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Cancer progression involves a variety of pro-tumorigenic biological processes including
cell proliferation, migration, invasion, and survival. A cellular pathway implicated in these
pro-tumorigenic processes is autophagy, a catabolic route used for recycling of
cytoplasmic components to generate macromolecular building blocks and energy,
under stress conditions, to remove damaged cellular constituents to adapt to changing
nutrient conditions and to maintain cellular homeostasis. During autophagy, cells form a
double-membrane sequestering a compartment termed the phagophore, which matures
into an autophagosome. Following fusion with the lysosome, the cargo is degraded inside
the autolysosomes and the resulting macromolecules released back into the cytosol for
reuse. Cancer cells use this recycling system during cancer progression, however the key
autophagy players involved in this disease is unclear. Accumulative evidences show that
autophagy receptors, crucial players for selective autophagy, are overexpressed during
cancer progression, yet the mechanisms whereby pro-tumorigenic biological processes
are modulated by these receptors remains unknown. In this review, we summarized the
most important findings related with the pro-tumorigenic role of autophagy receptors p62/
SQSTM1, NBR1, NDP52, and OPTN in cancer progression. In addition, we showed the
most relevant cargos degraded by these receptors that have been shown to function as
critical regulators of pro-tumorigenic processes. Finally, we discussed the role of
autophagy receptors in the context of the cellular pathways implicated in this disease,
such as growth factors signaling, oxidative stress response and apoptosis. In summary,
we highlight that autophagy receptors should be considered important players of cancer
progression, which could offer a niche for the development of novel diagnosis and cancer
treatment strategies.
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INTRODUCTION TO PHASES OF
CANCER DEVELOPMENT

According with the World Health Organization (WHO) in 2018
around 18.1 million people in the word had cancer, and 9.6
Frontiers in Oncology | www.frontiersin.org 2
million died due to this disease, making it the second leading
cause of death worldwide (1).

The development of cancer, termed carcinogenesis is a
multistep process involving three different stages: initiation,
promotion, and progression (2, 3) (Figure 1A). The tumor
FIGURE 1 | (A) Stages of Carcinogenesis. Initiation involves irreversibly alterations of particular tissue cells and increased susceptibility to tumor progression. The
alterations are frequently related with mutational events induced with chemicals, radiation or biological agents (carcinogen). Promotion implicates the clonal expansion of
altered cells leading to a visible tumor, a stage known to be reversible. In the progression stage, cells show several characteristic processes necessary to develop a
malignant phenotype characterized by aggressive properties such as angiogenesis, cell proliferation and survival, immune evasion, cell migration and invasion, and
metastasis. (B) Involvement of autophagy receptors in cancer progression. During the stage of cancer progression several characteristic processes occur.
Angiogenesis corresponds to the formation of interconnected capillaries within the tumor. This is the product of the up-regulation and secretion of pro-angiogenic
factors by cancer cells, a crucial process in the supply of oxygen and nutrients to the tumor. Cytosolic autophagy receptors do not promote this process. Cell
proliferation and survival are the consequence of genetic changes which promotes metabolic and morphological features that sustain these events. P62, NBR1,
NDP52, and OPTN are involved in the promotion of these processes by several mechanisms. Immune evasion corresponds to the mechanism by which cancer cells
evaded the immune system, here represented by T cells. NBR1 is known to contribute to immune evasion. Migration and invasion processes are part of the metastatic
cascade, in which cells acquire the capacity to migrate and invade the surrounding tissue of the primary tumor. Furthermore, it is proceeded by the intravasation into
the circulatory or lymphatic system. p62 and NBR1 receptors promote migration and invasion processes. After intravasation, survival cells in circulation proceed to
extravasation in a distant site (respect to primary tumor), and colonize and grow in a new site (metastasis colonization). p62 supports the metastatic process.
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initiation and promotion involve irreversible genetic alterations
in normal cells, induced by a carcinogen, followed by a reversible
process regulated by epigenetic modifications, which promotes
the clonal expansion of the altered cells (2) (Figure 1A). The final
result of these two steps is the generation of a pre-neoplastic
lesion forming a visible tumor (2, 4, 5). Although both, initiation
and promotion are two crucial steps in cancer development, it is
not until the tumor progression step is triggered that altered cells
begins to express a malignant phenotype and acquire more
aggressive characteristics forming cancer cells (2, 5, 6) (Figure
1A). In this early stage of the tumor progression, cancer cells
show an increase in the frequency of additional genetic
abnormalities such as number of chromosomes, single point
mutations, translocations, deletions, and amplifications of genes
namely TP53, RB1, EGFR, and KRAS, among others (7), which
are responsible for promoting metabolic and morphological
changes that sustain the proliferation of cancer cells (2, 4, 5, 8)
(Figure 1B). In addition, to sustain the ability to proliferate,
cancer cells must acquire several properties to contribute to the
tumor progression, including resistance to cell death, induction
of angiogenesis, evasion of the immune system, and activation of
the metastatic cascade (9) (Figure 1B). During tumor
progression, cancer cells are exposed to extreme conditions
characteristic of the tumor microenvironment, however how
tumor cells adapt to these adverse scenarios is only partially
understood. For example, it has been shown that hypoxia, a
physiological feature present in the tumor microenvironment
triggers apoptosis, dependent of the tumor suppressor p53 (10).
Strikingly, the TP53 gene is frequently found mutated in cancer
cells, which elicits a loss of function that ultimately results in
apoptosis resistance (11). Cancer cells must also survive to the
attack of immune cells, a process known as immune evasion (9)
(Figure 1B). Here, cancer cells can evade the immune system
losing the expression of MHC-I, activating either the intrinsic
signaling pathway WNT/b-Catenin axis or promoting the
secretion of the factor like VEGF-A, among others (12). In
fact, hypoxia up-regulates the expression and secretion of
VEGF-A triggering the formation of interconnected capillaries
within the tumor (13). This process is called angiogenesis, which
is responsible of oxygen and nutrients supply to the growing
tumor, allowing cancer cells to survive and proliferate (Figure
1B). Angiogenesis is also required to provide an escape route to
cancer cells for dissemination and colonization in distant organs
through the process of metastases (14). The metastatic cascade
involves the capacity of cancer cells present in the primary tumor
to migrate and invade the surrounding tissues leading to
intravasation in the circulatory or lymphatic system (Figure
1B). Cancer cells survive in the circulation, including
extravasation in a distant site, with the capacity to colonize
and grow in the new site (15–17).

Several cellular and signaling pathways are involved in how
pro-tumorigenic properties in cancer cells are triggered,
impacting multiple steps in the cascade of tumor progression
(9, 18). One cellular pathway originally implicated as a tumor-
suppression mechanism is autophagy, which is now considered a
potent tumor promoter cellular pathway (19).
Frontiers in Oncology | www.frontiersin.org 3
AUTOPHAGY: A CRUCIAL CELLULAR
PATHWAY DURING CANCER
PROGRESSION

Although several studies have shown that basal levels of
autophagy can suppress initiation of tumor development (20),
a growing number of studies indicated that autophagy enables
tumor cell survival, growth, and malignancy by facilitating the
supply of metabolic demands during tumor progression (21, 22).
In fact, defects in the autophagic machinery often restrain the
proliferation, dissemination, and metastatic potential of
malignant cells. Indeed, pharmacological interruption of
autophagy or genetic knockdown of crucial ATG proteins
promoted apoptosis of tumor cells (23–27). In addition,
autophagy-deficient tumors are often more sensitive to several
chemotherapeutic agents as well as to radiation therapy than
their autophagy-proficient counterparts (20, 28, 29). In this
review, we summarize the contribution of autophagy cytosolic
receptors during the tumor progression stage in carcinogenesis.

Macroautophagy (herein referred to as autophagy) is a
catabolic process involving the engulfment of cytoplasmic
material into double-membraned autophagosomes that
subsequently fused with lysosomes to form autolysosomes,
where the materials are finally degraded by lysosomal
hydrolytic enzymes (30, 31) (Figure 2). Autophagy substrates
included abnormal constituents such as protein aggregates,
damaged organelles and intracellular pathogens (32).
Autophagy is also involved in the degradation of normal
cellular constituents for cell survival under restriction of
nutrients or by the actions of stressors, a response necessary to
maintain cellular fitness in response to environmental conditions
contributing to the pathogenesis of various disorders, including
cancer (30, 33).

The mechanism of autophagy consists of multiple steps,
including formation and expansion of the pre-autophagosomal
isolation membrane (phagophore) induced by cellular signals,
substrate engulfment, autophagosome closure, and autophagosome-
lysosome fusion (30, 34) (Figure 2).

Cellular signals promote the formation of the phagophore at
specific subdomains of the endoplasmic reticulum (ER) enriched
of phosphatidylinositol synthase (35). Within these domains
occurs the recruitment of several ATG proteins necessary for
early events of phagophore formation and expansion that
mediates the synthesis of phosphatidyl-inositol-3-phosphate
(PI3P), a pivotal phospholipid needed in the later recruitment
of other ATG proteins (34) (Figure 3). Key ATGs are members
of the yeast Atg8 family of ubiquitin (Ub)-like proteins (LC3A,
LC3B, LC3C, GABARAP, GABARPL1, and GABARAPL2 in
mammals) which play roles in autophagosome formation and
autophagosome-lysosome fusion (36, 37). The best studied
member of this family is LC3B (product of the MAP1LC3B),
which undergoes conversion from a soluble, cytosolic form
(LC3B-I) to a phophatidylethanolamine (PE)-conjugated,
membrane-bound form (LC3B-II) (38). LC3B-II subsequently
interacts with LC3-interacting region (LIR) motifs of various
February 2021 | Volume 10 | Article 619727
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cargo receptors to capture autophagic cargos into forming
autophagosomes (39, 40) (Figures 2, 3).

Selective autophagy is orchestrated by cargo receptors
responsible for the recognition and incorporation of cargos
into the autophagosomes (41). Among these receptors are
cytosolic proteins such as p62/SQSTM1, NBR1, OPTN,
NDP52, TAX1BP1, and TOLLIP. These receptors bind
polyubiquitinated cargos via their Ub-binding domains (42,
43). Other cargo receptors are anchored to the autophagic
cargos via their transmembrane domains, as is the case for
BNIP3, NIX and FUNDC1 in mitochondrial autophagy
(mitophagy) (39, 40), and RTN3, SEC62, CCPG1, FAM134B
and TEX264 in ER autophagy (ER-phagy) (40, 44–48). After
fusion of autophagosomes with lysosomes, the autophagy cargos,
together with the Atg8-family proteins and cargo receptors, are
degraded in autolysosomes (49, 50).

Interestingly, several cytosolic autophagy receptors such as
p62/SQSTM1, NBR1, NDP52 and OPTN have been reported to
be overexpressed in several types of cancer playing regulatory
roles in the last stage of carcinogenesis (Figures 1, 2). In this
review, we focus on the emerging roles of autophagy receptors in
cancer cell biology.
Frontiers in Oncology | www.frontiersin.org 4
MOLECULAR FEATURES OF AUTOPHAGY
CYTOSOLIC RECEPTORS

Most of cytosolic autophagy receptors are characterized by the
presence of specific domains that define their role as cytosolic
sensors of damaged cellular constituents. Generally, they harbor
both LC3-interactin region (LIR) and ubiquitin-binding domains
(UBDs) (51). The LIR motif is considered a hallmark of these
receptors corresponding to a short sequence of 6 amino acids
based on the multiple alignments of LIR sequences. This
sequence is known to be responsible for the interaction with
ubiquitin-like proteins like the lipidated ATG8-proteins (LC3s
and GABARAPs) in the phagophore membrane (39, 40, 52).
UBDs are modular elements found in each autophagy receptor
that bind non-covalently to the protein modifier ubiquitin (39,
51). The preferences of UBDs for ubiquitin chains of specific
length and linkage are central to their functions in the
recognition of cargos into the autophagosomes. Most UBDs
use a-helical structures to bind a hydrophobic patch in the b-
sheet of ubiquitin (53). For instance, the ubiquitin-binding zinc
finger (UBZ) binds ubiquitin with a single a-helix oriented either
parallel or antiparallel to the central b-strand. However, other
FIGURE 2 | Function of autophagy receptors in different types of cancer. (A) At specific subdomains of the endoplasmic reticulum (ER) enriched of
phosphatidylinositol synthase (PIS), various Atgs complexes are recruited (ULK1 and Beclin1 complexes). These steps are implicated during early stages of
autophagosome formation. Subsequently, the Atg5 complex is recruited to this location facilitating the conversion [from a soluble cytosolic form to a
phophatidylethanolamine (PE)-conjugated membrane-bound form] of Atg8 family members (LC3A, LC3B, LC3C, GABARAP, GABARPL1, and GABARAPL2),
process implicated in the elongation of the membrane, structure known as phagophore. (B) The phagophore is further detached at the ER, where ATG8s proteins
begin to interact with autophagy receptors responsible of the selective capture of cargos. (C) The final closure of the phagophore form a vesicular double membrane
structure called autophagosome. (D) The autophagosome finally fuses with the lysosome forming the autolysosome. p62, NBR1, NDP52, and OPTN function in the
progression stage of carcinogenesis in several types of cancer by the selective capture of specific cargos indicated in the boxes.
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ubiquitin-binding elements, including the ubiquitin-associated
(UBA) domain and ubiquitin binding in ABIN and NEMO
(UBAN) domain bind ubiquitin through two discontinuous a-
helices (53). Interestingly, a variety of post-translational
modifications including acetylation, phosphorylation or
ubiquitylation can positively regulated the LIRs and UBDs
domains enhancing their affinity to ATG8s proteins and
ubiquitin, respectively (54–57).

p62/SQSTM1/Sequestosome-1 (Hereafter
Referred to as p62)
p62 was the first autophagy receptor identified in mammals (50).
This autophagy receptor is a multidomain protein, which
contains a LIR motif that interacts with LC3s/GABARAPs
attached to the autophagosomes and an UBA domain located
in its C-terminal region allowing p62 to associate with ubiquitin
and ubiquitin-tagged cargos. This binding results in the
formation of cytosolic aggregates and/or the incorporation of
Frontiers in Oncology | www.frontiersin.org 5
cargos into autophagosomes having a functional role in cell
survival (58, 59). In addition, p62 contains other additional
modules with a role in autophagy such as the ZZ type zinc
finger domain. This domain binds to cytosolic cargos bearing
amino terminal arginine residues (Nt-Arg) generated by
proteolytic processing (N-degrons), interaction that drives
these cargos for autophagy degradation (60–63); and a KEAP1-
interacting region (KIR) implicated in the sequestration of
KEAP1, a key adaptor protein for Cullin-3 ubiquitin ligase
implicated in the ubiquitylation and inactivation of the
transcription factor NRF2 by degradation through the
ubiquitin proteasome system (UPS) (59, 64) (Figure 3). Thus,
p62 competitively binds to KEAP1 to allow NRF2 function, a
transcription factor engaged in the control of ROS levels (65).
p62 is expressed in all tissues and has been extensively studied as
a scaffold protein in several signal transduction pathways, many
of which have been involved in cell survival and cell death
(65–68).
FIGURE 3 | Domain architecture of mammalian autophagy receptors and relevant interactions. (A) p62: N-terminal region Phox-BEM1 domain (PB1) mediates p62
homodimerization or its heterodimerization with NBR1; ZZ-type zinc finger domain recognizes N-terminal argenylated substrates (Nt-Arg); nuclear localization signals
(NLS1 and NLS2); tumor necrosis factor (TNF) associated receptor-6 (TRAF6) binding (TB) domain; export motif (NES); LC3-interacting region (LIR) motifs mediate
the interaction with all Atg8s; KEAP1-interacting region (KIR) binding with KEAP1; and ubiquitin-associated (UBA) domain recognizes mono and poly-ubiquitylated
(Mono-Ub and Poly-Ub) substrates. (B) NBR1: PB1 mediates interaction with p62 and itself; ZZ-type Zink finger, Coiled-coil-1 (CC-1) mediates self-oligomerization,
four tryptophan (FW); LIR-2 motif; CC-2 domain; LIR-1 motif, binding to Atgs8 proteins more functional that LIR-2; and UBA domain recognizes mono-Ub and poly-
Ub substrates. (C) NDP52: skeletal muscle and kidney-enriched inositol phosphatase carboxyl homology domain (SKICH); LC3C-specific LC3-interacting region
(CLIR) mediates selective and strong binding to LC3C; Coiled-coil (CC) domain participates in its homodimerization; Galectin-8 binding region (GalBi) mediates the
interaction to Galectin-8 in the context xenophay and lysophagy; and ubiquitin-binding zinc finger (UBZ) domain binds to mono-Ub or poly-Ub. (D) OPTN: three
Coiled-coil domains are found (CC-1, CC-2, and CC-3). CC-1 domain promotes the formation of a hetero-tetramer complex between OPTN and serine/threonine
TANK-binding kinase 1 (TBK1). CC-3 domain mediates the homodimerization of OPTN; a leucine zipper (LZ) domain; LIR motif binds to all members of Atg8s family;
ubiquitin-binding domain of ABIN proteins and NEMO (UBAN) binds to methionine1 (Met1)-linked linear polyubiquitin (Met1-l-polyUb) of ubiquitylated cargos; and zinc
finger (ZF) domain.
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p62 and Poor Prognosis in Cancer Patients
p62 has been found overexpressed in different types of
tumors, which expression has been associated with poor
prognosis in cancer. For example, studies performed in
patients with non-small cell lung cancer, including those with
lung adenocarcinoma, showed an increase in the levels of p62,
correlating with poor prognosis in this type of cancer (69). In
addition, immunohistochemistry analysis of tumors derived
from patients with non-small cell lung cancer demonstrated
an association between high expression of p62 and the
aggressiveness of the tumor (70). A similar correlation was also
reported in patients with colorectal cancer, osteosarcoma,
prostate cancer, hepatocellular carcinoma, breast cancer, and
acute myeloid leukemia, among others (71–75).

p62 and Pro-Tumorigenic Properties
The association of p62 expression with the aggressiveness
of several types of cancer has been investigated in different
cellular models, in which the contribution of p62 in the
induction of different pro-tumorigenic properties has been
proven. In a cell line of lung adenocarcinoma, silencing of p62
promotes the formation of aberrant autophagosomes, condition
that triggers cancer cell death (76). In the same context,
reduction in the levels of p62 in a model of chemoresistance of
small-cell lung cancer increases its sensitivity against cisplatin.
Contrary, overexpression of p62 enhances the resistance to this
chemotherapeutic agent, preventing cell death in response to this
treatment (77). In the colorectal cancer cell line SW480, p62
proteins levels are found elevated (78), which correlates with
active autophagy pathway compared to other cellular models of
this type of cancer (79). Interestingly, silencing of p62 in SW480
cell line decreases cell proliferation and their capacity to invade
and migrate. Additionally, injection of p62 depleted SW480 cells
in mice decreases tumor growth and metastasis into the lung,
compared to control cells (78). Similar findings have been
reported with F5M2 and F4 cell lines of osteosarcoma, which
present high levels of p62 (73). Silencing of p62 in these cell types
decreases their proliferative capacity, migration, and invasion
(73). Another example is the cell line Huh-1, a model of human
hepatocellular carcinoma. Huh-1 cells present higher levels of
p62 compared to the immortalized HEK293 cell line. In addition,
in Huh-1 cells, p62 is found phosphorylated on its Ser349. Either
silencing of p62 or expression of its phosphorylation-defective
mutant Ser349A, caused a decrease in cell proliferation in vitro,
and a reduction of tumor growth in vivo (65). All these studies
provide strong evidence to support that p62 promotes pro-
tumorigenic properties, making now necessary to elucidate
how p62 mechanistically promotes tumor progression.

p62 and KEAP1–NRF2 Axis
One protein positively regulated by p62 is the transcription
factor NRF2. As previously mentioned, p62 facilitates KEAP1
degradation, which abolishes ubiquitylation and degradation of
NRF2 (80). Thus, high levels of KEAP1 upon silencing of p62,
triggers a reduction in NRF2 levels. NRF2 is consider a master
regulator of the cellular antioxidant response, which regulates
key target genes for cancer development and progression, such as
Frontiers in Oncology | www.frontiersin.org 6
those involved in survival, proliferation, DNA repair, and
autophagy (81, 82). In particular, several evidence show the
contribution of NRF2 in the properties of cancer stem cells
(83–85), a subpopulation of cells present in the tumor niche
involved in tumor growth, therapy resistance and metastasis
(86). Ryoo and colleagues showed that high levels of NRF2 are
involved in drug resistance, cell migration and invasion capacity
of breast cancer stem cells (87). Importantly, silencing of p62
reduces NRF2 levels, demonstrating the regulatory role of p62 on
NRF2 levels in these type of cells (87). This p62/NRF2 regulation
has been also found in the glioblastoma multiforme cell line
T98G, which express high levels of p62. Activation of autophagy
in T98G cells leads to an increase in the levels of NRF2 (88).
Moreover, and similar to what occurs in Huh-1 cells, p62 in
T98G is found phosphorylated in Ser349 (88). Authors found
this post-translational modification increases affinity of p62 to
KEAP1 promoting its degradation by selective autophagy,
with a positive impact in the stability and function of NRF2
(65). Finally, same findings have been reported in the cellular
model of prostate cancer DU145, characterized by high levels
of p62. Indeed, silencing of p62 in DU145 cells decrease cell
proliferation, apoptosis-resistance and invasion by a mechanism
related with the inactivation of the NRF2 pathway (75, 89).
Altogether, these findings demonstrate the role of the axis p62/
NRF2 in tumor progression in different types of cancer.

p62 and Other Possible Targets
p62 regulates several other proteins involved in tumor
progression. One interesting target is the Vitamin D receptor
(VDR). The VDR has a protective role in cancer due to its anti-
proliferative and pro-apoptotic actions (90). In fact, VDR
downregulation is associated with a poor prognosis and cancer
progression (91). In this regard, high levels of p62 are correlated
with a decrease in the levels of VDR in colorectal cancer (78),
probably mediated by selective autophagy degradation. The
authors showed that through its direct interaction, p62/VDR
contributed to the pro-tumorigenic properties of two cell lines of
colorectal cancer (SW480 and HCT116), promoting tumor
progression in vivo (78). Another target of p62 is the
transcription factor TWIST1, a crucial protein that facilitates
epithelial mesenchymal transition (EMT) (92). Interestingly, the
ubiquitin-associated domain of p62 interacts with TWIST1 to
block its degradation by autophagy (92). Strikingly,
overexpression of p62 in the A431 human skin cancer cell,
which does not express TWIST1, is unable to increase cell
migration. In contrast, when p62 is overexpressed together
with TWIST1 in A431 cells, an increase in cell migration,
tumor growth and metastasis is observed, proposing a
functional link between p62/TWIST1 in promoting pro-
tumorigenic effects in vivo (92). Another protein implicated in
the pro-tumorigenic effects of p62 is Vimentin, a protein
involved in tumor progression. Vimentin is a Type III
intermediate filament that regulates cell shape, motility, and
adhesion during EMT, processes implicated in cell invasion
and aggressiveness in cancer cells (93, 94). In the highly
metastatic MDA-MB-231 breast cancer cell line, vimentin co-
immunoprepicitates with endogenous p62. Interestingly,
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silencing of p62 leads to a decrease in the levels of Vimentin
correlating with a reduction in the invasive capacity of these cells.
Importantly, overexpression of Vimentin is sufficient to rescue
this tumoral property (71). Besides, the increase phenotype in
invasive capacity of MDA-MB-231 by overexpression of p62 is
dependent on Vimentin levels, demonstrating Vimentin plays a
crucial role in p62-mediated invasion in breast cancer cells (71).
The molecular mechanism by which p62 regulates Vimentin
levels remains unknown. However, and similar to the findings
with TWIST1, it is possible that p62 could act by preventing
Vimentin degradation. In addition, p62 is also implicated in the
selective degradation of dysfunctional mitochondrial by
mitophagy in acute myeloid leukemia cells (74). In fact, p62
promotes myeloid transformation, cell proliferation, leukemia
development and progression of acute myeloid leukemia by a
process dependent on the efficient degradation of mitochondria
by mitophagy (74).

Neighbor of BRACA1 Gene1
NBR1 (neighbor of BRCA1 gene1) is an autophagy receptor with
several domains including a PB1, CC1, LIRs, and UBA (95). Its
PB1 domain, allows NBR1 oligomerization with either itself or
p62 where these two receptors act either independently or
cooperatively in the recognition of cargos for degradation (95).
Similar to PB1, CC1 domain also facil i tates NBR1
oligomerization. Indeed, deletion of the CC1 domain on NBR1
impairs its oligomerization and avidity to bind ubiquitin (96).
Both LIRs domains can individually interact with Atg8s-
proteins, where LIR1 is the most functional domain (95).
Finally, the UBA domain mediates binding of NBR1 to
monoubiquitin or poly-ubiquitin chains (51, 96) (Figure 3).
Although the most common function of NBR1 is associated
with its role as an autophagy receptor of autophagosomes, NBR1
can also be found associated with endosomal membranes, where
it seems to mediate the delivery of certain cargos (52, 96–98). In
terms of expression, NBR1 is expressed in all tissues, showing its
highest expression in testis and thyroid (99).

NBR1 in Cancer Patients
Little information is known about the role of NBR1 in cancer.
Data extracted from the human protein atlas (www.proteinatlas.
org) showed mRNA expression of NBR1 in 17 different types of
cancer with low cancer specificity (Supplementary Figure 1),
whereas NBR1 protein levels in cancer samples displayed weak to
moderate cytoplasmic expression (100). Related to cancer
prognosis, it has been reported that low mRNA levels of NBR1
predict a poor clinical outcome in patients with clear cell renal
carcinoma (101).

NBR1 in Migration and Metastasis
Although the clinical data available show a negative association
between the NBR1 mRNA levels and the prognosis of patients
with cancer, other findings suggest a positive contribution of
NBR1 in the acquisition of pro-tumorigenic properties. For
example, it is known that NBR1 contributes for cancer cell
migration, a process finely regulated by structures called focal
Frontiers in Oncology | www.frontiersin.org 7
adhesions (FAs), a large protein complex that connects tumor
cells with the extracellular matrix (ECM) through the action of
integrins (102). Turnover of the FAs is essential for the migratory
rate of tumor cells dependent on the assembly and disassembly of
these complexes, processes that impact positively pro-
tumorigenic properties (103). For instance, in a cellular model
of breast cancer cell known as HRAS-transformed MCF10A cells
that mimic an early stage of the tumor progression cascade,
NBR1 binds ubiquitylated proteins of FAs mediating their
degradation by autophagy. Indeed, reduction of NBR1 levels
reduces FAs turnover with a negative impact in breast cancer cell
migration (104). This effect is not observed in other breast cancer
cell models, indicating some level of specificity of NBR1
function depending on the cell type and stages of the tumor
progression. Accordingly, recent studies have demonstrated that
NBR1 plays an important role in breast cancer metastatic
progression. First, it was demonstrated that autophagy
promotes growth of the primary breast cancer tumor but with
a negative impact in the metastasis stage. In contrast, inhibition
of autophagy showed an impairment in tumor growth but with a
positive impact in metastasis (105). Moreover, it was found a
robust accumulation of NBR1, suggesting that intracellular
accumulation of NBR1 plays a role on metastasis (105).
Interestingly, ectopic NBR1 overexpression in breast cancer
cells is sufficient to promote metastatic outgrowth. Contrary,
silencing of NBR1 suppresses cancer dissemination. However,
the mechanism by which NBR1 promotes metastasis is still
unknown. Since the effect of NBR1 on metastasis is related
with inhibition of autophagy, it opens the possibility that
NBR1 mediates metastasis by a non-canonical function
possibly related with its role on endosome membranes. In this
regard, it has been shown that NBR1 prevents the degradation
of tyrosine kinase receptors, such as epidermal growth
factor receptor (EGFR) and fibroblast growth factor receptor
(FGFR), causing the accumulation of these cargos in endosome
compartments (98), a key aspect in the control of their signaling
(106–111).
NBR1 Function in Evasion of the Immune System
The immune system has the potential to recognize and eliminate
tumor cells, therefore escape to the immune surveillance, which
contributes to cancer progression (12). A commonmechanism used
by tumor cells to evade the immune system, specifically CD8+ T
cells, is the impairment of the antigen presentation, which can be
the result of mutations or loss of the expression of the major
histocompatibility complex class I (MHC-I) (112–114). In
pancreatic ductal adenocarcinoma, resistant mostly to all
therapies, MHC-I is found downregulated due to the consequence
of mutations in MHC-I (114). Furthermore, MHC-I is not found at
the cell surface of these cells, instead it accumulates in intracellular
membranes. Surprisingly, silencing of ULK1/2 complex (ULK1,
FIP200 or ATG13), a protein complex implicated in the initiation of
autophagosome biogenesis is sufficient to rescue the levels of MHC-
I at the cell surface (114). Among all autophagy receptors, it is
known that NBR1 interacts with ubiquitylated MHC-I. Moreover,
silencing of NBR1 rescues the levels of MHC-I at the cell surface of
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pancreatic ductal adenocarcinoma cells. Together, all these
antecedents strongly indicate that distribution of MHC-I at the
cell surface is controlled by NBR1 selective autophagy, highlighting
NBR1 as a crucial molecule in how tumor cells evade the immune
system (114).

NBR1 and Loss of Primary Cilium in Cancer
Primary cilia are non-motile microtubule-based cellular organelles
present in nearly every cell that gather information about the
environment, triggering a variety of cellular responses through
specific intracellular signaling pathways (115). The primary cilium
is dynamically regulated during the cell cycle, disappearing
transitorily during cellular division (116). Importantly, loss of
primary cilia has been reported in different cancer cells and
tumoral tissues including pancreatic, renal, and hepatic
carcinomas (117, 118). Interestingly, it has been reported that in a
cellular model of cholangiocarcinoma, a type of hepatic cancer,
autophagosomes are located in the primary cilia, suggesting a role of
autophagy in their maintenance. Indeed, LC3 interacts with the
ciliary proteins IFT88 and a-tubulin. Moreover, in comparison with
others autophagy genes, NBR1 expression is found increased in
intrahepatic cholangiocarcinoma tumor samples compared to
normal controls. In addition, silencing of NBR1 in HuCCT1 cells,
a cell line of cholangiocarcinoma, increases the size of the primary
cilia (119). These antecedents suggest that NBR1 could be
implicated in the degradation of ciliary component through
selective autophagy, explaining the loss of the primary cilium
in cholangiocarcinoma.

Nuclear Dot Protein 52 KDa
Nuclear dot protein 52 KDa [NDP52, also known as calcium
binding and coiled-coil domain 2 (CALCOCO2)] is composed
by the skeletal muscle and kidney-enriched inositol phosphatase
carboxyl homology domain (SKICH), LC3C-specific LC3-
interacting region (CLIR), Coiled-coil (CC), Galectin-8 binding
region (GalBi), and ubiquitin-binding zinc finger (UBZ) domain
(51, 120, 121). In mammals, NDP52 is located on the
chromosome 17 and is composed of 15 exons. The role of
SKICH domain in autophagy is not yet completely understood.
However, it is known that SKICH domain is responsible in the
binding of NDP52 to the mitochondrial RNA poly(A)
polymerase (MTPAP) in depolarized mitochondria to enhance
mitophagy (122). On another hand, the CLIR domain in NDP52
is a non-canonical LIR motif that confers selective and strong
binding to LC3C, with a very weak affinity to other Atg8s
proteins members (120). The CC domain in NDP52
participates in its homodimerization facilitating the binding to
LC3C (121, 123). The GalBi domain allows the binding of
NDP52 to Galectin-8 in the context of degradation of
pathogens (xenophagy) or damaged lysosomes (lysophagy),
selective forms of autophagy (124, 125). Finally, the UBZ
domain allows NDP52 binding to ubiquitin (mono or poly-
ubiquitin) (51, 58) (Figure 3).

NDP52 and Its Role in Cancer Cell Survival
NDP52 has been detected in different cancer tissues with a
moderated protein expression, including the majority of renal
Frontiers in Oncology | www.frontiersin.org 8
cancers. In contrast, in few cases of malignant gliomas, malignant
lymphomas, skin, and lung cancers, NDP52 protein expression is
almost undetected [Human protein atlas (99)]. Although the role of
NDP52 in cancer is still unknown, recent evidence suggests that
NDP52 could have a role in the acquisition of some pro-
tumorigenic properties such as cell survival. For instance, in the
cellular model of non-small cell lung cancer, cell line A549, NDP52
is found bound to LC3 in autophagosomes under basal conditions.
NDP52 mediates selective degradation of the tumor necrosis factor
receptor-associated factor 3 (TRAF3), a repressor of activation and
nuclear translocation of RELB, an effector of non-canonical NF-kB
signaling, which is usually implicated in pro-tumorigenic properties
(126, 127). Interestingly, silencing of NDP52 impairs the
localization of RELB into the nucleus and downregulated the
expression of anti-apoptotic target genes of REL-B (128). In
addition, activation and translocation of RELB due to the
degradation of TRAF3 by NDP52, inhibits the transcription factor
SMAD leading to a reduction in the expression of the transforming
growth factor b (TGFb), with known tumor-suppressive functions
(126, 129). This inhibition promotes proliferation of A549 cells and
tumor growth in animal models of non-small cell lung cancer (126).

Optineurin
Optic neuropathy inducing, also called Optineurin (OPTN), is
composed by three Coiled-coil domains (CC-1, CC-2, and CC-
3), a leucine zipper (LZ), LIR, ubiquitin-binding domain of ABIN
proteins and NEMO (UBAN) and zinc finger (ZF) domain (130).
The CC-1 domain, located in the N-terminal of OPTN binds
serine/threonine TANK-binding kinase 1 (TBK1) leading to the
formation of a stable OPTN-TBK1 hetero-tetramer complex.
TBK1 phosphorylates the Ser172 on LIR domain of OPTN
enhancing its binding to ATG8s proteins. In addition, TBK1
phosphorylates the Ser473 located on the UBAN domain
leading to an increase in the binding to ubiquitin (131). The
LIR domain binds to all members of ATG8s family, but
compared to other autophagy receptors, the LIR domain of
OPTN is the unique phosphorylated by TBK1 (51, 132). The
CC-3 domain mediates the homodimerization of OPTN. Only in
this form, OPTN binds, through the UBAN domain, to
methionine1 (Met1)-linked linear polyubiquitin (Met1-l-
polyUb) of ubiquitylated cargos in a reason of 2:1 (53, 131,
133) (Figure 3).

OPTN in Cancer Tumor Progression
RNA-seq data of 17 different types of cancer show that OPTN is
overexpressed in pancreatic cancer, being the second most
expressed autophagy receptor, after p62, in this type of cancer,
and its expression correlated with a reduced survival of
pancreatic ductal adenocarcinoma patients (134). Furthermore,
the silencing of OPTN in different cells lines of pancreatic ductal
adenocarcinoma promotes cell cycle arrest, decreases colony
formation and induces apoptosis through ER stress activation
(134). These antecedents indicate OPTN could play a relevant
role in pancreatic ductal adenocarcinoma cells. However, it is
necessary to find new cargos, which could work as negative
regulatory proteins of the cell cycle.
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CANCER THERAPY AND
SELECTIVE AUTOPHAGY

Chemotherapy is the main strategy for cancer treatment,
characterized by the use of drugs that alter and kill tumoral
cells rapidly (135). These drugs include anti-mitotic agents
(e.g., paclitaxel and docetaxel), topoisomerase II inhibitors (e.g.,
doxorubicin and epirubicin) and DNA alkylating agents (e.g.,
cisplatin and carboplatin) (135). Regrettably, tumor cells respond
developing a variety of cellular adaptation programs that provide
the ability to tolerate the cytotoxic effects of chemotherapy (135,
136). One of this responses is the activation of autophagy, a pathway
that helps in the evasion of the effects of chemotherapies in tumor
cells transforming them in cells resistant to chemotherapy (135–
138). Indeed, it has been previously summarized the contribution of
autophagy in chemoresistance in different types of tumor under
different chemotherapeutic agents, proposing that autophagy
inhibition is a good strategy to promote sensitization to
chemotherapy (135). However, the role of autophagy receptors in
chemoresistance has been poorly explored. Only recent studies have
started to propose p62 as a possible target of intervention (139, 140).
Cisplatin is one of the most used chemotherapeutic agent, but
several studies have reported development of resistance to this
chemotherapeutic agent (141). Alsamman and El-Masry showed
that cisplatin promotes the increase in p62 levels in cellular models
of breast, colon and ovarian cancer (139). Interestingly, treatment of
these cells with cisplatin in combination with Staurosporine (natural
broad-spectrum antitumor agent derived from Streptomyces
staurosporeus (142–144) abrogates the up-regulation of p62,
suggesting that Staurosporine sensitizes cancer cells to cisplatin in
a p62-dependent manner (139). Similarly, Sorafenib, a multikinase
inhibitor chemotherapeutic agent used in the treatment of
Hepatocellular carcinoma has shown, in some cases low efficacy
due to development of resistance to this chemotherapeutic agent
(140). Sorafenib causes the upregulation of the KEAP1-NRF2 axis
associated with an increase in the phosphorylation of p62 at Ser349
and chemoresistance (140, 145). Surprisingly, blocking interaction
between KEAP1 and phospho-p62 at Ser349 seems to be sufficient
to sensitize resistant cells to Sorafenib (140).
CONCLUSION AND FUTURE
PERSPECTIVES

Several evidences indicate that autophagy receptors play a crucial
role in cancer progression. Among all autophagy receptors
identified, p62 is by far the most characterized one, currently
considered a good predictor marker of the grade of malignancy in
several types of cancer (71–75). Since the pro-tumoral effects of p62
are not only related with the degradation of specific cargos such as
what occurs with VDR or damaged mitochondria, it opens the
possibility of non-canonical roles of p62 mostly related with the
stability of certain proteins like NRF2, TWIST1 and Vimentin (65,
71, 75, 80, 87). A challenge for the future to better understand the
contribution of p62 during cancer progression is the identification
of novel cargos of this receptor, considering specific types of cancer
Frontiers in Oncology | www.frontiersin.org 9
cells including cancer stem cells. Furthermore, it is critical to
investigate these aspects studying the variety of stages during
cancer progression. This type of approach could offer valuable
information for the design of novel strategies in cancer treatment
reducing the side effects commonly observed with current
treatments. In addition to p62, recent findings highlight the role
of NBR1 in cancer progression, controlling the presence of
important molecules and structures implicated in pro-tumorigenic
properties such as MHC-I, FAs and cilia (104, 114, 119). It is now
key to decipher the regulatory mechanisms underlying their specific
recognition. Similarly, it opens the possibility of NBR1 functioning
as a crucial regulator of cancer signaling pathways associated with
EGFR and FGFR (98). Although there is very little information
about the pro-tumorigenic roles of NDP52 and OPTN, its presence
in several types of cancer, and even its overexpression in the case of
OPTN, make these receptors interesting targets to study during
tumor progression. In this regard, since OPTN and NDP52
participate in mitophagy (125, 146, 147), it is relevant to explore
the contribution of active mitophagy pathway in tumor progression
and metastasis.

In conclusion, autophagy receptors are interesting molecules
with validated contribution in different tumoral contexts that
promotes a variety of cellular properties during cancer
progression, and therefore must be considered possible targets
for cancer treatment.
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