenografts (270). Furthermore, the Ephrins and their receptors
differ in expression levels between tumor types. For instance,
EphA2 and EphB2 both promote tumor angiogenesis, but EphA2
is upregulated in prostate cancer, while EphB2 is downregulated
(261). Before considering Ephrin signaling as therapeutic target
to normalize the tumor vasculature, more understanding is
needed of the downstream mechanisms of Eph receptors, as
TABLE 1 | Continued

Gene Function Role in (tumor) angiogenesis References

TGFB-2 Ligand activating the TGFb receptor/SMAD pathway;
activation of this pathway results in an increase in the
deposition of ECM, angiogenesis,
immunosuppression and alterations in cell adhesion.

Multifunctional protein, involved in regulation of angiogenesis. Implicated in tumor
angiogenesis through activation of YAP/TAZ and upregulation of angiogenic factors.
Also able to indirectly promote angiogenesis by reorganizing the ECM and promoting
the immune system.

(164, 236)

ECT2 Rho GEF activating Rho-GTPases, like RhoA, RhoC,
Rac1, and CDC42, plays a role in cell division.

During angiogenesis, ECT2 controls VEGF-induced activation of Rho-GTPases.
Knockdown of ECT2 inhibits sprouting angiogenesis. During tumorigenesis,
deregulated ECT2 drives tumor cell proliferation.

(237–240)

COL4A3 Subunit of type IV collagen, structural component of
the basement membrane.

Expressed in angiogenic endothelial cultures and considered as an angiogenic factor.
Upregulated in tumor tissue and COL4A3 expression levels are correlated to tumor
progression. In contrast, Tumstatin (MMP product of COL4A3) suppresses
angiogenesis.

(241–243)
February 2021 | Volume 10 | A
Table 1 highlights the most common YAP/TAZ target genes and provides an overview of the different mechanisms through which they regulate (tumor) angiogenesis. These genes were
considered as common YAP/TAZ targets when found in a minimum of three independent YAP/TAZ transcriptome studies, and have been confirmed at least once in an endothelial cell
context (77, 79, 153, 158, 244, 245). The full list of genes can be found in Supplemental data file 1. The variety of effectors through which YAP/TAZ affect tumor angiogenesis currently
makes it difficult to discern the significance of each protein to the process. Table 1 demonstrates the diversity of ways through which YAP/TAZ transcriptional targets are able to regulate
tumor angiogenesis, e.g., as an extracellular matrix (ECM) component, a secreted factor, a modulator of a signaling pathway, a transcription factor in the nucleus or as a combination of
such mechanisms. Furthermore, these YAP/TAZ targets are also expressed by other cells in the tumor microenvironment (TME), such as tumor cells and fibroblasts, and often work
through a common mode of action to promote tumor angiogenesis.
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they induce vascularization in some cancers, but restrict tumor
growth in others.

Angiopoietin-Tie System
Ang2 is a downstream transcriptional target of YAP/TAZ in ECs
(75, 79). The ligands Angiopoietin-1 (Ang1) and Ang2, bind to
Tie receptors and control the angiogenic activation of ECs to
finely tune vascular development and homeostasis (271, 272).
The Ang2 antagonist Ang1 is an important regulator of vessel
maturation and Ang1-Tie2 signaling induces endothelial
quiescence (272). Conversely, interaction of Ang2 with Tie2,
results in disruption of EC monolayer integrity, making ECs
more responsive to inflammatory and pro-angiogenic cytokines
(273–275). Ang2 is produced by ECs and signals in an autocrine
manner (274). Ang2 expression is induced in response to
inflammatory cytokines, hypoxia, and haemodynamic forces
(275, 276). Ang2 is highly expressed in ECs of remodeling
vessels, indicating an important role for Ang2 in angiogenesis
(275, 277). Interestingly, Ang2 may exert both pro- and anti-
angiogenic functions. In the presence of VEGF, Ang2 has a pro-
angiogenic effect on ECs, while in the absence of VEGF,
apoptosis, and vessel regression is induced by Ang2 (278–281).
Ang1 binding to Tie2 induces Tie2 autophosphorylation and
downstream PI3K/Akt and ERK signaling pathways and inhibits
NF-kB activation (271, 273). Moreover, Ang1-Tie2 signaling
inhibits Ang2 expression, maintaining endothelial quiescence
(273). Upregulation of Ang2 competes with Ang1-Tie2 signaling,
resulting in destabilization of the vascular endothelium (273).

Ang2 is described to be a mediator of YAP-induced
angiogenesis in mouse retinal vasculature (75, 84). Ang2 levels
correlate with YAP activation in sprouting vessels in the retina
(75). Supplementation of Ang2 rescues angiogenic defects in the
retinal vasculature of YAP/TAZ knockdown mouse and marks
Ang2 as a prominent downstream effector of YAP/TAZ-
regulated angiogenesis (75). Blocking Ang2 was able to inhibit
endothelial YAP-induced angiogenic sprouting (84). Ang2 is
upregulated in several types of cancer and is a mediator of
tumor angiogenesis (282). Interestingly, YAP and Ang2
association is also observed in the tumor vessels of melanoma
(75). In astrocytomas, Ang2 upregulation was correlated with
increased vascular growth and an abnormal tumor vasculature
(283). Furthermore, angiogenic tumor vessels of human
squamous cell carcinoma and skin carcinogenesis xenografts
showed an upregulation of Ang2 (284). Interestingly, Ang1
overexpression inhibits tumor growth in these cancer models.
The amount of vascularization was unchanged, however more
pericyte coverage of the tumor vessels was observed, pointing
toward vessel maturation (284, 285). Alternatively, in tumor ECs,
Ang2 has been described to induce pro-angiogenic effects by
triggering integrin adhesion signaling (286). Ang2 inhibition and
Tie2 activation in experimental glioma models resulted in
normalization of the tumor vessels, reduced hypoxia and
acidosis in the TME, and reduced tumor growth (287). In
experimental glioblastoma models, a combination of VEGF-
and Ang2-inhibition, was also found to induce tumor vessel
normalization (288). Overall, these findings indicate that the
Frontiers in Oncology | www.frontiersin.org 10
YAP/TAZ effector Ang2 might be a promising therapeutic target
in cancer.

Fibroblast Growth Factor 2
Fibroblast growth factor 2 (FGF2) is awell-definedYAP/TAZ target
expressed in both tumor cells and ECs (77, 79, 158, 244, 245). FGF2
signals through theFGFreceptor (FGFR) tyrosinekinase family and
induces a broad range of cellular functions, including proliferation,
migration, and angiogenesis. Tumor-secretedFGF2, in conjunction
with VEGF, promotes tumor angiogenesis (190, 191). The FGF2
pathway is being considered as an important angiogenic pathway
involved in bypassing tumor resistance to anti-angiogenic therapies
that target VEGF signaling (289, 290). Inhibiting FGF2-FGFR
signaling in mice indeed improved tumor sensitivity to anti-
VEGF therapy, suggesting that therapeutic strategies that target
both growth factors could form a stronger anti-angiogenic
intervention in cancer (192).

Deleted-in-Liver-Cancer 1
We recently discovered that Deleted-in-liver-cancer-1 (DLC1), a
Rho GAP protein, functions as a direct target of YAP/TAZ in
ECs (140). DLC1 is a potential tumor suppressor in various
cancer types (291, 292). DLC1 is recruited to integrin-based
adhesions through binding to the FA proteins talin, tensin and/
or FAK (293, 294). DLC1 knock out mice are embryonically
lethal, and the depletion of DLC1 leads to vascular defects (197,
295). DLC1 expression is upregulated by ECM stiffening and
angiogenic VEGF signaling (140, 296), and it functions as a
prominent target of YAP/TAZ by driving endothelial FA
turnover, collective cell migration and sprouting angiogenesis
(140). Perturbation of YAP/TAZ signaling and DLC1 levels affect
endothelial contact inhibition and promote the development of
angiosarcoma (198, 297). Intriguingly, depletion of DLC1 from
normal epithelial cells, resulted in increased production of VEGF
and upregulation of active HIF1a, suggesting that the absence of
DLC1 in oncogenic cells can drive angiogenesis in a paracrine
fashion (298). Whether DLC1 is an important target of YAP/
TAZ in the tumor endothelium remains to be addressed.

CXCL Chemokines
Various chemokine CXC family members (e.g., CXCL1, CXCL6,
CXCL12) are regulated by YAP/TAZ in the endothelium (79,
153). CXCL1, CXCL2, CXCL3, and CXCL8 are part of an
angiogenic subset of the CXC family that regulate chemotaxis
and angiogenesis through the GPCR CXCR2 (299). In
physiological context, CXCL1 primarily targets ECs and
neutrophils (299). However, CXCL1 and CXCR2 are also
upregulated in different tumor tissues and induce tumor
angiogenesis (300–303). It is thought that the inflammatory
cytokines contribute to the TME by recruiting inflammatory
cells and inducing stromal cell senescence (304–307).

Are There Tumor Angiogenesis-Specific
YAP/TAZ Effectors?
The YAP/TAZ-regulated transcriptome is tissue specific. In the
endothelium, YAP/TAZ modulate angiogenesis by regulating
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angiogenic genes. Interestingly, Wang et al. compared RNA-
sequencing data from endothelial-specific YAP/TAZ KO mice
with that from VEGF-treated HUVECs. Intriguingly, the VEGF-
regulated genes were enriched in the gene set that was
downregulated upon YAP/TAZ depletion (79). This indicates
that YAP/TAZ activation and VEGF signaling synergize to
promote angiogenesis.

The transcriptome of tumor-associated ECs in human lung
tumors were recently investigated at single-cell resolution (179,
180, 308). Tumor ECs upregulate genes involved in
transcription, oxidative phosphorylation and glycolysis,
whereas they suppress inflammatory genes. Interestingly,
TEAD1 was found as one of the two transcription factors
responsible for the tumor-associated endothelial phenotype
(179). A large number of the upregulated genes in tumor-
associated ECs as reported by Lambrechts et al. are also
controlled by YAP/TAZ (Supplemental table 1). Furthermore,
tumor-associated ECs strongly activate VEGF and Notch
signaling (180), which is likely mediated by YAP/TAZ through
crosstalk between these pathways. Treatment with anti-VEGF
therapies converts the transcriptomic profile of tumor-associated
ECs into a quiescent EC type (308), emphasizing that the activity
of tumor ECs is sensitive to therapeutic interventions.

To address if tumor angiogenesis is promoted through
specific genes, other than those employed during physiological
angiogenesis, the gene expression profiles of ECs in resting liver,
regenerating liver, and tumor-bearing liver were compared (233).
This study confirmed the upregulation of established angiogenic
genes involved in proliferation, such as Top2a, TK1, and Ki67.
Incidentally, these genes have also been reported as downstream
targets of YAP/TAZ (77, 79, 158, 244, 245). The study further
identified two genes that were markedly upregulated during
tumor angiogenesis and have been reported as YAP/TAZ
targets, namely, SH2D5 (158) and Apelin (79).

SH2domain containingprotein 5, or SH2D5, is a transcriptional
target of YAP/TAZ (158) and promotes tumor growth through
interaction with transketolase, a regulator of the STAT3 signaling
pathway (309). The STAT3 signaling pathway is essential during
physiological and tumor angiogenesis (310). In tumors, sustained
STAT3 signaling promotes VEGF expression and angiogenesis
(311). Furthermore, STAT3 interacts with YAP to promote
angiogenesis in a synergistic manner (109). By contrast, a recent
paper described YAP to downregulate STAT3 activity and inhibit
VEGF expression (312). By regulating STAT3 andVEGF signaling,
SH2D5 might be involved in regulating YAP/TAZ activity during
tumor angiogenesis.

Apelin is a secreted protein and its expression is regulated by
endothelial YAP/TAZ (79). Apelin is required during vascular
development (313) and controls initiation of angiogenesis (314).
In tumors, increased levels of Apelin promote tumor angiogenesis
(314–317). In addition, Apelin drives angiogenesis of lymphatic
vessels (318). Interestingly, the GPCR of Apelin, is upregulated in
ECs taking part in pathological angiogenesis (308). Because of the
anti-angiogenic and anti-lymphangiogenic abilities of Apelin,
Apelin has been proposed as a potential therapeutic target for
tumor therapies (319).
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YAP/TAZ SUSTAIN TUMOR
ANGIOGENESIS THROUGH FEEDBACK
MECHANISMS

Physiological angiogenesis and tumor angiogenesis are largely
driven by common mechanisms (174, 233). The tumor
vasculature is however very different in its organization and
function compared to healthy vasculature (10). YAP/TAZ
promote the formation of a disorganized and dense tumor
vasculature network and simultaneously prevent vessel
maturation and specification by sustaining angiogenic signaling
(40). In this section we provide an overview of the potential
mechanisms through which endothelial YAP/TAZ sustain
angiogenic signaling in the TME.
Feedback Signals that Fine Tune
YAP/TAZ
YAP/TAZ are regulated by genes that feedback on the upstream
elements of the signaling pathway. For instance, the YAP/TAZ
target NUAK2 sustains YAP/TAZ activity in breast cancer cells
through inhibition of LATS1/2 (320). Pharmacological
inhibition of NUAK2 reduces tumor growth in mice,
indicating its activity is important to enforce tumorigenic
YAP/TAZ signaling (320). By contrast, in collectively
migrating ECs, NUAK2 provides negative feedback to YAP/
TAZ by reducing actomyosin contractility (80), indicating that
this YAP/TAZ target’s feedback function is tissue-dependent.
Members of the AMOT family are known regulators of YAP/
TAZ (321), and likely also play a role in regulating endothelial
YAP/TAZ activity through feedback; since AMOT and
AMOTL2 were identified as YAP/TAZ transcriptional targets
in endothelial RNA-sequencing studies (77, 79). The p130
isoform of AMOT increases YAP transcriptional activity by
binding to YAP and preventing LATS1-mediated YAP
phosphorylation (322). In contrast, AMOTL2 inhibits YAP/
TAZ activity by binding directly to YAP or to LATS1/2 kinases
(57, 188). In most cancers the AMOT family promotes
tumorigenesis, while in others its effect is inhibitory (321),
indicating AMOT function to be tissue-specific. Altogether the
involvement of the AMOT family in the regulation of YAP/TAZ
activity and tumor angiogenesis is controversial and should be
studied more closely in endothelial context. Interestingly,
LATS1/2 kinases were found to phosphorylate AMOT and to
inhibit angiogenesis in ECs, independent of YAP/TAZ
transcriptional activity (165). These debated findings highlight
the currently limited understanding behind the regulatory
switches in the YAP/TAZ pathway.

YAP/TAZ activity is further defined by other transcriptional
regulators. b-catenin binds to YAP/TAZ in the nucleus and the
complex drives tumorigenesis in b-catenin-driven tumors (323).
BIRC5 is one of the transcriptional targets of the b-catenin-YAP/
TAZ complex that promotes tumorigenesis (323) and is also a
target of endothelial YAP/TAZ (Supplemental table 1) (77).
BIRC5 was found to upregulate VEGF expression in esophageal
cancer cells (213), and may therefore potentially sustain tumor
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angiogenesis through VEGF signaling. The interaction of YAP/
TAZ with b-catenin is regulated by the Wnt pathway: in the
absence of Wnt activity, the APC/axin destruction complex
degrades the b-catenin-YAP/TAZ complex (324, 325).
Moreover, Wnt5a/b and Wnt3a promote YAP/TAZ activity
through Rho-GTPase-mediated inactivation of LATS (326).
YAP/TAZ, in turn, promote expression of DKK1, BMP4,
and IGFBP4, inhibitors of the canonical Wnt/b-catenin
signaling (326). Thus, the crosstalk events that take place
between YAP/TAZ and Wnt signaling could be an interesting
element in the sustained YAP/TAZ signaling in tumor growth
and angiogenesis.

YAP/TAZ-Triggered Positive Feedback
Loops
Angiogenic Growth Factor Signaling
In angiogenic tissue, YAP/TAZ generate positive feedback by
driving a transcriptional response that sustains VEGF-VEGFR2
signaling (79). VEGF signaling itself activates endothelial YAP/
TAZ and promotes YAP-dependent STAT3 activation (79, 84,
109). In turn, activated STAT3 elevates VEGF expression (109,
311). YAP/TAZ further enhance VEGF signaling through the
YAP/TAZ target CRIM1, a transmembrane receptor that is
highly expressed in angiogenic ECs (204). CRIM1 interacts
with VEGF, and promotes VEGFR2 phosphorylation (204, 205).

Several YAP/TAZ effectors amplify VEGF signaling
downstream of the VEGFR. For instance, the YAP/TAZ
effector Rho GEF ECT2 is essential for VEGF-mediated
activation of RhoA and endothelial migration (237, 327). In
addition, increased VEGF signaling induces MMP expression,
which is important for matrix degradation and basement
membrane remodeling during angiogenesis (328). MMPs are
also upregulated by the YAP/TAZ transcriptional program (329,
330), and may in turn modulate VEGF signaling by controlling
VEGFR2 expression (331, 332).

Active endothelial YAP/TAZ drive the expression of other
angiogenic cytokines as well, such as FGF2, CXCL1 and TGFb-2
(see Supplemental table 1). TGFb-2 activates the TGFb
receptor/SMAD signaling axis to promote angiogenesis,
whereas TGFb-1 promotes angiogenesis through VEGF
expression (164). Thus, endothelial YAP/TAZ activation
sustains tumor angiogenesis by enhancing VEGF signaling and
related angiogenic factors.

TME Stiffening and Cellular Contractility
YAP/TAZ promote a transcriptional program that increases
TME stiffening and intracellular contractility, which in turn
reinforces YAP/TAZ signaling (67, 97). Activation of YAP/
TAZ in fibroblasts is well known to promote deposition of
ECM proteins, secretion of MMPs and cross-linking enzymes
(78, 97). Within tumors, the CAFs synthesize fibronectin and
collagens, which are key constituents of the stiff tumor tissue and
modulate tumor angiogenesis (78, 97). ECM stiffening induces
endothelial YAP/TAZ signaling to promote angiogenic sprouting
(131, 140). In addition, ECM stiffening and YAP/TAZ signaling
jointly induce EndoMT, during which ECs undergo
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mesenchymal transformation and start to actively participate
in TME stiffening and vascular remodeling (333). Along that
line, YAP/TAZ signaling in cholangiocarcinoma cells promotes
expression and deposition of MFAP5, which is an component of
the elastin fibrils in the ECM and promotes tumor vasculature
formation (102). The YAP/TAZ target SERPINE1 is another
secreted factor that correlates with tumor progression and
modulates angiogenesis by competing with ECM proteins for
binding to integrins (200, 201).

Finally, YAP/TAZ also regulate expression of genes that
increase cytoskeletal contractility to mechanoactivate and
further enforce their signaling. Endothelial YAP/TAZ induce
expression of well-known modulators of intracellular tension,
including the Ephrin-Eph system and the Rho-GTPase family
and their regulators, such as the Rho GAP DLC1 and Rho GEF
ECT2 (77, 79, 140).

Inflammatory Factors
Inflammatory cytokines in the TME activate YAP/TAZ and
sustain angiogenesis (334–338). Inflammatory cytokines
activate AP-1 (339), which promotes oncogenic growth in
conjunction with YAP/TAZ (171). Expression of the YAP/TAZ
effector CYR61 is upregulated by inflammatory cytokines such as
IL-1 and TNF-a (340). CYR61 enhances VEGFR2 activity and
consequently endothelial YAP/TAZ activity through an integrin
avb3-VEGFR2-MAPK/PI3K-YAP/TAZ axis and enhanced
STAT3 activation (154). However, the details of the reciprocal
regulatory mechanism between CYR61 and YAP/TAZ need
further investigations, as another study described CYR61 to
negatively regulate YAP/TAZ activity (341).

Inflammatory stimuli also trigger the release of the YAP/TAZ
target Ang2. Interestingly, blocking the function of Ang2,
impaired the interaction between ECs and immune cells and
reduced tumor neovascularization (285), suggesting that Ang2 is
one of the targets of the YAP/TAZ pathway that might be
amenable to normalize the tumor vasculature. Ang2-Tie2
signaling weakens the junctional integrity between ECs (273,
274). The destabilization of cell-cell contacts is known to activate
YAP/TAZ via the inhibition of LATS1/2 (62, 63). Moreover, the
destabilization of VE-cadherin-based cell-cell junctions activates
YAP and induces Ang2 expression (342), pointing toward a
positive feedback loop between endothelial YAP and
Ang2 signaling.

In conclusion, various factors of the TME activate YAP/TAZ
in the endothelium. Activated YAP/TAZ promote angiogenesis
through a subset of downstream effectors, while other targets
further aggravate the TME conditions. Figure 2 gives an
overview of the positive feedback loops that likely sustain
YAP/TAZ activation in the TME.
OUTLOOK

The oncogenes YAP/TAZ are interesting targets for cancer
therapy as they play an essential role during tumor
vascularization. YAP/TAZ have readily been investigated as
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therapeutic targets for the tumor stroma. Therapeutic
interventions have focused on inhibiting YAP/TAZ by
targeting upstream Hippo effectors or the YAP/TAZ-TEAD
interaction; such strategies have been reviewed in great detail
in recent years (343–345). One of the major challenges of
targeting strategies is that YAP/TAZ modulate multiple
signaling pathways and that completely blocking YAP/TAZ
signaling likely has large side effects on tissue homeostasis (95).
In this review, we highlight how YAP/TAZ is able to maintain a
hyperactive endothelial state within the TME and how this leads
to aberrant tumor angiogenesis. Targeting the transcriptional
downstream targets that reinforce YAP/TAZ activity in the
endothelium may provide an interesting approach to
normalize tumor vasculature and improve the efficacy of
cancer therapies.

When determining the role of transcriptional targets
downstream of YAP/TAZ in a biological process, such as
tumor angiogenesis, there are a few things to consider. First,
besides promoting gene expression, YAP/TAZ are capable of
silencing genes through recruitment of inhibitory co-factors.
Therefore YAP/TAZ effectively downregulate a significant
number of target genes (173, 346). Secondly, YAP and TAZ
each control unique (as well as overlapping) transcriptomes
(158) and could therefore affect tumor angiogenesis differently.
While YAP and TAZ are considered closely related paralogs,
structural differences between YAP and TAZ proteins likely
affect their specific transcriptional activities, which may be
relevant for cancer subtypes. Finally, endothelial YAP was
shown to have a cytoplasmic function, from where it regulates
EC migration through interaction with CDC42 in the mouse
retinal neovasculature (83). Hence, future research aimed to
understand the cytoplasmic role of YAP/TAZ during tumor
angiogenesis could provide important new insights.

Finally, different microRNAs (miRNAs) and long noncoding
RNAs (lncRNAs) have been reported to regulate YAP/TAZ
activity (347–350). Surprisingly, little is known regarding
noncoding RNAs downstream of YAP/TAZ. In renal cell
carcinoma, expression of lncRNA lncARSR is increased in a
YAP/TEAD-dependent manner. In turn, the binding of lncARSR
to YAP prevented LATS-mediated phosphorylation and
activated YAP (351). TAZ upregulates the miRNAs miR-224
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and miR-135, which promote tumorigenesis through inhibition
of tumor suppressor SMAD4 (352) and suppression of LATS
kinases (353), respectively. Furthermore, YAP was found to
downregulate the lncRNA MT1DP, a tumor suppressor that
inhibits YAP expression (354). A recent review of Tu et al. nicely
summarizes the crosstalk between lncRNAs and YAP/TAZ
during tumorigenesis (355). The role of noncoding RNAs as
effectors of YAP/TAZ in tumor angiogenesis and their promise
as therapeutic application remains a topic to address in the
nearby future.

Here, we have described upstream mechanisms of YAP/TAZ
activation in (tumor) ECs and provided an overview of the
downstream transcriptional effectors of YAP/TAZ that
participate in the development of tumor vasculature. Many
YAP/TAZ downstream targets drive a stiff, pro-inflammatory,
hypoxic TME, creating a self-sustained positive loop of YAP/
TAZ activity and tumor angiogenesis. Interfering with the crucial
events in such YAP/TAZ signal amplification steps are expected
to put a brake on pathological angiogenesis in tumors and help to
inhibit tumor growth and progression.
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