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Background and Purpose: To develop an artificial intelligence-based full-process
solution for rectal cancer radiotherapy.

Materials and Methods: A full-process solution that integrates autosegmentation and
automatic treatment planning was developed under a single deep-learning framework. A
convolutional neural network (CNN) was used to generate segmentations of the target and
the organs at risk (OAR) as well as dose distribution. A script in Pinnacle that simulates the
treatment planning process was used to execute plan optimization. A total of 172 rectal
cancer patients were used for model training, and 18 patients were used for model
validation. Another 40 rectal cancer patients were used for an end-to-end evaluation for
both autosegmentation and treatment planning. The PTV and OAR segmentation was
compared with manual segmentation. The planning results was evaluated by both
objective and subjective assessment.

Results: The total time for full-process planning without contour modification was 7 min,
and an additional 15 min may require for contour modification and re-optimization. The
PTV DICE similarity coefficient was greater than 0.85 for all 40 patients in the evaluation
dataset while the DICE indices of the OARs also indicated good performance. There were
no significant differences between the auto plans and manual plans. The physician
accepted 80% of the auto plans without any further operation.

Conclusion: We developed a deep learning-based automatic solution for rectal cancer
treatment that can improve the efficiency of treatment planning.

Keywords: full-process solution, Al, rectal cancer, radiotherapy, automatic planning

INTRODUCTION

Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are
widely used in current radiotherapy clinics due to their ability to achieve desired target dose
conformity and sufficient sparing of critical structures (1). There are two core tasks in a typical
IMRT or VMAT planning process: target volume and organ at risk (OAR) segmentation and
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treatment planning. The segmentation task is performed by a
radiation oncologist, and the treatment planning is performed by
a dosimetrist or physicist. Both tasks require significant
knowledge, experience, and time to achieve a clinically
acceptable quality (2). Meanwhile, due to the complexity of
technologies and the differences in personal preferences,
abilities, and technical understanding, inter-physician and
inter-physicist variations are inevitable (3).

Manual segmentation of target volumes and OARs remains a
time-consuming task in radiation oncology (4-6). In addition,
intra- and interobserver variability for most treatment sites in
segmentation and the heterogeneity in clinical practices have
hindered our ability to systematically assess the quality of
radiation therapy plans and are considered major sources of
uncertainty (4). Recently, the emerging technology of deep
learning has also provided the ability to identify and
automatically segment tumors or OARs on medical images.
The results from deep learning-based segmentation have been
promising (6). Autosegmentation has the potential to reduce the
contouring burden as well as the intra- and interobserver
variability in contouring.

Similar to tumor or OAR segmentation, treatment planning is
another critical task in radiotherapy. It may require considerable
trial-and-error to obtain a clinically accepted plan even for an
experienced medical physicist (7-9). To improve plan quality
and efficiency, knowledge-based planning (KBP) and script-
based automatic planning have been developed (7, 10).
Recently, many studies have reported that deep learning-based
automatic treatment planning may be promising (9, 11).

In addition to the above two core tasks, another high time-cost
task is communication between oncologists and physicists.
However, both groups of healthcare professionals may have a
heavy clinical workload. For large cancer centers or multi-campus
hospitals, physics departments and radiation oncologists’” working
areas may be physically far apart. Furthermore, as the scale of
radiotherapy departments continue to expand, the time and costs of
communication will inevitably increase rapidly (12).

Since artificial intelligence and machine learning look
promising for radiotherapy, we seek to integrate all these
technologies to minimize unnecessary operations and explore
the changes that this technology brings to radiotherapy
workflows. In this study, we propose a fully automatic solution
for rectal cancer IMRT treatment planning. It uses a deep-
learning method to accomplish contour segmentation and dose
distribution prediction. By integrating with the treatment
planning system (TPS) script, the workflow of radiotherapy
treatment planning can be optimized. The effect of the solution
will also be evaluated by an end-to-end test.

MATERIALS AND METHODS

This study consists of three parts as illustrated in Figure 1. The
first part consists of model training. The second part
demonstrates the full-process solution workflow regarding how
to use this solution in routine clinical practices. The third part is
an end-to-end evaluation of our full-process solution.

Patients and Dataset

A total of 230 neoadjuvant rectal cancer patients from 2016 to
2018 in our institution are enrolled. All patients’ tumor site was
low-position (when tumor bottom is less than 10 cm away from
anus). These patients were randomly selected from our clinical
database with criteria of T3-4N+ staging. The planning CT was
scanned one hour after bladder evacuation with the patient in the
head-first supine (HFS) position. The detailed characteristics of
the training, validation, and evaluation groups are presented in
Table 1. In this concept study, the evaluation set consisted of
only IMRT patients.

OAR and Target Segmentation

ROIs were segmented by radiation oncologists based on CT
images. The left femoral head (LFH), right femoral head
(RFH), bladder and clinical target volume (CTV) of the
tumor were segmented. The planning target volume (PTV)
consisted of a 1 cm 3D extension in all directions from the
CTV. Oncologists may modify the PTV basing on their
personal experience. Although small bowel and colon are
very important normal organs (GI002, RTOG 0822) (13),
they are not segmented in our routine clinic. For the purpose
of evaluation, small bowel and colon are segmented with
intelligent segmentation in uRT-TPOIS (R001.2.0.85208,
United Imaging, Shanghai).

Full-Process Solution

A W-shaped net architecture based on our previous studies (9,
14) was used in this study, consisting of a combination of two
U-net convolutional neural networks (CNN). To seamlessly
integrate our clinical workflow, a Pinnacle’-based script was
developed. The entire process started after the planning CT was
imported into Pinnacle, and was triggered by radiation
oncologist clicking a single script button. The CT image was
sent to a deep learning server in the Pinnacle image format
(.img file). The server then automatically ran a deep-learning
model to predict the patient’s ROIs and dose distribution.
Segmentation was saved in Pinnacle ROI format (.roi file)
and sent back to Pinnacle automatically. At the same time, a
patient-specific sub-script was generated. DVH index are
calculated with the predicted dose distribution and are used
for objective functions. This sub-script was also sent back to
Pinnacle, and plan generation and optimization were
performed. This sub-script automatically set the isocenter,
beam angle, and optimization parameters (including all
objective functions and IMRT hyperparameter settings) and
started the optimization. No human intervention was required
during the above processes.

All patients were prescribed 5,000 cGy in 25 fractions, and
the prescription definition was 97% of the mean dose of the
PTV based on our clinical routine. In this study, we only used
the IMRT technique for evaluation, which could be easily
changed to VMAT by changing the beam type. The isocenter
was placed in the geometric center of the PTV. A photon beam
with 6 MV energy is used. Seven beams were used in this study
with a fixed angle (180, 230, 280, 320, 40, 80, 130 degrees) with
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FIGURE 1 | Whole automatic treatment planning process.

TABLE 1 | Detailed characteristics of the patients and datasets.

Training set Validation set Evaluation set
Number of patients 172 18 40
Image slice amount 10,276 1,039 2,156
PTV volume 1,041.3 + 144.3 cm®

Left femoral head Volume
Right femoral head Volume
Bladder volume

Small bowel Volume

Colon volume

Slice thickness
Reconstruct pixel size
IMRT/AVMAT

direct machine parameter optimization (DMPO). The
maximum number of segments was 50, while the minimum
segment area was 10 cm” and the minimum number of
segment MUs was 6. A maximum of 50 iterations were used
for optimization. PTV was chosen as the target with a dose of
5,000 cGy.

After the optimization and final dose calculation, the plan
could be immediately reviewed by radiation oncologist. If the
segmentation was not clinically accepted, the oncologist could

76.90 + 35.74 cm®
77.55 + 34.53 cm®
142.30 + 85.02 cm®
775.83 + 167.23 cm®
110.18 + 57.39 cm®
5 mm
0.9~1.3 mm
149/41 40/0

modify the contour segmentation and reoptimize the plan with
another click on a script button. The reoptimization process did
not change the objective function.

Plan Optimization

We used the Pinnacle Auto-planning module to run plan
optimization. The OAR optimization goals all used max DVH,
and the priority was set as low. The dose objective functions were
directly calculated from the predicted dose distribution. Table 2
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TABLE 2 | Optimization goals chosen in this study.

OARs Type Optimization goal

PTV Max/Min Dose 102/101% prescription dose

Left femoral head (LFH) Max DVH Visay Voogy: Vosay
Right femoral head (RFH) Max DVH Visay Vooay: Vasay
Bladder Max DVH Vasay, Vaoay, Vasay, Vaoay: Vasay

Visay means the volume percentage of the OAR covered by an isodose line of 15 Gy.

shows detailed index for dose optimization. Normally, a
maximum dose of 102% of the prescription and a minimum
dose of 101% of the prescription dose were used for the target
according to default setting of Pinnacle Auto-planning module.

Solution Performance Evaluation

Forty patients were enrolled for solution performance evaluation.
The evaluation included two parts, physician assessment and
objective criterion assessment.

For physician assessment, a radiation oncologist with 5 years
of experience could carry out the whole process without the
physicists’ help. Oncologist would assess the results of the
autosegmentation and treatment planning sequentially, and
were required to decide whether this plan (the Auto-plan) was
suitable for delivery in the clinic. If not, the oncologist was
required to provide opinions about the segmentation and plan.
After that, the oncologist can modify the ROIs and trigger the
reoptimization process by clicking another script button. Then,
the radiation oncologist was required to reassess the plan (the
Re-opt-plan). A senior oncologist who has been working for 32
years blindly reviewed all evaluation patient sets.

For objective criterion evaluation, segmentation was assessed
by the dice similarity coefficient (DSC). The Auto-plan was
assessed by dose-volume indices. As a retrospect study, manual
segmentation and manual plans already exist. For the PTV, the
max dose (Dgg;), relative volume covered by 95% of the
prescription dose (Vgs), relative volume covered by 99% of
the prescription dose (Vgg), conformity index (CI), and
homogeneity index (HI) were compared. In this study, HI and
CI calculation were performed with the built-in algorithms of
MIM (MIM Software Inc. Cleveland, OH, USA). The CI equals
the ratio of the volume of the prescription dose line to that of the
target, while the HI equals the ratio of the max and min doses for
the target. For the femoral heads, D,, V;say, and Vyoa, were
compared, while V,s6y, Visgy, and Vysg, were used for the
bladder (15). For small bowel, V3sGy, Viogy Vasay and D, were
used while Vsog, and D, are evaluated for colon (13). We used
the manually segmented ROIs as the reference set for DVH
calculation since manually segmented ROIs should be
considered as the gold-standard in this study.

Paired sample t tests were used to evaluate the statistical
significance of all the dose-volume parameters between the
Auto-plan and the manually optimized plan (MO-plan), as
well as between the Re-opt-plan and the MO-plan. To
demonstrate the final performance of our solution, we
combined patients without reoptimization and those with
reoptimization into the solution. A p-value less than 0.05 was
considered statistically significant.

RESULTS

Full-Process Solution

With the physician assessment, among all 40 patients who
underwent solution performance evaluation, 32 (80%) patients’
Auto-plans were clinically accepted without contour
modification and reoptimization. Eight patients’ plans needed
target (PTV) modification. After modification and
reoptmization, evaluation set plans were reviewed by senior
oncologist all became clinical acceptable. The whole process
would take 7 min without contour modification for one
patient. Contour modification cost average 13.3 min, ranging
between 6 and 20 min. Reoptimizing process cost 5 min. In
comparison, manual segmentation would take more than 30 min
and manual plan would take 30-40 min.

Autosegmentation Assessment

The DSC between predicted and manual PTV segmentation was
greater than 0.85 for all 40 patients (16). The mean DSC of the
OARs was also greater than 0.75 but with some deviation. Here
is detailed statistic (mean + standard deviation): PTV 0.90 + 0.02;
CTV 0.87 + 0.06; Bladder 0.80 + 0.11; LFH 0.79 + 0.10; RFH
0.80 + 0.10. Figure 2 is demonstration of a certain patient’s
segmentation comparison between manual segmentation
and autosegmentation.

Auto-Planning Assessment

The dose-volume indices are presented in Table 3. There were no
significant differences between the Auto-plan and the MO-plan
for any of the OAR dose-volume indices except femoral head
V3say» Which was reduced by auto-planning. Volume dose for
Auto-plan and Re-opt-plan of both small bowel and colon are
higher than manual plan (exceeding IMRT planning constraints,
but still under compliance criteria). Although there were no
significant differences between auto-plan and manual plan for
max dose. The PTV coverage was significantly lower for auto-
planning without reoptimization. After contour modification
and reoptimization, the PTV coverage was improved; the Vgo
was better than that of the manual plans, and the CI improved
from 1.12 to 1.09. An example set of DVH curves was shown in
Figure 3. This patient’s autogenerated plan was considered
clinically unacceptable by our physician. After contour revision
and plan reoptimization, the plan was considered acceptable.

DISCUSSION

In this study, we developed an integrated solution for radiation
segmentation and planning. This solution can significantly increase
the efficiency of the whole workflow of radiotherapy. Two core
radiotherapy tasks were integrated into one task with artificial
intelligence. Since high-quality plans can be directly generated for
80% of rectal cancer patients by a physician alone, the
communication cost could be largely reduced (17). Although 20%
of the automatically generated plans were clinically unacceptable,
with a reoptimization step, these plans become clinically acceptable.
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FIGURE 2 | Segmentation comparison between manual (a1-e1) and auto (a2-e2).
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TABLE 3 | Statistical comparison among the MO-plans, Auto-plans, and Re-opt-plans.

MO-plan + SD Auto-plan + SD
PTV Do 01, Gy 53.6 £ 0.3 53.8 +0.24
PTV Vgs, % 99.93 + 0.10 97.94 + 1.53
PTV Vg, % 98.64 + 0.79 95.29 + 2.33
PTV HI, 1.08 + 0.01 1.09 + 0.01
PTV Cl, 1.04 + 0.03 1.12 £ 0.09
Bladder Vasay, % 66.90 £ 17.12 70.35 £ 9.48
Bladder Vasay, % 41.79 + 15.06 46.90 + 11.58
Bladder Vasay, % 21.77 £8.54 24.70 + 8.81
Left femoral head D,, Gy 40.40 + 4.26 39.71 + 4.51
Left femoral head Vosay, % 36.46 + 14.15 19.156 £ 9.32
Left femoral head Vaogy, % 2.66 + 2.90 2.60 + 2.81
Right femoral head D,, Gy 39.00 + 4.60 40.83 + 5.45
Right femoral head Vosay, % 33.33 + 11.57 19.20 + 8.11
Right femoral head Vaoay, % 2.11+£2.90 2.95+2.26
Small bowel Vasay, cm® 105.76 + 75.37 150.68 + 87.40
Small bowel Vo, cm® 84.83 + 65.14 114.75 + 76.42
Small bowel Vs, cm® 67.29 + 56.01 86.41 + 62.71
Small bowel Dy, Gy 49.29 £ 5.82 50.4 + 3.26
Colon Vsogy, % 48.67 + 25.34 54.26 + 24.01
Colon Dy, Gy 52.45 + 0.31 52.59 + 0.24

The mean value and standard deviation are shown.

Auto vs. MOP value Re-opt-plan = SD* Re-opt vs. MOP value”

.029* 537 +0.2 .051
<.001* 99.97 + 0.02 .076
<.001* 99.09 + 0.24 .012*

.006* 1.09 + 0.01 .005*

.002* 1.09 + 0.03 <.001*

.316 67.21 + 12.96 .899

.0565 42.69 + 12.00 .616

.091 20.77 + 7.63 .269

417 40.44 + 4.65 .948
<.001* 20.00 + 6.93 <.001*

.924 2.80 +2.19 .759

.076 39.43 + 4.50 .543
<.001* 20.55 + 6.04 <.001"

.037* 2.99 + 2.09 .054
<.001* 139.76 + 88.13 <.001*
<.001* 104.16 + 75.04 <.001*
<.001* 77.19 + 60.50 <.001*
0.088 49.77 + 4.97 0.025*
0.033" 50.93 + 24.90 0.039*
0.068 52.43 +0.30 0.898

*Reoptimization was performed for eight patients. The results presented in this column are from all 40 patients’ data. These results can be considered the “final results” of the solution.

*Statistically significant.
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FIGURE 3 | DVH curve of the MO plan, Auto plan and Re-opt plan.

In the oncologist’s evaluation, the quality of 80% of patients’
plans directly satisfied the clinical criteria following automatic
segmentation and automatic planning. Twenty percent of the
patients required contour modification and reoptimization. After
reoptimization, all plans satisfied the clinical criteria. Dose
differences between auto-plan and re-opt-plan are mainly arose
by segmentation since we didn’t change any other parameters.
The dose-volume index comparison also demonstrated that after
reoptimization, the differences between the Auto-plans and the
MO-plans were reduced.

The radiotherapy processes for rectal cancer in our institution,
including segmentation and treatment planning, are consistent. All

30 40 50

Dose/Gy

radiation oncologist and physicists followed one unified consensus
in segmentation and treatment planning. This consensus was
“learned” by the deep-learning neural network. It’s difficult to
extend the entire scheme to multiple centers since enormous
differences exist in segmentation and plan, especially when
radiation oncologists have their own unique experiences besides
contouring atlases. Though recent study has been focused on model
adaption, lacking a unified guide is still a major hindrance to extend
deep learning’s application (18).

There were differences in the HI and CI of the PTV and the
indices of the femoral heads, however. We believe this was
mainly caused by the Pinnacle Auto-planning module, which
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relaxes the PTV constraint to reduce some OAR doses. Although
obtained a high DSC value for the PTV (>0.85), the system did
not perform well in high-risk lymph node drainage areas and
recrudescence areas. For example, the sacral, inferior mesenteric,
internal lilac, external lilac, and inguinal lymph nodes are all
considered high-risk clinical target volumes. We observed that
these parts were frequently modified by physicians during the
evaluation process. This indicated that a physician’s assessment
and evaluation was still required. In clinical use, oncologist could
modify segmentation of PTV while auto-planning is ongoing. If
the segmentation doesn’t need modification, the plan can be
evaluated immediately.

We evaluated radiation dose for small bowel and colon in this
study. Although Auto-plan and Re-opt-plan dose for small bowel
and colon are higher than MO-plan, they still met RTOG 0822
compliance criteria. Higher dose for small bowel and colon may be
caused by lower dose for femoral heads. Since dose deposition along
90/270 degree decreased, dose deposition along 0/180 degree
increased where small bowel and colon are located. Besides
according to a phase 3 clinical trial in our center (19), the
incidence of grade 3 or higher diarrhea was only 3.5% when
combining pelvic irradiation concurrently with 5-Fu monotherapy.

This study combined knowledge-based and script-based
planning. Script-based automatic approaches have been proven
to have great potential for reducing workloads in clinical
radiotherapy (20, 21). We use the Pinnacle Auto-planning
module only because it is clinically implemented in our
institution (22). Knowledge-based planning has been used to
aid in the design of radiation treatment plans for decades (23).
The main advantage of KBP is that it can provide an achievable
goal before optimization. This goal may also reflect the
physician’s tradeoff between target and OAR dose coverage.
Here, we used deep learning to generate the dose distributions
and transfer them to the TPS as DVH constraints. This is because
at present we do not have an optimization engine that can
directly incorporate dose distributions as its goal.

There were some limitations in this proof of concept study. First,
the plan chosen for training might not be the optimal plan. As we
have seen, with a slight compromise in PTV dose heterogeneity, our
solution reduces the patient’s femoral head dose. This indicates that
some routine clinical plans may not focus on reducing the femoral
head dose. Meanwhile, although we predicted the dose distribution
in every voxel, we do not use it directly in the optimization step.
Because current commercial TPSs only accept DVH indices as
optimize objectives, this can be improved in the future.

We chose rectal cancer to demonstrate our approach because
it is simpler than cancers at other sites. These complex sites (such
as the lung) have complex target segmentation and beam angle
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