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Both in adult and children, high-grade gliomas (WHO grades III and IV) account for a high
proportion of death due to cancer. This poor prognosis is a direct consequence of tumor
recurrences occurring within few months despite a multimodal therapy consisting of a
surgical resection followed by chemotherapy and radiotherapy. There is increasing
evidence that glioma stem cells (GSCs) contribute to tumor recurrences. In fact, GSCs
can migrate out of the tumor mass and reach the subventricular zone (SVZ), a neurogenic
niche persisting after birth. Once nested in the SVZ, GSCs can escape a surgical
intervention and resist to treatments. The present review will define GSCs and describe
their similarities with neural stem cells, residents of the SVZ. The architectural organization
of the SVZ will be described both for humans and rodents. The migratory routes taken by
GSCs to reach the SVZ and the signaling pathways involved in their migration will also be
described hereafter. In addition, we will debate the advantages of the microenvironment
provided by the SVZ for GSCs and how this could contribute to tumor recurrences. Finally,
we will discuss the clinical relevance of the SVZ in adult GBM and pediatric HGG and the
therapeutic advantages of targeting that neurogenic region in both clinical situations.

Keywords: glioblastoma, recurrence, subventricular zone, glioma stem cell, cancer stem cell, diffuse intrinsic
pontine glioma, high grade glioma, diffuse midline glioma
INTRODUCTION

Gliomas are the most frequent primary tumors of the central nervous system, both in adults and
children. Among them, glioblastoma (GBM), classified as grade IV by theWorld Health Organization
(WHO), is the most frequent in adults, with an overall average annual age-adjusted incidence rate of
3.2 per 100,000 (1, 2). In children, WHO grades III and IV gliomas are generally grouped together as
high grade gliomas (HGGs), and are less common, with an annual age-adjusted incidence rate of 0.08
and 0.15 per 100,000, respectively (1). Diffuse intrinsic pontine glioma (DIPG) is the second most
common HGG of childhood (3). This tumor has a diffuse growth pattern and is localized in the
brainstem. Tumors with identical characteristics are found in other midline structures such as the
thalamus and the spinal cord, reason why it has been re-classified as diffuse midline glioma (DMG) in
the last WHO 2016 classification (2). In addition, these are phenotypically and molecularly distinct
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from the other types of HGGs with the characteristic of having
histone H3 mutations (2, 3). However, for the interest of this
review, DMGs will be included with HGGs in our discussion.

Despite clear molecular and genetic differences between
pediatric and adult HGGs, as reviewed by Sturm (4), there
seems to be a continuum between these two age groups. For
examples, DMG with H3K27M mutations, initially thought to
exclusively occur in children, can also be seen in adults (5, 6),
while adult GBM characteristics, such as epidermal growth factor
receptor (EGFR) amplification, can be seen in adolescents (7).
Furthermore, pediatric and adult HGGs share a poor prognosis
due to an almost systematic relapse of the tumor despite a
multimodal therapy which classically consists of the tumor
resection, whenever possible, followed by radiotherapy plus
concomitant and adjuvant temozolomide (TMZ) (2, 8).
Recurrences most likely emanate from tumor cells which have
infiltrated the parenchyma and are practically impossible to
successfully eradicate through a complete surgical resection (9).
Moreover, some tumor sites are not reachable by surgery which
is classically the case for DMG (3).

In addition to cancer cells which have intruded the tumor
surroundings, recurrences can be explained by the existence of
cancer stem cells (CSCs) or glioma stem cells (GSCs). CSCs-
based tumor initiation, growth and maintenance was first
proposed over 150 years ago by Virchow, who first suggested
that a quiescent sub-population of embryonic stem cells was able
to generate tumors (10). Since then, the existence of CSCs in
tumors has been demonstrated in various types of cancers (11–
13), including in adult GBM (14–17) and pediatric HGG (18–
20). Several GSC features supports the hypothesis that these cells
contribute to recurrences (16). Indeed, GSCs adapt and survive
environmental stresses, present increased resistance to standard
therapies and are able to form a novel tumor (21–27). GSCs are
mainly present in the tumor mass but have also been detected in
the subventricular zone (SVZ), a neurogenic niche persisting
after birth and containing resident neural stem cells (NSCs) (19,
21, 23).

The present review will describe the similarities between
GSCs and NSCs. The migratory routes of GSCs from the
tumor mass to the SVZ and the signaling pathways involved in
their migration will also be described hereafter. In addition, we
will debate the advantages of the microenvironment provided by
the SVZ for GSCs and how this could contribute to tumor
recurrences. Finally, we will discuss the clinical relevance of the
SVZ in adult GBM and pediatric HGGs and the therapeutic
advantages of targeting the SVZ in both clinical situations.
GLIOMA STEM CELLS SHARE FEATURES
WITH NEURAL STEM CELLS

Gimple and colleagues recently suggested the following
definition for GSCs; “GSCs are defined by tumor-initiating
capacity following serial transplantation, self-renewal, and the
ability to recapitulate tumor heterogeneity” (16). These
functional characteristics are currently the only tools available
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for the identification of GSCs as none of the stem marker
expression shows sufficient sensitivity and specificity. Indeed,
GSCs markers widely overlap with NSC specific ones, thus
rendering the identification of GSCs within a heterogeneous
tumor rather difficult. Thus, so far, GSCs are still solely
recognized based on their functional properties (11, 15).

Multiple signaling pathways involved in normal NSC biology
also play a role in GSCs. For example, the Notch pathway is
implicated in the maintenance of NSCs in an undifferentiated
state via the repression of proneural gene expression and is
frequently upregulated in GSCs (28, 29). The Bone
Morphogenetic Protein pathway inhibits neurogenesis and
promotes gliogenesis in NSCs, while it stimulates astrocyte-like
differentiation and reduces proliferation in GSCs (30, 31). The
Wnt pathway regulates NSC and GSC proliferation via the
accumulation of b-catenin (32, 33). The Sonic Hedgehog
pathway is involved in self-renewal of NSCs and GSCs via Gli1
(34, 35). STAT3 is needed for NSC and GSC proliferation and
the maintenance of multipotency (36, 37). Finally, EGFR,
classically expressed by NSCs and promoting their
proliferation, is often overexpressed in GBM and has been
associated with tumor initiation, tumor growth, cell invasion,
angiogenesis, and resistance to chemo- and radiotherapy (38).

In the same way, multiple transcription factors are common
between NSCs and GSCs. Bmi1, a component of the Polycomb
Repressive Complex 1, is classically found in undifferentiated
NSCs and is involved in the maintenance of their multipotency.
It also contributes to glioma aggressiveness via NF-kB and
matrix metalloproteinase-9 (39). In addition, the inhibition of
c-Myc, a transcription factor involved in the regulation of stem
cell renewal and proliferation, triggers GSC apoptosis and
reduces neurospheres formation (40). Sox2 which protects
NSCs from apoptosis via survivin overexpression (41), is
essential for the stemness maintenance of GSCs, together with
Oct4 and Nanog (18). Finally, Olig2, a key transcriptional factor
normally required for neural progenitor cell (NPC) proliferation
(42), is able to reduce the suppressive action of p53 which
regulates the proliferation in GSCs (43).

The identification of markers permitting the detection of
GSCs is important since it has been estimated that
approximately only one GSC every 1,000 tumor cells is present
in a GBM tumor (44). Despite this low number of GSCs in the
tumor mass, there is now evidence that these cells might
contribute to tumor recurrences. Indeed, GSCs can leave the
tumor mass, invade the parenchyma and migrate to further
locations, including the neurogenic zones, where they escape a
surgical intervention (23, 45–47). These GSCs can then remain
quiescent until a still unknown mechanism triggers the
development of a new tumor (48).

The Subventricular Zone, a Hideout for
Glioma Stem Cells
The Architectural Organization of the Subventricular
Zone
In the adult human brain, there are two well-described
neurogenic zones: the SVZ, situated in the walls of the lateral
January 2021 | Volume 10 | Article 614930
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ventricles (LV), and the subgranular zone (SGZ) of the
hippocampal dentate gyrus. Although controverted, some
evidence suggest that the presence of NSCs is not limited to
these two well-known neurogenic niches but could extend to
other parts of the human central nervous system (49, 50). In
addition, multiple other niches of NSCs have been reported in
other mammalians (51). As the SVZ is the largest neurogenic
region of the adult brain and because a link between the SGZ and
brain tumors is less clear (52), this review will focus on the role of
the SVZ in HGG recurrences.

The human SVZ is composed of four distinct layers going
from I to IV from the innermost toward the outermost layer.
Layer I runs alongside the ventricular cavity and is a monolayer
of ependymal cells responsible for the production and secretion
of cerebrospinal fluid. Layer II is known as the hypocellular
space as it contains cellular processes with only very few cell
bodies. Layer III is a cellular ribbon mainly comprising cells
expressing glial fibrillary acidic protein (GFAP). Finally, layer
IV, the outermost layer adjacent to the parenchyma, is a
transition zone mainly composed of myelinated axons and
oligodendrocytes (Figure 1) (53). Describing the exact
localization of NSCs within the different layers of the SVZ is
difficult as it depends on which criteria have been used to define
or identify these cells. Recent single-cell RNA sequencing studies
helped classifying NSCs into four main populations: quiescent
NSCs, activated NSCs, NPCs and neuroblasts (54). Most NSC
seem to be quiescent and positive for GFAP and CD133 (55).
Mammalian NSCs resembling glial cells and sharing common
characteristics and markers including GFAP, are mainly detected
in layer III of the SVZ (56). The transcription factor Sox2 has
been validated for the detection of NSCs in the human fetal brain
(57). Sox2 is expressed by quiescent and activated NSCs, but not
by NPCs (57, 58). In adults, Sox2 can be detected in the different
layers of the SVZ with decreasing numbers toward the
parenchyma indicating the presence of NSC in the adult SVZ
(59). However, when considering the expression of the immature
neuronal markers such as doublecortin, only rare NSCs are
found in the adult human brain and only in layer III (60).
Finally, in the SVZ, the proliferative marker Ki67 decreases
during aging (61) with a limited number of Ki67 positive cells
detected in layer III in the adult SVZ, reflecting very few cycling
cells (60). However, it is to note that whereas proliferative cells in
juvenile SVZ correspond to different cell types including
immature cells, in the adult SVZ, Ki67 is exclusively expressed
by microglia (60), the primary resident immune cells of the
brain (62).

Differences in the cellular composition exist between the SVZ
found in children and the adult counterpart, with more proliferative
cells in children, indicating higher neurogenesis under the age of
four (60, 63). It is also worth to note that in addition to a continuum
between children and adult HGGs, there is a progression in the
cellular and molecular properties of NSCs hosted in the SVZ from
the embryo, through childhood to adulthood (64).

Variations also exist in the organization of the different SVZ
layers between species. In adult rodents, NSCs, also called type
B1 cells, are separated from the LV lumen by ependymal cells.
Type B1 cells undergo asymmetrical cell divisions to give rise to a
Frontiers in Oncology | www.frontiersin.org 3
new type of B1 cell population with self-renewal properties (one
of the hallmarks of a stem cell), as well as transit amplifying
progenitor cells, also known as type C cells. Type C cells then
migrate to become neural precursor cells including migrating
A

B

C

FIGURE 1 | Illustration and schematic representation of a mouse and a
human subventricular zone. (A) Coronal sections of a mouse (left) and a
human (right) brain at the level of the lateral ventricles (LV). (B) Zoomed
images of a mouse and a human brain subventricular zone stained with
haematoxylin and eosin. The four human layers are indicated as layers I to IV
from the lumen of the LV toward the parenchyma. (C) Schematic
representation of the cellular composition of the mouse and the human
subventricular zone (SVZ). In adult rodents, neural stem cells (NSCs), also
called type B cells, are separated from the LV lumen by ependymal cells.
Type B cells undergo asymmetrical cell divisions to give rise to a new type of
B cell population with self-renewal properties (one of the hallmarks of a stem
cell), as well as transit amplifying progenitor cells, also known as type C cells.
Type C cells then migrate to become neural precursor cells including
migrating neuroblasts (type A cells) or oligodendrocytes precursor cells. In the
SVZ, type B cells display a double contact, one with the ventricle and one
with the basal lamina of blood vessels, where the blood-brain barrier (BBB) is
not complete. The human SVZ is composed of four distinct layers going from
I to IV from the innermost toward the outermost layer. Layer I runs alongside
the ventricular cavity and is a monolayer of ependymal cells responsible for
the production and secretion of cerebrospinal fluid. Layer II is known as the
hypocellular space as it contains cellular processes with only very few cell
bodies. Layer III is a cellular ribbon mainly comprising cells expressing glial
fibrillary acidic protein (GFAP) and neuroblasts. Finally, layer IV, the outermost
layer adjacent to the parenchyma, is a transition zone mainly composed of
myelinated axons and oligodendrocytes.
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neuroblasts (type A cells) or oligodendrocytes precursor cells. In
the SVZ, type B cells display a double contact, one with the
ventricle and one with the basal lamina of blood vessels, where
the blood-brain barrier (BBB) is not complete. B cells are able to
form C cells, which in turn divide in A cells that finally migrate
and integrate in the olfactory bulb in mice (Figure 1). Note that,
in human, the SVZ present a dense layer of B cells while there are
just a few of A and C cells. For a complete review on neural stem
cells in the adult mammalian brain and a good schematic
representation of the SVZ in rodent, we would refer readers to
the article from Obernier and Alvarez-Buylla (64, 65).

Glioma Stem Cells Take Different Routes to Reach
the Subventricular Zone
In non-tumoral brains, white matter tracts can act as a guide, or a
motorway, for the migration of NSCs or glial progenitor cells.
Multiple evidence highlights a similar pattern of migration for
GBM cells. The first evidence of GBM invasion through the white
matter tracts was formulated by Scherer and collaborators in
1938 after they studied 100 patients with gliomas. They also
demonstrated GBM cell migration through other routes like
blood vessels, the neural parenchyma and the subarachnoid
space (66). Later, NSCs were transformed to gain tumorigenic
capacities before being implanted in mouse brains to model
GBM tumor growth and brain invasion. Grafted mice
successfully recapitulated GBM tumor development four weeks
post-injection. More importantly, two weeks after injection, few
GBM cells were detected in the corpus callosum, consisting of
white matter tracts connecting the two cerebral hemispheres
(67). As reported by our team, the injection of human GSCs in
the mouse striatum led to the formation of a tumor.
Furthermore, some GSCs left the tumor mass and migrated
through the corpus callosum to reach the ipsi- and controlateral
SVZ (Figure 2). GSCs were also detected in the olfactory bulb,
demonstrating their migration from the SVZ through the rostral
migratory stream (45), a structure containing a high density of
parallel blood vessels classically used as a scaffold for neuroblasts
(68). Another interesting study by Kakita et al. revealed the
migration of labeled glial progenitors from the neonatal SVZ
through the corpus callosum to the contralateral hemispheres,
which correlates with the pattern of migration described by
Kroonen et al. (45, 69). More recently, diffusion and magnetic
resonance performed on seven glioma and six control patients
showed that the human corpus callosum also act as a GBM cell
migration track (70). In children, Caretti et al. analyzed a series
of autopsies from 16 patients with DMG and observed that
tumoral cells spread to the SVZ in 63% of the cases (19). For the
last ten years, neurogenic niches have received more and more
attention as not only it is the largest site for stem cells persisting
in adulthood, but also, as discussed above, it can be a preferred
destination site for GSCs (23, 45–47).

Chemoattractants Secreted by the Subventricular
Zone Contribute to Glioma Cell Migration
The SVZ secretes various factors including chemokines and
other proteins regulating cell migration (71). Some of the
pathways involved in the migration pattern of GSCs from the
Frontiers in Oncology | www.frontiersin.org 4
tumor mass toward the SVZ have already been identified
(46, 47).

The first axis, CXCL12/CXCR4, has been identified by our
team in 2015 (46). CXCL12 is a chemokine acting on two main
receptors, CXCR4 and CXCR7 (72–75). We have demonstrated
that CXCL12 is a key player in the migration of CXCR4 positive
adult GSCs from the tumor mass toward the SVZ (21). In
addition to its chemokine activity, CXCL12 is involved in
many biological activities (76) including the regulation of cell
proliferation and tumor growth (75), favors an epithelio-
mesenchymal transition, regulates the expression of GSC cell
markers (77), and increases resistance to both radiotherapy and
chemotherapy (21, 22, 78, 79). Furthermore, CXCL12 increases
cell survival and facilitates DNA double strands break repairs
through the recruitment and phosphorylation of nuclear MAP
kinase phosphatase 1. It is also interesting to note that both effects
induced by CXCL12 (oriented migration and DNA repair) are
dependent on a CXCR4 signalization (78). A potential role for
CXCR7 in the mediation of CXCL12 effects on GSCs remains to
be investigated since these cells also express that receptor (76, 78).
A

B

FIGURE 2 | Mouse model of glioblastoma cell invasion into the subventricular
zone. (A) Schematic representation of adult glioblastoma (GBM) cells grafted
into the right striatum of a mouse brain (schematically drawn as a coronal
section ahead of the hippocampus) and generating a tumor mass. Some
GBM cells expressing CXCR4 (light brown cells) migrated through the corpus
callosum to reach the subventricular zone (SVZ) of the lateral ventricles (LV),
following a CXCL12 gradient (45, 46). (B) Schematic representation of
pediatric diffuse midline glioma (DMG) cells grafted into the pons of a mouse
brain (schematically drawn as a sagittal section) and generating a tumor
mass. Some DMG cells (light brown cells) have migrated out of the tumor
mass and reached the SVZ, following a gradient of proteins including
pleiotrophin (47).
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A second migratory axis has been identified by Qin et al. (47)
who showed that pleiotrophin, along with three required binding
partners (secreted protein acidic and rich in cysteine (SPARC),
SPARC-like protein 1 and heat shock protein 90B) is secreted by
SVZNPC and triggers the migration of DMG and adult GBM cells
to the SVZ, through activation of the Rho/ROCK pathway (47).

Additional chemokines are known to be expressed in the
SVZ-environment and could also contribute to the recruitment
of GSCs (21, 46, 47). Using an array, we studied mouse SVZ
conditioned media which led to the identification of several
chemokines, including CXCL12 already described above.
Amongst the other chemokines, we detected CXCL1, CCL5,
CXCL10, and CXCL2. Furthermore, a gene expression
profiling analysis was performed using real-time PCR Arrays
on total RNA extract obtained from microdissected mouse SVZs.
Genes were classified into high, basal and low mRNA levels.
Amongst 14 genes highly expressed in the SVZ, we identified
CXCL12 as well as CX3CL1 (also known as fractalkine), CCL19
and CCL12 which is the homologue of Monocyte
Chemoattractant Protein-1 (MCP1/CCL2) in human (46). In a
later study, chemokines were detected in condition media
obtained from a human SVZ (21). This technical approach
allowed the identification of eight chemokines in the
conditioned media, within which Macrophage Inflammatory
Protein-3 Alpha (MIP-3a/CCL20) was detected at the highest
level, followed by interleukin 8 IL-8/CXCL8, MIP-1a/CCL3,
Neutrophil-activating peptide 2 (NAP-2/CXCL7), and MCP-1.
Interestingly, at least three chemokines detected in the
conditioned media obtained from mouse SVZ were also
detected in the human one, namely MCP1, Tazarotene-
induced gene 2 protein (TIG2/chemerin) and IL16 (21, 46).

To the best of our knowledge, studies from our team were the
only one that employed mouse and human SVZ-conditioned
media to identify chemokines released by the SVZ. However, the
identification of previously described chemokines was based on
targeted techniques. Beside our work, numerous transcriptomic
and proteomic studies of the SVZ have been performed;
however, without specific focus on SVZ-secreted proteins.
Indeed, these studies were based on isolated cells from the SVZ
or whole SVZ extracts (61, 80–84). Recently, whole proteins
forming the extracellular matrix and their associated proteins,
respectively named the “matrisome” and “matrisome-associated
proteins”, were extracted from 8 to 12-week-old murine SVZ. In
the later study, S100 proteins and Serpins were identified as
highly soluble in the SVZ-matrisome. An in-depth analysis of the
identified SVZ-associated soluble proteins could potentially lead
to the discovery of new migratory-related soluble factors (80). In
humans, the composition of the SVZ has mainly been studied
during development and is based on the characterization of
proteins and/or mRNA expression in specific cell-types and/or
on whole SVZs (85, 86). Moreover, databases are now available
to study mRNA expression in human age-related SVZ: i.e.,
BrainSpan Atlas of the Developing Human Brain (83, 87).
These databases deserve attention as they could help identify
potential SVZ-chemokines. In 2016, the comparison of the
secretome of human NSC and GSC cell lines, identified 138
Frontiers in Oncology | www.frontiersin.org 5
proteins differentially expressed (86). Although this analysis was
based on cell lines, the identification of NSC-secreted proteins
could help interpret and/or validate future large-scale studies
based on SVZ-secreted proteins. Indeed, after reviewing the
current literature, it is clear that large-scale analysis of human
SVZ-chemokines or secreted proteins are still required.

To conclude, various chemokines are expressed and tightly
regulated in the SVZ environment. Numerous studies on human
SVZ-secreted proteins would highlight new migratory-related
factors and/or confirm the one shown in murine SVZ.
Interestingly, some of these secreted proteins would be
responsible for specific GSCs migration toward this neurogenic
niche. Delocalization of GSCs would be responsible for their
maintenance even after tumor resection and their role in HGG
recurrences. The identification of specific chemokines, the
analyses of their role in GSCs migration capacity and the study
of their targeting is therefore of interest to better understand and
fight HGG recurrences.

The Subventricular Zone Offers Interesting
Advantages for Glioma Stem Cells
The association of GSCs with non-tumoral cells together with
soluble factors provides specific intra-tumoral microenvironments
known as niches. The niche concept can be described as an
environment able to maintain NSC stemness (88). This concept
has been transposed to gliomas with GSC maintenance, division
and differentiation in specific GBM localisations. Whereas
perivascular, perinecrotic and invasive niches clearly exist in
GBM, these structures are dynamic and are not always easily
distinguishable one from another (89). In addition to GBM stem
cells, the cellular components of these tumors include lymphocytes,
macrophages, fibroblasts, pericytes, astrocytes, microglial cells, and
neurons. GBM heterogeneity also occurs in different part of the
tumormass with niches not clearly distinct from each other. Niches
tightly regulate GBM pathogenesis such as GBM cell survival,
invasion, immune escape, and metabolic needs as well as stemness
maintenance. A hypoxic environment can give rise to necrotic
areas surrounded by hypoxic palisading GBM and immune cells.
GBM cells can also hijack abnormal blood vessels to constitute an
angiogenic niche or use blood vessels to invade surrounding brain
parenchyma in the invasive niche.

This section of the review will describe the SVZ
microenvironment and give an overview of the benefits that the
SVZ can provide for GSCs. As going into details for each of these
advantages is beyond the scope of this article, we will provide
general information on the subject and briefly discuss some aspects
of the SVZ environment that is beneficial for SVZ-nested GSCs.

The SVZ encompasses various cell types involved in the
maintenance of endogenous NSCs and provides all soluble
factors, nutrients and oxygen required for the regulation of
their biological processes (90). Even the composition of the
extracellular matrix of the SVZ plays a major role in the
regulation of neurogenesis, cell proliferation and migration
(80). Thus, this brain region is an interesting niche for GSCs
as by providing an environment adapted for NSCs it also gives
the same advantages to SVZ-nested GSCs. The interaction of
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GSCs with the tumor microenvironment is in fact key for the
maintenance of their malignancy (91). In addition to the
different cell types composing the SVZ (see above), neurogenic
niches encompass other cell types able to secrete soluble factors
which can directly act on GSCs and regulate major biological
processes involved in the development of the pathology. These
cells include microglia, NPCs, and cells composing the architecture
of a large vasculature network with specialized properties (91).
Indeed, the BBB in the SVZ consists of a vasculature lacking
astrocyte end-feet and pericyte coverage at sites. In GBM, those
specialized blood vessels are altered which leads to the
dysregulation of numerous factors in the brain (92, 93).

NSCs from the SVZ present an increased resistance to TMZ
and radiation therapy (21, 23). This radioresistance can be
explained in part by high expression of the anti-apoptotic
proteins Bcl2 and Mcl1 (94). Interestingly, GSCs nested in the
SVZ differ from those which remained in the tumor mass, with
SVZ-nested GSCs presenting an increased resistance to irradiation
(21). This increased resistance is at least partially regulated by the
presence of high levels of CXCL12 in the SVZ (95). Indeed, our
group has demonstrated that in addition to attracting GSCs in the
SVZ, CXCL12 had a protective effect against irradiation (21). The
addition of SVZ-conditioned media to human GBM cells led to a
decrease in histone variant H2AX phosphorylation on Ser-139
(gH2AX), a reliable molecular marker of DNA damage repair
(21). One of the mechanism involved, is the recruitment and the
phosphorylation of MKP1, regulated by CXCL12, which in turn
regulates DNA strand breaks repair (78). A radioprotective effect
of CXCL12 is supported by a recent study by Rajendiran et al.
showing that the ubiquitous overexpression of CXCL12 in a
mouse model led to a significant increase in the number of
multipotent progenitors and increased radioresistance by
promoting quiescence (96). Piccirillo et al. studied human GSCs
isolated from the tumor mass or the SVZ and found that most
GSCs, isolated from different patients, were resistant to TMZ no
matter their origin. GSCs were also resistant to cisplatin, an agent
previously used for the treatment of GBM (23).

It is evident that multiple other soluble factors present in the SVZ
could promote GSC survival. For example, CX3CL1 highly expressed
in the adult SVZ (46) promotes NPC survival (97). Interestingly,
CXC3L1 and its receptor are both increased in high grade gliomas,
with higher CXC3CL1 being associated with shorter overall survival
(OS) (98). CXCL1, also secreted by the SVZ, is overexpressed in
GBM tumors, provides radioresistance and is associated with a
poorer prognosis for patients affected by the disease (99).

Soluble factors secreted in the SVZ also tightly regulate the
balance of NSCs between quiescence and proliferation. These
extrinsic signals act through the presence of receptor at the
surface of NSCs (100). Amongst receptors enriched in quiescent
NSCs, there is for example cadherin 2 which has recently been
suggested as a biomarker for the prognosis of GBM and as a
predictive factor for the response of gliomas to TMZ (101). In
addition to soluble cytokines, oxygen, and nutrients can influence
the biology of NSC and thus, of GSCs. The importance of oxygen
concentrations for the maintenance of stem cell normal
physiology has already been reviewed (102). The level of oxygen
Frontiers in Oncology | www.frontiersin.org 6
found in the SVZ and the SGZ is higher than in the other parts of
the brain including the cortex and the thalamus (103). This is
interesting since higher oxygen level would help maintain NSC, as
well as GSC which have reached the SVZ, in a quiescent and
undifferentiated states (104). NSCs in the SVZ are in close contact
with the BBB which constantly expose them to circulating
molecules and nutrients (105). As already mentioned above, the
BBB is often altered in GBM brains (92), which could lead to
blood vessel leakage and nutrients unbalance in the SVZ and
consequently influence GSC quiescence state (105).
THE SUBVENTRICULAR ZONE IN
CLINICAL PRACTICE

An Independent Prognostic Factor
More than 10 years ago, a retrospective clinical study described that
a GBM directly in contact with the SVZ at diagnosis was associated
with invasiveness and multifocal disease in adults (106).
The authors also described four patterns allowing a better
characterization of the SVZ involvement: SVZ+/Cortex+ (I),
SVZ+/Cortex- (II), SVZ-/Cortex+ (III), SVZ-/Cortex- (IV). A first
observational study of 69 patients reported a poorer OS in patients
with GBM contacting the LV in comparison to patients with GBM
not bordering the LV (107). Multiple studies then confirmed that
the SVZ involvement at diagnosis or at recurrence was associated
with poorer OS (108–110). Recently, Mistry et al. confirmed in a
meta-analysis of fifteen studies and in a retrospective study of 207
adult patients, that GBM contact with the LV was associated with
lower OS and can be considered as an independent factor of
survival (111, 112). In comparison, there was no decreased
survival in case of SGZ involvement or corpus callosum invasion
(111). Importantly, the proximity with the SVZ does not allow
assessing the origin of GBM. Indeed, Han et al. reported that GSCs
display similar stem gene expression in GBM with and without LV
contact (113). In the same way, Mistry et al. reported that SVZ
contact is not associated with molecular signatures in GBM bulk
tumor (114). Finally, in the latest study by Comas et al., an analysis
of GBM progression in 133 adult patients with primary GBM
treated with the standard TMZ-based adjuvant radiochemotherapy
showed that GBM in contact with the SVZ appears to be an
independent prognostic factor for poorer progression free-survival
(PFS) but not for OS. They also reported that SVZ-contacting
tumors were associated with a higher rate of contralateral relapses
and more aggressive recurrences which they defined as relapses
occurring in patients presenting a sudden worsening of their clinical
condition before it could be detected by the follow up MRIs taken
every 3 months. They concluded that a direct contact of GBM
tumors with the SVZ could be used as a prognostic factor (115).

A similar retrospective analysis was recently conducted in 63
children and adolescents (median age of 12.3 years) diagnosed
with HGG (116). Tumors contacting the SVZ were found in 54%
of the patients and were usually larger than tumors not in contact
with the SVZ. Furthermore, patients with SVZ-associated tumors
had a decreased survival time (HR = 1.94, 95% CI 1.03–3.64, p =
0.04). Thus, similarly to adult findings, these data suggest that in
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children and adolescents, the presence of HGG attached to the
SVZ is associated with a poorer prognosis (116). Targeting the
SVZ could therefore be a common therapeutic target for adult
GBM and pediatric HGG.

A Potential Therapeutic Target
Surgery
While more and more studies have highlighted the importance of
Gross Total Resection, nay Supratotal Resection in regard to OS
(117, 118), it remains unclear how large the resection should be
when a GBM tumor touches the SVZ. Some surgeons are indeed
reluctant to open the ventricle in order to obtain a complete
resection of the tumor, as it has been associated with
communicating hydrocephalus or tumor spread among the
ependyma or via the cerebro-spinal fluid (119). However, in a
retrospective study of 229 GBM adult patients, Behling et al.
showed that ventricular opening was not associated with a
reduced OS in a multivariate analysis and could therefore be
Frontiers in Oncology | www.frontiersin.org 7
considered to achieve gross total resection (120). Moreover, Saito
et al. recently performed a retrospective study with 111 GBM
adult patients and reported that a wide ventricle opening
(>23.2 mm) is a strong predictive factor for longer OS (121).
Information on surgical intervention for pediatric glioma tumors
contacting the SVZ is lacking. Thus, retrospective and prospective
studies are undeniably needed to confirm those results in children.

Irradiation
As the SVZ involvement worsens the prognosis, it seems sensible
to find a way to interfere with it. In this context, many studies
have considered the specific ipsilateral, nay bilateral irradiation
of the SVZ, even in absence of neuroradiological clues of the
presence of tumoral cells in this brain region. In 2016, Smith
et al. reviewed the different studies that investigated the
advantages of irradiating the SVZ to improve the OS for adult
GBM patients (122). We updated their findings to include the
latest publications on that topic (Table 1). Evers et al. published
TABLE 1 | Summary of the advantages of irradiating the subventricular zone to improve the overall survival for adult glioblastoma (GBM) patients.

Authors (year) Study
design

Number of
patients (tumor

subtype)

Median delivered dose Outcomes

Studies in favor

PFS OS

Evers et al. (123) Retrospective 55 (Gliomas grade
III/IV)

> 43 Gy to biSVZ 15 vs 7.2 months (p = 0.028)

Gupta et al. (124) Retrospective 40 (GBM) >53.6 Gy to cSVZ and
iSVZ

Improved on multivariate analysis in group
with >53.6 Gy to iSVZ

Lee et al. (125) Retrospective 173 (GBM) >59.4 Gy to iSVZ Improved on univariate and
multivariate analysis

Chen et al. (126) Retrospective 116 (GBM) >40 Gy to iSVZ after GTR 15.1 months vs 10.3 months (p =
0.028)

17.5 months vs 15.6 months

Iuchi et al. (127) Prospective 46 (GBM) >50–60 Gy to SVZ 36.2 months in patients with SVZ necrosis vs
13.3 months in patients without SVZ necrosis

Ravind et al. (128)* Retrospective 50 (GBM) >50 Gy to iSVZ
> 37 Gy to cSVZ

Improvement for the iSVZ: 19.83 months
vs 6.07 months (p = 0.031)

No improvement for the cSVZ
Foro et al. (129)* Retrospective 53 (GBM) >52.2 Gy to iSVZ, >51 Gy

to cSVZ, >47.2 Gy to
biSVZ

Improvement for patients receiving >51Gy
in the cSVZ

Foro Arnalot et al.
(130)

Retrospective 65 (GBM) >48.8 Gy to cSVZ Improvement

Studies not in favor
Slotman et al. (131) Retrospective 40 (GBM) >43 Gy to iSVZ, cSVZ,

biSVZ
No correlation with iSVZ, cSVZ, or

biSVZ dose
No correlation with iSVZ, cSVZ, or biSVZ

dose
Elicin et al. (132) Retrospective 60 (GBM) >59.2 Gy to cSVZ 7.1 months vs 10.37 months
Anker et al. (133)* Retrospective 88 (GBM) >56.4 Gy to iSVZ, >33.4

Gy to cSVZ
No correlation with iSVZ, cSVZ, or

biSVZ dose
No correlation with iSVZ, cSVZ, or biSVZ

dose
Sakuramachi et al.
(134)*

Retrospective 54 (Gliomas grade
III/IV)

>58.2 Gy to iSVZ, >44.1
Gy to cSVZ

No correlation with iSVZ, cSVZ, or
biSVZ dose

No correlation with iSVZ, cSVZ, or biSVZ
dose

Murchison S et al.
(135)

Retrospective 370 (GBM) >59.4 Gy to iSVZ, cSVZ or
biSVZ

No correlation with iSVZ, cSVZ, or
biSVZ dose

No correlation with iSVZ, cSVZ, or biSVZ
dose

Valiyaveettil et al.
(136)

Retrospective 95 (Gliomas grade
III)

>54 Gy to iSVZ Decreased in univariate analysis,
No correlation in multivariate

analysis
Valiyaveettil et al.
(137)

Prospective 74 patients (GBM) >50 Gy to iSVZ No correlation with iSVZ, cSVZ, or
biSVZ dose

No correlation with iSVZ, cSVZ, or biSVZ
dose
J

*Some retrospective studies presented in meetings reported opposite results, in favor (128, 129) or not (133, 134) in favor for SVZ irradiation. This table is an update of Smith et al. findings
and includes the latest publications on that topic (122).
anuary 2021 | Volume 10 | Article 614930

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lombard et al. The SVZ and HGG Recurrences
the first retrospective study revealing an improvement of PFS after
bilateral irradiation of the SVZ with a median dose superior to 43
Gy (PFS: 15.0 vs 7.2 months, p = 0.028) for patients suffering from
grade III/IV gliomas (123). In a similar way, another retrospective
study of 40 patients reported a better OS if a dose equal or superior
to 53.6 Gy was delivered to the ipsilateral SVZ (iSVZ) (124).
Inversely, Slotman et al. used the same cut-off of 43 Gy for
bilateral SVZ irradiation and did not observe any difference in
OS or PFS in their retrospective study. However, and importantly,
they reported less distant recurrences in case of a delivered dose
greater than 43 Gy to the contralateral ventricle (131). However,
the conclusions of those three studies suffer from a limited
number of patients (55, 40, and 40, respectively) (123, 124, 131).

Later, using a larger cohort of 173 patients, Lee et al.
retrospectively showed an increased PFS for an ipsilateral SVZ
irradiation with a delivered dose superior to 59.4 Gy (125)
Interestingly, Chen et al. showed that an increased iSVZ
irradiation (superior or equal to 40 Gy) after GTR was associated
to a better PFS and OS (126). Another retrospective study showed a
poor PFS if the dose delivered to the contro-lateral SVZ (cSVZ) was
superior to 59.2Gy (132). Those studies are in fact rather difficult to
compare as they are retrospective studies and do not control for
important variables such as (i) patient selection, (ii) irradiation
dose, (iii) cut-off values, or (iv) importantly, the delineation of the
SVZ. Moreover, classical prognostic factors such as MGMT or IDH
status have frequently not been considered. Besides, a prospective
study initially designed to test hypofractionated high-dose intensity
modulated radiation therapy reported a better OS in case of
radionecrosis in the SVZ (127).

In 2017, Foro Arnalot et al. reported another retrospective
study of 65 patients showing an improvement in PFS but not in
OS if the cSVZ received a dose superior or equal to 48.8 Gy (130).
Khalifa et al. showed that a dose inferior to 20 Gy for bilateral
SVZ irradiation was associated with poor prognosis (138). In
2018, Murchison et al. did not found any correlation between
SVZ dose and PFS/OS in a large retrospective study of 370 GBM
patients (135). Recently, in a retrospective study of 95 patients
suffering from anaplastic gliomas, Valiyaveettil et al. reported no
correlation between SVZ dose and PFS/OS in multivariate
analysis (136). In a prospective study including 74 GBM
patients, the same team did not found any correlation between
SVZ dose and PFS/OS (137). Finally, in a short prospective study
of 30 GBM patients, the sparing irradiation of neurogenic niches,
including SVZ, did not modify PFS or OS in comparison to a
matched historical control (139).

In this context, a phase II clinical trial combining standard
radio- and chemotherapy to deliver irradiation to the ipsilateral
(60 Gy) and the contralateral (46 Gy) SVZ is ongoing
(NCT02177578). This study will provide valuable information
on benefits that targeting the SVZ could offer for the treatment of
GBM. It has to be said that the major constraint to investigate
SVZ irradiation more deeply, or even to consider SGZ
irradiation, is the fear that it might hasten neurocognitive
decline as healthy NSCs would not be spared by the treatment
and would suffer along with tumor cells. While some of the cited
studies did not show a correlation between the delivered
Frontiers in Oncology | www.frontiersin.org 8
irradiation dose to SVZ and changes in performance status,
Iuchi et al. found that high dose radiations deliver to the SVZ,
leads to radionecrosis and better OS. However, it also results in
progressive decline in Karnofsky performance status which
measures the ability for a patient to carry out daily tasks (127).
Henceforth, it is not surprising that some clinical trials focused
on sparing the SVZ and the hippocampus.

In children, retrospective and prospective studies suggest an
association between neurocognitive deficits and radiation dose to
the hippocampus hosting the SGZ, but not the SVZ. Due to the
rarity of HGG in children, the link between SVZ irradiation and
survival has not yet been investigated (126, 140–143).

Targeting GSCs Nested in the SVZ
Many current researches aim at targeting GSCs. To do so in an
efficient manner, it is important to know what to target. The
most common pathways involved in GSC maintenance include
the Wnt, the Sonic hedgehog (SHH) and the Notch pathways. As
recently discussed by Sharifzad et al., targeting these pathways
could help eradicating GSCs or increase chemotherapy efficiency
(144). To target GSCs nested in the SVZ, it has been suggested to
use perphenazine, an inhibitor of the dopamine receptor D3, in
order to block the migration of GBM cells to the SVZ (145). As
the activation of the dopamine receptor D3 in SVZ cells is
associated with their proliferation in vitro (146), its blockade
by perphenazine could also maintain GSC in a quiescent state in
the SVZ. Bardella et al. reviewed another interesting approach
which consists of interfering with the SVZ inflammatory
environment as it might predispose cells to mutations and
worsen cancer phenotypes (147). However, while it has been
largely reported that microglia participate in GBM progression
locally by adopting an anti-inflammatory state (148), their
interaction and effects on SVZ-nested GSCs remain to be proven.
CONCLUSION

HGG account for a high proportion of death resulting from
cancer, both in adults and children. Unfortunately, survival has
not been significantly improved over the last decades. Both
bench and bedside evidences strongly support the involvement
of GSCs and SVZ in HGG recurrences. We and others,
previously demonstrated that GSCs migrate from the tumor
mass toward the SVZ, through the CXCL12/CXCR4 axis or
through a pleiotrophin-driven axis. Once hosted in the SVZ,
GSCs benefit from a protective environment providing increased
resistance to irradiation and chemotherapy, before these cells get
reactivated by a still unknown mechanism and recolonize the
TM or invade other sites. In adults, the benefit/risk balance of
targeting the SVZ by surgery and/or radiotherapy was
investigated in clinical settings; however, the review of the
current literature does not permit a clear conclusion yet. In
children, it has not been evaluated and should be further
investigated. Other technical approaches to target the SVZ also
remain to be explored. Blocking the migration of GSCs toward
the SVZ is probably not an option, given that the cells would
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already have migrated out at the time of the diagnosis. Other
possibilities could be to decrease or to block the recolonization of
the TM. The cancer cell trap approach is another interesting and
original concept that exploits the migratory potential of cancer
cells in order to concentrate them toward specific locations (149).
This approach has been showed to reduce the metastatic
potential of human breast cancer cells implanted in female
mice, through biomaterial scaffolds implanted in peritoneal fat
pads (150, 151). This kind of approach should definitely be
further investigated in the context of pediatric and adult HGG
and DMG and could be combined with local targeted therapies.

In conclusion, there is strong evidence that the migration of
GSCs toward the SVZ is implicated in HGG recurrences, both in
adults and in children. The exact mechanisms supporting this
process should be further investigated with the perspective of
specifically targeting this particular cell population.
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Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for
adult neurogenesis. Neuron (2000) 28:713–26. doi: 10.1016/S0896-6273(00)
00148-3

31. Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, et al. Epigenetic-
mediated dysfunction of the bone morphogenetic protein pathway inhibits
differentiation of glioblastoma-initiating cells. Cancer Cell (2008) 13:69–80.
doi: 10.1016/j.ccr.2007.12.005

32. Kaur N, Chettiar S, Rathod S, Rath P, Muzumdar D, Shaikh ML, et al. Wnt3a
mediated activation of Wnt/b-catenin signaling promotes tumor
progression in glioblastoma. Mol Cell Neurosci (2013) 54:44–57. doi:
10.1016/j.mcn.2013.01.001

33. Ming G, Song H. Adult neurogenesis in the mammalian central nervous
system. Annu Rev Neurosci (2005) 28:223–50. doi: 10.1146/annurev.neuro.
28.051804.101459

34. Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, et al.
Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like
cancer cells in glioblastoma. Stem Cells (2007) 25:2524–33. doi: 10.1634/
stemcells.2007-0166

35. Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding
to Sonic hedgehog. Nature (2005) 437:894. doi: 10.1038/nature03994

36. de la Iglesia N, Konopka G, Puram SV, Chan JA, Bachoo RM, You MJ, et al.
Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway.
Genes Dev (2008) 22:0. doi: 10.1101/gad.1606508

37. Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for
proliferation and maintenance of multipotency in glioblastoma stem cells.
Stem Cells (2009) 27:2383–92. doi: 10.1002/stem.185
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