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Glioblastoma is the most malignant and lethal subtype of glioma. Despite progress in
therapeutic approaches, issues with the tumor immune landscape persist. Multiple
immunosuppression pathways coexist in the tumor microenvironment, which can
determine tumor progression and therapy outcomes. Research in immune checkpoints,
such as the PD-1/PD-L1 axis, has renewed the interest in immune-based cancer
therapies due to their ability to prevent immunosuppression against tumors. However,
PD-1/PD-L1 blockage is not completely effective, as some patients remain unresponsive
to such treatment. The production of adenosine is a major obstacle for the efficacy of
immune therapies and is a key source of innate or adaptive resistance. In general,
adenosine promotes the pro-tumor immune response, dictates the profile of suppressive
immune cells, modulates the release of anti-inflammatory cytokines, and induces the
expression of alternative immune checkpoint molecules, such as PD-1, thus maintaining a
loop of immunosuppression. In this context, this review aims to depict the complexity of
the immunosuppression in glioma microenvironment. We primarily consider the PD-1/PD-
L1 axis and adenosine pathway, which may be critical points of resistance and potential
targets for tumor treatment strategies.
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INTRODUCTION

Cancer is characterized by genetic instability and heterogeneity in the tumor microenvironment
(TME). Currently, one of the major challenges in cancer treatment is to block the multifaceted
network of tumor mechanisms that cause immunosuppression and resistance to cell death (1, 2).

Gliomas are the most aggressive primary brain tumors in adults, and are of different genetic,
phenotypic, and pathological subtypes, depending on the glial lineage from which they arise (3).
Glioblastoma multiforme (GBM) is the most malignant subtype of diffuse glioma, and remains the
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most lethal among brain tumors (3, 4). Similar to other
malignances, genetic and phenotypic variability within GBM
present problems for the treatment of these tumors (5, 6).

Despite advances in modern medicine, the prognosis for
malignant glioma patients remains just over a year. Therefore,
several avenues, such as tumor resistance, need to be explored to
improve therapeutic approaches (7, 8). Tumor resistance is related
to redundant and synergic immunosuppressive pathways
coexisting in the TME. Malignant and host cells create a specific
niche, where cellular interactions shape the profile of cytokines
and chemokines, favoring pro-tumoral activities (9).

Recent evidence has shown that tumors are proficient at
evading immunostimulatory responses and resisting standard
therapy by producing adenosine (ADO) and upregulating
molecules like programmed cell death 1 (PD-1) that function
as immune checkpoints (9, 10). Therefore, this review aims to
depict the complexity of the immune system in the glioma
microenvironment, including the role of the PD-1/PD-L1 axis and
adenosine pathway in the maintenance of immunosuppression and
resistance to glioma treatments.
IMMUNE SYSTEM IN GLIOMAS

Tumor-Associated Immunosuppression
The TME has been described as a regulator of tumor progression
as well as a mediator of successful therapy. The complexity of
tumor niche is shaped by a variable combination of stromal cells,
endothelial cells, fibroblasts, cancer stem cells and immune
system. Specially, stromal and cancer stem cells have been
described by a significant involvement on glioma initiation,
maintenance, and progression. In fact, cancer stem cells can
suppress cytotoxic responses and modulate immune and
endothelial cell functions, suggesting an important role of these
cells on immunosuppressive tumor site (11, 12). Importantly,
studies have demonstrated an increasing significance of the
immune infiltrate and its products in the process of tumor
malignancy (10, 13, 14). In GBM, resident microglia and
macrophages represent up to one-third of the tumor mass and
may have pro-tumorigenic functions (15).

Microglial cells are considered “plastic” due to their ability to
change their functions based on environment. These cells may
exhibit pro-inflammatory (M1) or immunosuppressive (M2)
functions (15–17). All macrophages produce several cytokines
such as tumor necrosis factor (TNF) and interleukins (IL-1, IL-6,
IL-8, and IL-12), which influence the generation of effector cells
and activation of lymphocytes (14). Previous data has shown that
the interaction between glioma and microglia is very complex
and may not be beneficial for tumor resolution. Indeed,
microglia cells co-cultured with glioma cells lack phagocytic
ability against tumor cells (16).

Immunosuppression in gliomas involves dynamic crosstalk
between tumor and stromal cells, tumor-associated macrophages
(TAMs), microglia, regulatory T cells (Tregs), and tumor-
infiltrating lymphocytes (TIL) (17–19). Generally, the number
of CD4+ lymphocytes is lower than that of CD8+ lymphocytes in
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a GBM environment, but it has been observed that the numbers
of both CD4+ and CD8+ cells increase with tumor grade (20).
Despite the presence of these lymphocytes in the GBM
microenvironment, effector T cells do not function properly
and M2 macrophages are unable to promote CD4+ and CD8+

polarized immune responses, which are important for the
regulation of Tregs (21).

The release of chemokines such as C-C motif chemokine
ligand 2 (CCL2) is critical for the recruitment of Tregs and
myeloid derived suppressor cells (MDSCs). MDSCs alter the
TME and suppress immune responses by blocking CD8+ cells
and inhibiting the function of natural killer cells (NK) (9, 19, 22).
NK cells express death receptor ligands, which can induce
caspase-dependent apoptosis in target cells, and can thus kill
cancer cells (23). This cytotoxic action is limited by GBM-
HLA-G expression, which protects tumors from T cells and
NK-mediated killing. Moreover, NK cells are reduced in GBM
patients (23, 24).

Studies have shown influences of effector and regulator T cells
on the prognosis of cancer patients. For example, Tregs play a
significant role in the immune response in the TME since they
mediate immunotolerance by suppressing the function of
effector T cells (9, 23). GBM patients showed an increased
proportion of Tregs among CD4+ cells, contributing to the
reduced immune response (25). In addition, the removal of the
Treg fraction from patients with GBM rescues T cell proliferation
and pro-inflammatory cytokine production to standard levels.
This reveals the critical role of Tregs in glioma-mediated
immunosuppression (26).

The PD-1/PD-L1 Axis
Interest in immune-based treatments of cancer has been renewed
after the discovery of immune checkpoint inhibitors. Recently,
the co-Nobel Prize in Physiology or Medicine was awarded to
Tasuko Honjo, who showed the negative regulation of T cells
mediated by the PD-1 pathway (27, 28). Thus, the expression and
activity of immunological checkpoints have emerged as the main
immunosuppressive mechanisms in gliomas (29, 30).

The transmembrane co-receptor PD-1 (CD279), encoded by
the PDCD1 gene, belongs to the family of immunoglobulins and
is expressed predominantly by activated T lymphocytes (31).
PD-1 is often activated by PD-L1 (B7-H1; CD274), one of the
ligands known to be expressed by antigen presenting cells
(APCs), B lymphocytes, and parenchymal cells. PD-L2 (B7-
DC; CD273) is another ligand for PD-1 and is expressed by
fewer cells than PD-L1 (31–33). In normal conditions, PD-1/PD-
L engagement occurs controlling a prolonged activation of
immune system, often avoiding autoimmunity processes. It is
known that PD-1 interaction provides T-cell inhibitory signals.
PD-1/PD-L engagement during TCR stimulation leads to
tyrosine phosphorylation of the PD-1 cytoplasmic tail on high
affinity sites for SH2 domain-containing phosphatase (SHP-2
and SHP-1), resulting in the dephosphorylation of proximal
signaling molecules which decrease T cell proliferation and
survival by attenuate PI3K and Akt pathways (31, 34).

Importantly, expression of PD-L1 has been detected in glioma
(35–37). Moreover, PD-L1 expression in tumor cells is related to
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levels of malignancy, and high PD-L1 expression is associated
with greater invasiveness and aggressiveness of GBM cells (38,
39). Studies have shown heterogeneity of PD-L1 expression in
tumor mass such that greater expression is seen at the edges of
the tumor than in the core. This could also facilitate immune
evasion and invasiveness of gliomas (38, 40).

The expression of PD-L1 in the TME is regulated mainly by
cytokine and receptor antigen signaling (31). Interferon gamma
(IFN-g) is the major PD-L1 regulation factor in tumor cells and
reflects ongoing antitumor immune activity. In addition,
oncogenic mutations, such as loss of phosphatase and tensin
homolog (PTEN) in glioma, can activate PD-L1 expression in
tumor cells (31, 41, 42).

The PD-1/PD-L1 pathway has been appropriated by tumor
cells to resist antitumor responses and facilitate tumor survival
(42, 43). Influenced by hypoxia, cytokines, and oncogenes, GBM
cells express PD-L1, which engages with the PD-1 receptor
primarily on T cells and attenuates its functions, effectively
reducing the antitumor activity of these cells (42).

A subset of lymphocytes (Tregs) has emerged as a critical
target in cancer therapy. Tregs express both PD-1 and PD-L1,
and the generation, immunosuppression, and interaction of
Tregs with effector T cells could be, at least in part, modulated
by PD-1/PD-L1 binding (44, 45). Francisco et al. have shown
that PD-L1 can induce and maintain the expression of FOXP3
in induced Tregs, suggesting that PD-L1 may control Treg
plasticity (46).

GBM cells were also able to upregulate PD-L1 expression in
tumor-infiltrating macrophages viamodulation of IL-10 signaling
(29). Macrophages may express PD-1 and PD-L1 (47). PD-1
positive TAMs exhibit decreased phagocytic potential and PD-1
blockade improves macrophage functionalities, besides reducing
tumor growth in mouse models of cancer (48).

The use of PD-1 inhibitors is becoming an effective strategy
for the treatment of cancer, and several preclinical and clinical
studies have been conducted for GBM (30, 49). In fact, immune
checkpoint inhibitors may reverse the immunosuppressive
condition and restore dysfunctional or “exhausted” T cell
function in cancer (39). However, some patients remain
unresponsive to PD-1/PD-L1 blockade. Therefore, fresh
clinical trials to evaluate tumor resistance in PD-1/PD-L1
immunotherapy in GBM patients are required (39, 50).

Immunomodulation by Adenosine
Pathway in Gliomas
Adenosine 5′-triphosphate (ATP) is the main energy molecule
produced by cellular respiration. It has multiple release routes
and is involved in practically all cellular responses (51). It is
known that during cancer growth and progression, ATP and its
main metabolite, ADO, are actively secreted or generated in the
extracellular space, and accumulate to high levels in the TME
(52–54).

Physiologically, extracellular ATP (eATP) functions as a
“danger” signal alerting the immune system to the presence of
inflammation, and is crucial for inflammasome activation and
the concomitant release of cytokines (54, 55). These effects are
mediated via P2 receptors, which are subdivided into two
Frontiers in Oncology | www.frontiersin.org 3
subfamilies: P2X ionotropic ion channel receptors (P2X1-7)
and P2Y G-protein-coupled receptors (P2Y1, 2, 4, 6, 11, 12, 13, 14)
(53–55). These purinergic receptors display distinct agonist
affinity and specificity, affecting both tumor and immune cells,
depending on the eATP levels available in the TME (56).
Different innate and adaptive immune responses are generated
through activation of P2 receptors by eATP (Table 1).
Particularly, the participation of P2X7 in inflammation is
extensive, and has been better characterized compared to that
of other P2 receptors (54, 55, 71–74). The direct role of P2X7 in
carcinogenesis is still controversial, but it is known that cell
growth or death is triggered according to the cell type that
expresses P2X7 and their activation level (75).

P2 receptors are assumed to be inactive in normal
physiological conditions, where ATP-dependent signaling
should be at baseline levels. Ectoenzymes, such as NTPDase1
(CD39) and ecto-5′-nucleotidase (CD73), maintain levels of
extracellular ATP, which is crucial to avoid P2 receptor
desensitization (76).

In the TME, eATP is quickly hydrolyzed to AMP by CD39 of
TILs which is then efficiently converted to the immunosuppressant
ADO by CD73 expressed in glioma cells (77). ATP hydrolysis drives
the immune response to collaborate with tumor growth, making the
CD39/CD73 axis an important regulator of immune effector
function. This is a hallmark of cancer (78–81). Interestingly, CD39
inhibition can restore TIL function, and a single nucleotide
polymorphism has been identified that may predict dysfunctional
CD39+ expression in TILs in some solid tumors (81).

The suppressive role of ADO in the TME is primarily mediated
by cytotoxicity, anti-inflammatory cytokine production, and
restriction of immune cell infiltration (79). Adenosine effects are
mediated by P1 receptors (A1, A2a, A2b, and A3). Interestingly, the
pro-tumoral effects of ADO occur mainly through A2 receptors, as
depicted in Table 1. Physiologically, ADO orchestrates tissue
recovery after initial inflammation, which involves the decrease
of M1 phenotype, cell proliferation, and angiogenesis. This sets the
stage for tumor growth. Hence, the ADO signaling pathway may
be an important therapeutic target (79, 80, 82, 83).
THE PD-1/PD-L1 AXIS AND ADENOSINE
PATHWAY IN GLIOMAS

Typically, tumor growth involves disruption of the surrounding
microenvironment, in which extracellular nucleotides might
confer immunomodulatory properties that are critical for
driving glioma immune escape. One of the main mechanisms
of tumor immune evasion is the generation of high levels of ADO
mediated by excessive activity of ectonucleotidases (83–85).

An effective immunosuppressive environment is maintained
when the actions of ADO are synergistic or additive to other
immunosuppressive mechanisms. There is growing evidence that
immunosuppressive proteins, such as PD-1 and PD-L1, can be
increased in the TME by the samemechanism that is implicated in
hypoxia-mediated adenosinergic immunosuppression (86).
Extracellular ADO increases in hypoxic conditions, concomitant
with upregulation of CD39 and CD73. In addition, the oxygen
February 2021 | Volume 10 | Article 617385
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deprivation in the tumor core is related to the upregulation of
immunoregulatory mechanisms such as PD-L1 expression in
glioma cells, making them resistant to T cell-dependent
cytotoxicity (87).

Notably, it was suggested that ADO also induces increase in
PD-1 levels (88) because ADO signaling may positively regulate
TGF-b levels. TGF-b is mainly involved in stopping effector T
cell activation and stimulating the activity of antigen presenting
cells that express PD-1 (89). In the presence of TGF-b, CD4+ cell
activation may predominantly generate inducible Tregs (90). These
cells primarily express CD39, while GBM cells express high levels
of CD73, suggesting that cancer and immune cells can cooperate to
promote local adenosinergic immunosuppression. Accordingly, a
vicious cycle is formed, favoring the upregulation of the PD-1/PD-
L1 axis that maintains a complex synergism between the ADO
pathway and immune checkpoint axis (77, 91, 92).

Additionally, ADO is involved in macrophage activation,
predominantly via A2a (A2aR) and A2b receptors (A2bR). A2bR
Frontiers in Oncology | www.frontiersin.org 4
stimulation during macrophage differentiation could skew
macrophages toward the M2 phenotype. M2 macrophages can
express immunoregulatory molecules such as arginase, TGF-b,
and PD-1/PD-L1 proteins, resulting in the downregulation of
cellular immune responses (93).

Overall, the multifaceted role of ADO in tumor immune
evasion is seen in its promotion of pro-tumor rather than
antitumor immune responses, dictation of Treg function,
inhibition of effector T cells, modulation of anti-inflammatory
cytokines, and induction of immune checkpoints as illustrated in
Figure 1 (83, 84, 86, 88, 89, 94).

Taken together, the ADO pathway and the PD-1/PD-L1 axis
may act synergistically to modify the TME, favoring tumor
progression. Based on this landscape, the GBM standard
treatment should be multimodal, involving maximal surgical
removal followed by radiotherapy (RT) and/or temozolomide
(TMZ). Despite such treatments, refractoriness is often observed
(95, 96).
TABLE 1 | Functional immune responses triggered by nucleotides and nucleosides actions in glioblastoma microenvironment.

Main purinergic
receptors

Immune outcome Immune cell profile Cytokine &
chemokine profile

Ref

Immunostimulatory ATP P2X1 Proinflammatory response Chemotaxis of neutrophils;
chemotaxis and phagocytosis of
macrophages; release of
chemokines and cytokines from
eosinophils; T cell activation.

IL-2, IL-8, IL-12, TNF-a
(increased)

(57–61)

P2X4 Proinflammatory response Microglia activation and
proliferation; macrophages
stimulation and maturation;
stimulation of dendritic cells; T
cell activation.

IL-2, IL-12, TNF-a
(increased)

(54, 57, 59–62)

P2X5 Adaptative immune response T and B lymphocytes activation. IL-2
(increased)

(57, 60)

P2X7 Proinflammatory response
NLRP3 inflammasome activation

Recruitment of macrophages
and neutrophils; inhibition of the
suppressive potential of Tregs.

IL-1b, IL-12, IL-18, IFN-
g, TNF-a,
CCL-3, CXCL2
(increased)

(54, 57, 60–65)

P2Y2 Innate immune response Chemotaxis of eosinophils,
monocytes/macrophages,
microglia, and dendritic cells;
degranulation of neutrophils.

MCP-1, CCL2, IL-6, IL-
8, IL-33
(increased)

(57, 66)

Immunosuppressive ADO A2a Immunosuppressive response Macrophage differentiation into
M2 phenotype; T cell anergy;
increase differentiation and
suppressive effect of Treg;
upregulation of immune
checkpoint receptors (e.g., PD-1,
CTLA-4); reduction of NK cell
cytotoxicity; inhibition of
neutrophil and microglial
chemotaxis; modulation of
chemokines profile in neutrophils.

IL-10, VEGF, TGF-b
(increased)
IL-12, TNF-a, nitric
oxide; IFN-g
(decreased)

(57, 64, 67–70)

A2b Anti-inflammatory response Macrophage differentiation into
M2 phenotype; reduction of
monocyte differentiation to
dendritic cell; MDSCs expansion;
reduction of adherence and
degranulation of neutrophils.

Arginase 1, IL-10,
VEGF, IL-6; TGF-b
(increased)
IL-12, TNF-a
(decreased)

(57, 68, 70)
Fe
bruary 2021 | Volume 10
ATP, adenosine 5′-triphosphate; ADO, adenosine; CCL3, C-C motif chemokine ligand 3; CXCL2, C-X-C motif ligand 2; CTLA-4, cytotoxic T-lymphocyte antigen 4; IFN-g, interferon g; IL-,
interleukine; MCP-1, monocyte chemoattractant protein-1; MDSC, myeloid-derived suppressor cell; NK, natural killer; NLRP3, sensor molecule (NOD- LRR- and pyrin domain-containing
protein 3); PD-1, programmed cell death 1; TGF-b, transforming growth factor beta; TNF-a, tumor necrosis factor alpha; VEGF, vascular endothelial growth factor.
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TMZ and RT have several immune modulatory effects on the
TME. In addition to immune activation, RT and TMZ therapy
may even worsen the immunosuppressive system in GBM. This
is because both interventions induce immunogenic cell death,
and consequently release immunogenic factors such as ATP (97,
98). ATP binding to P2X7 purinergic receptor is a signal that
primes the immune system against tumor (99). However, glioma
therapy also increases the expression of CD39/CD73. Hence, it is
possible that ADO rapidly rises in the TME. RT also stimulates
TGF-b and chemokines that promote the recruitment of
immunosuppressive cells; therefore, the activity of the PD-1/
PD-L1 axis increases. In addition to Tregs recruitment, RT-
induced ATP release also can be related to Treg differentiation
from naïve CD4+ cell via A2bR (100, 101).

Interestingly, some studies have shown irradiation-induced PD-
L1 expression through an IFN-dependent pathway (102). Xia et al.
(90) showed that under RT, PD-L1 expression in GBM cells is
greater than that observed without radiation, and that the inhibition
of PD-L1 increased radio-sensitivity in these cells (90). High PD-L1
expression was also associated with high numbers of M2
macrophages and Tregs, and low CD8+ cells in the TME, favoring
high levels of ADO. Consequently, the immunosuppressive TME
resulting from PD-L1-induction could be an important mechanism
of tumor radio-resistance (103).
PD-1/PD-L1 AXIS BLOCKADE AND
PURINERGIC MODULATION THERAPY

Recently, there has been a surge in the research anddevelopmentof
immunotherapies in cancer, using the PD-1/PD-L1 axis blockade
Frontiers in Oncology | www.frontiersin.org 5
as a strategy to reduce tumor immune evasion (103). Anti-PD-1
immunotherapy has been shown to be successful in prolonging
responses in only a fraction of patients (36, 47). There is a subset of
themwho fail to overcome the immunosuppression, even they can
mount an antitumor response. Consequently, the focus of research
has changed toward uncovering intrinsic factors that contribute to
treatment failures. Currently, the ADO pathway is considered a
barrier for the efficacy of immunotherapies (103, 104).

As seen in some solid tumors, alternative immunomodulatory
molecules, including CD39, CD73 and A2aR, are upregulated in
response to anti-PD-1 monoclonal antibody (mAb) (88, 104).
Beavis et al. showed that CD73+ tumor cells restrict anti-PD-1
efficacy, and that this effect was relieved by concomitant treatment
with an A2aR antagonist (104). Li et al. demonstrated that CD39
inhibition sensitizes tumor-resistant models to anti-PD1, and that
blocking CD39 activity is associated with the enrichment of
cytotoxic T cells in the TME and upregulation of inflammatory
markers on these infiltrates (105).

Various clinical trials that evaluate purinergic modulation
therapy along with anti-PD-1 mAb or anti-PD-L1 mAb are
currently active or in the recruitment phase for multiple cancer
types (Supplementary Table S1). In fact, simultaneous therapy
using PD-1 inhibitors and targeting the adenosine pathway
was more effective in improving survival, reducing tumor
growth, and limiting metastasis than single therapy in some
types of cancer (106–108). Furthermore, there is a rising
range of anti-CD73 mAbs being tested in combination with
other immunotherapies, generating encouraging results (100,
101, 109).

GBM is one of the most immunologically “cold” tumors among
all cancers. The PD1/PD-L1 target characterizes a potential
FIGURE 1 | Immunosuppression in glioblastoma via PD-1/PD-L1 axis and adenosine pathway. Tumor core acquires reduction in the oxygen supply causing a
release of high amounts of ATP. This nucleotide acts as a damage-associated molecular pattern (DAMP) and starts immune activation. Extracellular ATP binds to P2
receptors and triggers proinflammatory responses through the induction of cytokines and chemokines. A disbalance in the ATP concentration gradient leads to an
upregulation of CD39/CD73 axis, favoring adenosine production. Adenosine is a key molecule that initiates a suppressive immune cell infiltration and drives the
activation of PD-1/PD-L1 axis. The immunosuppressive loop is maintained indirectly by ATP release and adenosine signaling, which avoids antitumor defenses,
promotes immunosuppressive cell profile, and induces upregulation of immune checkpoints. ATP, adenosine 5′-triphosphate; ADO, adenosine; CD39 or
ectonucleoside triphosphate diphosphohydrolase 1, cluster of differentiation 39; CD73 or ecto-5′-nucleotidase, cluster of differentiation 73; DAMP, damage-
associated molecular pattern; MDSC, myeloid-derived suppressor cells; PD-1, programmed cell death 1; PD-L1, programmed cell death ligand 1.
February 2021 | Volume 10 | Article 617385
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strategy for conversion of the “cold” GBMmicroenvironment into
a “hot” microenvironment to enhance the immune response to
antitumor immunotherapy (110). Therefore, anti-PD-1/PD-L1 is
an emerging therapeutic possibility in gliomas (111). Since PD-1/
PD-L1 blockades do not significantly promote global survivor in
patients with recurrent GBM compared with standard therapy,
clinical trials are exploring association between anti-PD-1/PD-L1
mAb with standard radio/chemotherapy and bevacizumab or new
therapies such as genetically engineered T cells and vaccines (39,
111, 112). Most studies are undergoing clinical trials evaluation
and the results still have not provided decisive conclusions
(Supplementary Table S2).

Overall, the study of alterations in “purinoma” caused by
immune checkpoint inhibitors would likely provide insights for
the development of interventions to overcome the immuno-
suppressive glioma environment and boost immune responses
generated by immunotherapies.
CONCLUSION

The environment surrounding tumors directly impacts their
progression. Multiple redundant and compensatory pro-tumor
pathways coexist in the TME and are closely related to the
success of therapeutic treatments. Immune checkpoint inhibitors
help in cancer treatment, though it is not effective in some
patients. Thus, immunosuppression remains a major obstacle to
therapeutic success. Studies on the relationship between
purinergic signaling and inflammation show that the ADO
pathway and PD-1/PD-L1 axis have a close relationship and act
together to create a favorable environment for tumor immune
Frontiers in Oncology | www.frontiersin.org 6
evasion. The eATP-adenosine axis has a specific role in pro-tumor
immune responses including upregulating the PD-1/PD-L1 axis.
The ADO pathway has been identified as the main compensatory
route involved in the maintenance of immunosuppression in
patients using anti-PD-1 immunotherapy, through a drop in
innate or adaptive immunity. Therefore, future research should
focus on concomitant disruption of the ADO pathway and PD-1/
PD-L1 axis to avoid cancer resistance.
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