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During the last years, preclinical and clinical studies have emerged supporting the rationale
to integrate radiotherapy and immunotherapy. Radiotherapy may enhance the effects of
immunotherapy by improving tumor antigen release, antigen presentation, and T-cell
infiltration. Recently, magnetic resonance guided radiotherapy (MRgRT) has become
clinically available. Compared to conventional radiotherapy techniques, MRgRT firstly
allows for daily on-table treatment adaptation, which enables both dose escalation for
increasing tumor response and superior sparing of radiosensitive organs-at-risk for
reducing toxicity. The current review focuses on the potential of combining MR-guided
adaptive radiotherapy with immunotherapy by providing an overview on the current status
of MRgRT, latest developments in preclinical and clinical radio-immunotherapy, and the
unique opportunities and challenges for MR-guided radio-immunotherapy. MRgRT might
especially assist in answering open questions in radio-immunotherapy regarding optimal
radiation dose, fractionation, timing of immunotherapy, appropriate irradiation volumes,
and response prediction.

Keywords: magnetic resonance-guided radiotherapy, adaptive treatment, immunotherapy, radio-
immunotherapy, preclinical
INTRODUCTION

Over the last decades, substantial technical and methodological innovations in radiotherapy have
enabled both more precise and focused delivery of higher doses of ionizing radiation combined with
superior sparing of surrounding organs-at-risk (OARs). The latest development is magnetic
resonance (MR)-guided radiotherapy (MRgRT), which bears the potential to revolutionize
current standards and processes in radiotherapy. It not only offers superior soft-tissue contrast
for precise detection of inter- and intrafractional changes in patient and tumor anatomy, but also
allows for immediate reaction to these alterations by on-table plan adaptation (1–3). Thereby, safety
margins can be reduced enabling dose escalation, while simultaneously limiting toxicity (4–7).
Furthermore, some MR-linac devices offer gated dose delivery, which further facilitates irradiation
of moving targets (8). Functional imaging, potentially integrated at the MR-linac, might allow for
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biologically guided radiotherapy to identify treatment
responders, who could benefit from dose de-escalation, while
additional (subvolume) boost dose might foster tumor control in
non-responders (9, 10).

Despite tremendous advances in radiotherapy for improving
local control and minimizing side-effects during the last
decades, distant progression outside the irradiation field still
remains a major challenge. Recently, immunotherapy has
emerged as the fourth pillar in cancer treatment besides surgical
resection, systemic therapy, and radiotherapy. Immunotherapy is
increasingly regarded as a promising and attractive partner to
radiotherapy, as ionizing radiation is known to inherit potent
immunomodulatory effects by enhancing tumor immunogenicity
and fostering immune-mediated tumor regression not only
locally but also distant to the irradiation field (11, 12). However,
for optimizing efficacy and reducing toxicity of anticancer
radio-immunotherapy, redefinition of conventional radiotherapy
volumes, doses, and fractionation schedules might be necessary
(13, 14). Biologically individualized, MR-guided adaptive
radio-immunotherapy might offer unique features to approach
these challenges.
CURRENT STATUS OF MR-GUIDED
RADIOTHERAPY

Hybrid systems for MRgRT, combining MR-scanners with
radiotherapy devices, have first been proposed at the beginning
of this century, and were introduced into clinical practice within
the last years (15–17). Currently, two different systems are
commercially available. Both make use of on-board magnetic
resonance imaging (MRI) for patient positioning and enable
treatment with step-and-shoot intensity modulated radiation
therapy (IMRT) (3, 18, 19). The systems also facilitate on-table
treatment plan adaption based on the actual anatomic situation
at the time of treatment. As the superior soft-tissue contrast of
MRI allows for precise organ-at-risk delineation and therefore
enables adaptive minimization of dose to normal tissue, it is
expected that MRgRT will allow dose escalation (6).

With regard to targets susceptible to breathing motion, mid-
position based treatments using four-dimensional MRI acquired
in treatment position directly at the MR-linac have been
described (20), as well as real-time beam gating controlled by
two-dimensional cine-MR (8, 21). Both strategies can contribute
to a reduction of margins and thereby also potentially enable
dose escalation.

First clinical data has been reported for various indications,
and multiple clinical studies are ongoing that aim to show
the benefits of this technology. Among others, the treated
indications include liver (22, 23), pancreas (22, 24), lung
(5, 25–28), prostate (4, 29–31), breast (32, 33), head and neck
(16, 34), and oligometastatic disease (7, 35, 36). Although MR-
guided treatments in principle can be performed in standard
fractionation schemes, several authors report on the use of
MRgRT for hypofractionated/stereotactic treatment schedules
(4, 34, 36–38) and even single fraction regimens (39, 40).
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In addition, on-board MRI at MR-linacs can also be used for
quantitative MRI, thereby potentially enabling treatment
response monitoring as well as treatment plan adaption based
on quantitative MRI information (9).
CURRENT STATUS OF PRECLINICAL
RADIO-IMMUNOTHERAPY

Preclinical murine cancer models serve as an essential
intermediate experimental model system to translate the
findings from bench to bedside. In the radio-immunotherapy
field, these models have extensively proven the high potential of
combining radiotherapy with immunotherapy. Moreover, they
have led to the identification of important underlying mechanisms.
Preclinical evidence of synergy between radiotherapy and immune
checkpoint blockade with anti-CTLA-4, anti-PD-1, or anti-PD-
L1 has been obtained in numerous murine models of cancer
(41–46). Many of the challenges of combining radiation with
immunotherapy (e.g. radiotherapy dose and fractionation
schedule as well as sequence of therapy) have been investigated
and show that both immunogenic and non-immunogenic
radiation dose and schedules exist (43, 47). It is now well-
established that immunogenicity is related to sensing of
cytoplasmic DNA by the cGAS/STING (cyclic-GMP-AMP
synthase/stimulator of interferon genes) pathway (44, 47–49).
Although these preclinical studies have provided essential
new insights into the potential of radio-immunotherapy, they
also have limitations. Most studies combining radiotherapy
and immunotherapy only use a single ablative dose or a
hypofractionated radiotherapy schedule and as a consequence
the optimal timing, dose, and treatment regimen vary between
models and are difficult to compare. To investigate the abscopal
effect of therapy, the majority of the preclinical studies use
a transplantable cell line that is injected subcutaneously in
two distant locations in the mouse. In these models one tumor
is irradiated and the abscopal effects are monitored in the
untreated secondary tumor. In contrast to human metastatic
cancer lesions, the genetic and environmental factors in the
primary and secondary tumor are almost identical. These
models thus may not fully recapitulate human metastatic
cancer. Moreover, many small animal studies still use large
field, single-beam irradiation. In these platforms, radiation
exposure has limited accuracy and precision. Moreover,
in-depth investigation into the anti-tumor response may
be hampered by high dose radiation to healthy tissue. Data
from murine experiments are important but should be
carefully interpreted and used in the translation to a clinical
situation. The need for more precise radiation and a growing
appreciation for the role of the tumor microenvironment in
anti-tumor (immune) responses has led to major developments
in small animal imaging technologies (including SPECT, CT,
MRI). Combining these technologies with small animal
radiation research platforms enables to better mimic modern
radiotherapy practice (50). Several efforts have already led to
the development of small animal image-guided radiation
February 2021 | Volume 10 | Article 615697

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hörner-Rieber et al. MR-Guided Radio-Immunotherapy
research platforms and showed their feasibility (51–56). Both for
orthotopic (55) and genetically engineered mouse models of
non-small lung cancer (51) preclinical image-guided
radiotherapy platforms have been set up and demonstrated
their feasibility to closely mimic clinical settings. Using a
xenograft model of neuroblastoma, it was shown that small
animal MRI-based radiotherapy planning not only allows for
precision radiotherapy, but also for accurately measuring early
tumor responses which are difficult to measure by calipers (54).
Orthotopic mouse pancreatic tumors were treated with image-
guided radiotherapy including treatment planning techniques
comparable to patient treatment (52). Additionally, for
spontaneous pancreatic tumors MRI guided radiotherapy
platforms have been established (53).

To achieve the best predictive value of animal-based
translational cancer research, models should provide biological
mechanistic insights that can be tested in a clinical setting. This
requires the availability of small animal image-guided
radiotherapy platforms that evolve in line with advances in the
clinic and suitable models in mice with a functional immune
system that mimic human responses.
CURRENT STATUS OF CLINICAL
RADIO-IMMUNOTHERAPY

In 1953, Mole et al. were the first to describe the so-called
“abscopal effect” (from the Latin prefix ab for “away from” and
-scopus for “mark or target”) for the immune-mediated
regression of unirradiated tumor lesions at distance from the
primary site of local radiotherapy (57). However, prospective
evidence for the clinical efficacy of radio-immunotherapy is still
limited today (58).

Initial data is especially found in the treatment of
oligometastatic cancer patients. Four phase II trials have
previously demonstrated that the addition of metastasis-
directed ablative therapy for all tumor sites to standard of care
treatment significantly improved at least progression-free
survival (PFS) or even overall survival (OS) in several different
tumor entities (38, 59–62). Two recently published phase II trials
included metastatic non-small cell lung cancer (NSCLC) patients
treated with the anti-PD-1 antibody pembrolizumab with or
without locally ablative therapies including SBRT (29, 63). The
study by Theelen et al. aimed to assess whether SBRT on a
single tumor site preceding pembrolizumab could enhance
tumor response to immunotherapy and reported a doubled
overall response for the experimental arm as compared to
immunotherapy only. Although PFS was more than three
times and OS more than two times higher in the SBRT arm,
no significance was reached. The observation that the largest
effect occurred in the PD-L1-negative subgroup suggests that
radiotherapy may increase the responsiveness of non-inflamed
NSCLC tumors to immune checkpoint inhibition (63). This
needs further clinical evaluation. The second trial by Bauml
et al. included 51 oligometastatic NSCLC patients who had
received locally ablative therapy to all known sites of disease
Frontiers in Oncology | www.frontiersin.org 3
and were additionally treated with pembrolizumab. Median PFS
for the locally ablative therapy arm was significantly superior
with 19.1 months compared to historical controls with only 6.6
months (p = 0.005) (29).

As most current studies on MR-guided adaptive radiotherapy
focus on the treatment of oligometastases, the combination of
immunotherapy with MRgRT of oligometastases appears
especially attractive. Henke et al. recently published results of a
phase I trial of MRgRT including oligometastatic tumor lesions
of different origin, while others concentrated on MRgRT of
adrenal, hepatic, lymph node, or bone metastases (7, 17, 23,
35, 64, 65). Radio-immunotherapy with daily MR-guided plan
adaptation bears the potential to further reduce toxicity and
improve local control, while simultaneous immunotherapy
might boost radiation-induced immune activation, block
radiation-induced immunosuppressive effects, and eliminate
microscopic disease (14).

Immunotherapy is expected to be most effective when treating
patients with limited disease burden (66). Additional evidence for
this hypothesis comes from the results of the PACIFIC trial, in
which patients with unresectable stage III NSCLC who had
responded to initial chemoradiotherapy, were treated with the
anti-PD-1 antibody durvalumab (67). The addition of durvalumab
nearly tripled the median PFS from 5.6 months to 17.2 months
and significantly improved 2-year OS from 55.6 to 66.3% (p =
0.005). Furthermore, a post-hoc analysis of the KEYNOTE-001
trial demonstrated that previous radiotherapy in metastatic
NSCLC patients receiving pembrolizumab significantly
enhanced survival (6-months OS with radiotherapy 73%
compared to 45% without) (68). Up to now, only few data are
available regarding MR-guided adaptive radiotherapy for lung
cancer patients (5, 25, 26). However, several studies have
demonstrated a clear benefit of CT-guided adaptive radiotherapy
for optimizing target coverage and sparing healthy lung tissue
and hence toxicity (69–71). MR-guided adaptive radio-
immunotherapy might therefore enable further dose escalation
for improving local control, while simultaneously fostering the
systemic immune response against distant micrometastases.

Current studies on MR-guided adaptive pulmonary
radiotherapy focus on SBRT of small central and peripheral
lung lesions (5, 25, 26). MR-guided adaptive SBRT of centrally or
even ultracentrally located tumor lesions holds the promise to
safely increase doses for such lesions adjacent to radiosensitive
and vulnerable OARs (e.g. central airways, esophagus, heart).
While local control following SBRT is usually satisfying, distant
progression remains the major challenge (72, 73). Hence, several
trials are ongoing to assess the efficacy of additional
immunotherapy with SBRT for eradicating microscopic disease
and fostering RT-induced immune activation in the treatment of
early-stage lung cancer patients (e.g. KEYNOTE-867, PACIFIC-
4). MR-guided adaptive radio-immunotherapy would further
allow for safe treatment of critically located pulmonary lesions
with sufficiently high dose and simultaneously reduce the
occurrence of new distant tumor lesions.

As discussed above, systemic responses to immunotherapy
are more frequent if overall disease burden is limited. In line with
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this concept, Golden et al. analyzed the occurrence of abscopal
responses in metastatic patients on chemotherapy treated with
concurrent radiotherapy (35 Gy in 10 fractions) to one
metastatic site and granulocyte-macrophage colony-stimulating
factor (12). Interestingly, the authors described that abscopal
tumor responses were more frequent in patients with limited
disease sites (73% in patients with only three metastases). Further
support for this assertion comes from another trial, in which
patients with metastatic castration-resistant prostate cancer were
treated with a single dose of 8 Gy to a single bone metastasis with
or without ipilimumab (74). Patients with only one osseous
metastasis were more likely to benefit from immunotherapy
compared to those with more bone lesions. In these scenarios,
MR-guided adaptive radiotherapy could enable highly precise
and focused dose delivery even to critically located tumor lesions,
for which conventional techniques cannot achieve sufficiently
high doses, while simultaneously potentiating local effects of
immunotherapy (14).

Further tumor entities like head-and-neck tumors, rectal,
cervical, or bladder cancer are expected to profit from MR-
guided adaptive radiotherapy for not only enabling dose
escalation, sparing of adjacent radiosensitive OARs but also for
increasing the chance for organ preservation (1, 75–78). Up to
now, immunotherapy is only clinically established in the
treatment of metastatic tumor stages of these malignancies
(79–83). Future studies are awaited to demonstrate the benefit
of simultaneous radio-immunotherapy to augment local and
systemic immunity and potentially reduce the risk for
metastatic recurrences.
MR-GUIDED RADIO-IMMUNOTHERAPY:
CHALLENGES AND OPPORTUNITIES

Preclinical models suggest a window of opportunity to combine
radiotherapy and immunotherapy, and early clinical studies
report favorable responses to this combination. Nevertheless,
many parameters remain ill-defined and need to be resolved to
fully exploit the potential of radio-immunotherapy (84). These
include scheduling of both modalities, fractionation regimens,
treatment volume, and response prediction. The MR-linac
combines unique functionalities that can address some of
these outstanding questions. With regard to the optimal
sequence of both modalities, preclinical data are not conclusive
and suggest a combined effect that is both tumor model and
immunomodulatory agent dependent. Although results from
clinical studies are still scarce, the data indicate highest (local
and abscopal) efficacy when radiation shortly precedes or is given
during immunotherapy (67, 68, 85). Whether or not early
radiation-induced influx of immune cells in the tumor
microenvironment can be detected by MR imaging, e.g. as
increased ADC values on DW MRI (86), and guide the
optimal timing of immunotherapy, remains to be investigated.

Preclinical models imply that the dose per fraction is critical
for the immunogenic effect of radiation and that a moderately
hypofractionated regimen (range: 8–12 Gy per fraction) induces
Frontiers in Oncology | www.frontiersin.org 4
sufficient cytosolic double-stranded (ds)DNA to stimulate the
cGAS-STING-Interferon type I pathway. Too high radiation
doses (>12–18 Gy), however, can lead to the activation of
feedback mechanisms, like the induction of the exonuclease
Trex1 that degrades cytosolic DNA and attenuates the cGAS-
STING pathway (47). This delicate biological balance between
release of dsDNA and Trex1 dictates dsDNA accumulation in
the cytoplasm of irradiated cells, and the subsequent initiation of
anti-tumor immune responses. The dose range at which such
optimal conditions arise, may turn out to be tumor specific,
although in general a relatively high dose per fraction (around 8
Gy) seems required. MR-guidance is an obvious tool to safely
and accurately deliver these high doses of radiation and allow the
identification of the most effective fractionation regimen for
synergy between radiotherapy and immunotherapy.

With respect to the ideal target volume to be irradiated, MR-
based functional imaging could reveal radiosensitive or
radioresistant subvolumes of tumors that may benefit from
differential dosing. Intriguingly, partial tumor irradiation has
been shown to elicit an effective (both local and abscopal)
immune response without the need to treat the entire tumor (87,
88). High precision delivery of radiation in the context of radio-
immunotherapy also involves sparing of lymphoid tissue. In fact,
avoiding irradiation of tumor-associated draining lymph nodes
may be crucial for the integrity of the immune response. In the
context of a preclinical model comparing stereotactic radiotherapy
with or without elective nodal irradiation in combination with
immune checkpoint blockade, it was found that an altered T-cell
chemoattractant chemokine signaling resulted in reduced immune
infiltration as well as in an unfavorable balance between
tumoricidal and immunosuppressive immune cells (89).

A final challenge pertains to the need for robust biomarkers of
response. The superior soft tissue contrast of MR increases the
ability to define the location of the tumor and adjacent normal
tissues and to adapt treatment based on biological and functional
dynamics of both tumors and normal structures that may occur
during treatment. As responses to radio-immunotherapy will
vary among tumor sites, pathological subtypes and individual
patients, there is a strong clinical need for solid predictors of
response to treatment. In addition to tissue-based biomarkers
[such as T-cell–inflamed gene-expression profile, programmed
death ligand 1 (PD-L1) expression, and tumor mutational
burden], imaging-based biomarkers are emerging as promising,
non-invasive, and repeatable tools that may help identify
patients who have a higher likelihood of response to radio-
immunotherapy across a broad spectrum of tumors. The MR-
linac not only allows the use of functional MR sequences,
quantitative feature extraction using radiomic approaches has
become available to develop such imaging-based biomarkers,
including for radio-immunotherapy. Recently, a CT-based
radiomic signature was developed and validated to assess tumor-
infiltrating immune cells and response to immunotherapy in
patients with advanced solid tumors (90). A comparable
approach using MR-based information is an obvious opportunity
and will be discussed in more detail in a separate contribution to
this special issue.
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CONCLUSIONS AND FUTURE
PERSPECTIVES

The clinical implementation of MR-guided adaptive radiotherapy
has led to new approaches to compensate for poor target
definition. Superior soft tissue contrast combined with real-time
plan adaptation now allows to reduce margins, increase the dose
per fraction and integrate functional information in highly
individualized treatment plans. These features make MR-guided
radiotherapy the perfect partner for immunotherapy. Radio-
immunotherapy has emerged as a promising combination for
the treatment of local and abscopal disease, but the conditions for
synergy need further optimization. MR-guided radiotherapy
could be instrumental to address some of these variables,
Frontiers in Oncology | www.frontiersin.org 5
including optimal doses and fractionation schedules, timing of
both modalities, reduced delivery volumes (partial tumor
irradiation; sparing draining lymph nodes), and response
prediction. This requires a collaborative effort, standardization
of protocols, models, and methodologies, and a systematic
collection of imaging and biomaterial data.
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