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The American Cancer Society has estimated an expected 279,100 new breast cancer
cases, and an expected 42,690 breast cancer deaths in the U.S. for the year 2020. This
includes an estimated 276,480 women who are expected to be diagnosed. Radiation
therapy, also called ionizing radiation therapy, is one of the most frequently used methods
in the treatment of breast cancer. While radiation therapy is used in the treatment of more
than 50% of all cancer cases, tumor resistance to ionizing radiation presents a major
challenge for effective cancer treatment. Most tumor cells are in a hypoxic
microenvironment that promotes resistance to radiation therapy. In addition to radiation
resistance, the hypoxic microenvironment also promotes cancer proliferation and
metastasis. In this review, we will discuss the hypoxic microenvironment of breast
cancer tumors, related signaling pathways, breast cancer stem-like cells, and the
resistance to radiation therapy. Recent developments in our understanding of tumor
hypoxia and hypoxic pathways may assist us in developing new strategies to increase
cancer control in radiation therapy.
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INTRODUCTION

Breast cancer is the second leading cause of cancer death in women. The American Cancer Society
has estimated an expected 279,100 new breast cancer cases and an expected 42,690 breast cancer
deaths in the U.S. for the year 2020 (1). There have been many advancements in the diagnosis and
treatment of breast cancer in the past few decades. However, more research is still needed to
overcome cancer resistance to therapy and improve the prognosis of advanced-stage breast cancer.

One significant obstacle to improve prognosis is breast cancer recurrence that is often associated
with metastasis (2, 3). Breast cancer recurrence is the return of breast cancer months to years after
the completion of initial treatment. Some cancer cells survive initial treatment and become
undetected. These cancer cells may multiply and repopulate in nearby or distant areas. As such,
the three types of breast cancer recurrence are local, regional, and metastatic recurrence. Local
recurrence is the return of cancer in the same area of the breast as initial cancer; Regional recurrence
is the return of cancer in the lymph nodes near the original cancer location; Metastatic recurrence,
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also called distant recurrence, is the return of breast cancer in
areas distant from the original cancer site (1). Common
metastatic sites include the bone, lungs, or brain, and these
metastatic recurrences are the foremost cause of breast cancer
death (4).

Radiation therapy is used as an adjunct therapy for many
primary cancers and is one of the most frequently used methods
in breast cancer therapy. Ionizing radiation targeted at breast
cancer cells causes an interaction with water and O2 molecules
near and inside the cells. This interaction produces free radicals
and superoxide ions, which in turn cause damage to the cancer
cell’s DNA and other macromolecules, and potentially induces
cell death (5). The primary purposes of radiation therapy are to
improve prognosis of primary treatments, to treat metastasized
cancer cells, and to decrease the chance of recurrence. However,
tumor resistance to ionizing radiation presents a major challenge
for effective breast cancer treatment. Tumor resistance may be in
part due to a hypoxic microenvironment that is common in
tumors. Here, we outline the cellular response to ionizing
radiation and signal transduction pathways induced by hypoxic
conditions as targets to identify novel strategies to increase the
efficacy of radiation therapy.
IONIZING RADIATION

Ionizing radiation in breast cancer therapy is greatly dependent
on the damaging effects of low linear energy transfer (Low LET)
radiation, such as X rays (5). There are direct and indirect effects
of ionizing radiation. Direct effects of ionizing radiation are
direct interactions between the particle and the targeted
macromolecule, such as DNA (Figure 1), which eventually can
lead to cell death (5, 6). Indirect effects of ionization consist of an
intermediate step between radiation and the macromolecules,
such as in water radiolysis. During water radiolysis in radiation
therapy, water molecules are decompositioned by ionization
radiation, and several types of free radicals are generated to
damage macromolecules. These free radicals primarily include
Frontiers in Oncology | www.frontiersin.org 2
the hydrated electron (e-aq), the hydrogen radical (H•), and the
hydroxyl radical (OH•), which are highly reactive to the adjacent
macromolecules (5). During radiaton therapy, the majority of
deposited radiation will be absorbed by cellular water. This
makes indirect ionization of water the primary cause of
biological damage from radiation exposure (5).
THE HYPOXIC MICROENVIRONMENT

Tumor hypoxia, which is the lack of oxygen within a tumor, is
one of the most common characteristics of the tumor
microenvironment due to rapid cell growth and oxygen
consumption (7). The hypoxic microenvironment in breast cancer
requires the tumor to adapt in order to survive, and as such, tumor
hypoxia has been closely associated with angiogenesis, metastasis,
chemoresistance, and radiation resistance (8–10). Hypoxia has been
recognized to activate many signaling transduction pathways, such
as RAS/RAF/and mitogen-activated protein kinase (MAPK) (11).
Hypoxia within the tumor microenvironment activates the
heterodimer hypoxia-inducible factor 1 (HIF-1), a transcription
factor consisting of two protein subunits, HIF-1a and HIF-1b. The
expression and function of HIF-1a is regulated by oxygen
concentration, while HIF-1b is constitutively expressed. Under
normoxic conditions, HIF-1a is hydroxylated at proline residues
402 and 564, then ubiquitinated by prolyl-hydroxylase domain
enzymes (PHD), which leads to proteasomal degradation (Figure
2A) (12–14). Under hypoxic conditions, HIF-1a is stabilized by
dimerizing with HIF-1b (Figure 2A). Upon hypoxia, the HIF-1
heterodimer binds to the hypoxia response elements of multiple
genes, which activates their transcription (Figure 2A) (8, 15). Many
of these gene products participate in metabolism, such as, glycolytic
enzymes, glucose transporters, antigenic growth factors, and
carbonic anhydrases. The upregulation of these genes in breast
cancer mediate a metabolic change from oxidative to glycolytic (11,
16, 17). Intratumoral hypoxia and alterations of the tumor
microenvironmentare mechanisms that increase HIF-1a levels in
breast cancer. In addition, the mutation and inactivation of tumor
FIGURE 1 | DNA breaks induced by direct and indirect effects of ionizing radiation activate cellular stress response mechanisms. These response mechanisms can
either repair the DNA damage or signal the activation of apoptosis, which is the primary objective in cancer radiation therapy.
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suppressor genes such as the von Hippel-Lindau tumor suppressor
(pVHL), tumor protein p53 (p53)), and phosphatase and tensin
homolog (PTEN) are associated with increased HIF-1a activity
(18). It is important to note that although HIF-1a is widely
recognized as the main regulator in tumor hypoxia, many
additional factors, such as histone acetyltransferase (p300) and
the CREB-binding protein (CBP) (19, 20), are essential to
promote the comprehensive hypoxic response within the tumor
microenvironment (11).
HYPOXIC AND ANTI-APOPTOTIC
SIGNALING PATHWAYS

Hypoxic signaling within the tumor microenvironment is used
by cancer cells to communicate with other cells and their
extracellular environment. This communication within the
hypoxic microenvironment is a highly explored area and is still
not fully understood.
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During hypoxia signaling, exosomes, the extracellular
nanovesicles released by cells, play a vital role in communicating
intercellular signals by way of paracrine signaling (7, 21). Tumor
cells produce exosomes that contain several types of molecules from
within the tumor cells, including miRNA, mRNA, DNA, proteins,
and lipids that affect the activity of neighboring cells (21, 22).
During hypoxia signaling, multiple pathways and even multiple cell
types may crosstalk via exosomes. Boelens et al. showed that
stromal cells released exosomes to communicate with breast
cancer cells. This multi-signaling pathway uses both paracrine
antiviral and juxtacrine neurogenic locus notch homolog protein
3 (NOTCH3) signaling to enhance breast cancer survival and
therapy resistance. The communication is initiated by the stromal
cells by increasing Ras-related protein Rab-27B (RAB27B) and
transferring 5’-triphosphate RNA in exosomes. It results in the
activation of retinoic acid-inducible gene 1 (RIG-l) antiviral
signaling while simultaneously activates NOTCH3 receptors in
breast cancer cells (23). The crosstalk between stromal and breast
cancer cells signaling pathways converge as STAT1 promotes
transcriptional responses to NOTCH3. This also promotes the
A

B

FIGURE 2 | (A) Under normoxic conditions, HIF-1a is produced and rapidly undergoes hydroxylation, ubiquitination, and proteasomal degradation. While under
hypoxic conditions, HIF-1a does not undergo proteasomal degradation. HIF-1a enters the nucleus and dimerizes with HIF-1b to form a stable heterodimer. The HIF-
1 heterodimer promotes tumor growth and angiogenesis. (B) MAPK and PI3K signaling cascades inhibit apoptosis and promote the function of HIF1a.
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initiation of producing tumor cell subpopulations that are prone to
therapeutic resistance. These findings also suggest that blocking the
NOTCH pathway resensitizes tumor cells to radiation andmay be a
therapeutic target in the treatment of cancer (24). The role of
exosomes in the breast cancer tumor microenvironment is still not
fully understood, but there is an established correlation between the
activation of hypoxic signaling and increased exosome production
(7). Research is currently underway to determine whether tumor
cell exosomes may be a novel target in cancer therapy.

Several signaling pathways participate in breast cancer
resistance to radiation therapy, such as Ras/phosphoinositide
3-kinase (PI3K)/PTEN/protein kinase B (Akt)/mammalian
target of rapamycin (mTOR) (Figure 2B) (25), and Ras/Raf/
mitogen-activated protein kinase kinase (MEK)/extracellular
signal-regulated kinase (ERK) (MAPK) (Figure 2B) (26, 27).

The activation of Akt, as part of PI3K pathway, could directly
promote therapeutic resistance, including resistance to radiation
(26). Akt is a kinase that is activated through the phosphorylation
of its two residues, threonine 308 and serine 473 (28, 29). As a
promoter of cell division and growth, Akt also plays a role in
response to DNA damage (28). Akt can deactivate the BCL2 family
member BAD by phosphorylation (30) and deactivate the cysteine
protease Caspase-9. The deactivation of BAD and Caspase 9 is
detrimental to the promotion of apoptosis, which is an essential
factor of therapeutic resistance in breast cancer treatment. PI3-K/
Akt signaling pathway is dysregulated in breast cancer. Söderlund
et al. showed that the stimulation of the epidermal growth factor
erbB2 (HER2)/PI3-K/Akt with heregulin-B1 triggered the
resistance to radiation-induced apoptosis in breast cancer (28).
Furthermore, it was found that the inhibition of the PI3K signaling
resulted in sensitizing brease cancer cell line BT-474, which
overactivates PI3K pathway by overexpressing human epidermal
growth factor receptor 2 (HER2). Independently, Steelman et al.
showed that the PI3-k/PTEN/Akt/mTOR signaling cascade
pathway was activated in breast cancer, therefore promoting its
resistance to therapy. Consistently, the elevated levels of Akt-1
promoted resistance to doxorubicin, tamoxifen, and radiation.
Interestingly, cells that were resistant to chemotherapy or
radiation therapy harbored p53 mutations and expression of the
downstream cyclin-dependent kinase inhibitor 1 (p21Cip1). Also,
ERK, an enzyme associated with cell development and
proliferation, was induced by Doxorubicin therapy (26). A better
understanding of the mechanisms of these signaling cascades, the
activation and inhibition of Akt, may present promising
therapeutic targets in the treatment of breast cancer.

The MAPK signaling pathway is known to promote cancer
cell survival and limit the effectiveness of radiation therapy (31).
Criswell et al. showed that ionizing radiation activated the
insulin-like growth factor -1 receptor (IGF-1R), which in turn
activated the MAPK signaling pathway, which upregulates
secretory clusterin (sCLU) expression, a stress induced pro-
survival protein. The study presented evidence that AG1024,
an IGF-1R inhibitor blocked the induction of sCLU after
radiation (31). More research is necessary to fully understand
the role of the delayed EGF-1R/MAPK signaling pathway, but
inhibition of IGF-1R may be a potential target in cancer therapy.
Frontiers in Oncology | www.frontiersin.org 4
The mammalian target of rapamycin (mTOR) is another
signaling pathway closely related to radiation resistance in
breast cancer. mTOR and ribosomal protein S6 Kinase Beta-1
(p-S6K1) were found to be elevated in breast cancer cells
(32, 33). CD44high/CD24low Michigan Cancer Foundation-7
(MCF-7) cells, a radioresistant breast cancer cell line, expresses
higher levels of p-S6K1 than radiosensitive cells, suggesting a
possible correlation between p-S6K1 and radiation resistance.
Consistently, the inhibition of mTOR using everolimus increased
radio-sensitivity in the CD44high/CD24low MCF-7 cells (32). In
radio-sensitivity prognosis, p-S6K1expression levels may be a
predictor of therapeutic response and may also be a potential
target to increase radiation therapy sensitivity (32).

Micro-RNA-21 (miR-21) suppresses the functions of many
tumor suppressor genes, such as tropomyosin 1 (TPM1) and
PTEN, which are associated with proliferation, apoptosis and
metastasis (34–36). In the research study by Anastov et al., T47D,
a radioresistant breast cancer cell line, and MDA-MB-361, a
radiosensitive breast cancer cell line, were studied in parallel,
miR-21 was found to be significantly elevated in the T47D cells,
suggesting miR-21 contributes to radioresistance of breast cancers.
The study presented evidence that miR-21 knockdown improved
radiation induced apoptosis and growth arrest in radiation resistant
cells comparable to that of radiation sensitive cells (35). It is well
accepted that the overexpression of the anti-apoptotic miR-21 can
stimulate cell cycle progression in the G2/M checkpoint. However,
it is not established that the correlation between miR-21 and G2/M
checkpoint arrest promotes radiation resistance. Nevertheless, the
inhibition of miR-21 may be a potential therapeutic target and its
overexpression a possible prognosis indicator (35).

Long non-coding RNA (lncRNA) HOX Transcript Antisense
RNA (HOTAIR) has been shown in several studies to participate
in the promotion and metastasis of breast cancer (37, 38), and its
single nucleotide polymorphism is a marker for breast cancer.
HOTAIR is upregulated in breast cancer, links DNA damage and
nuclear factor kappa B (NF-kB) signaling and takes part in p53
regulated DNA damage response. The link between HOTAIR
and the p53 and NF-kB pathways correlate with the promotion
of breast cancer and radiation resistance. HOTAIR binds with
many miRNAs in various cancer types, causing an upregulation
of the miRNA targets and deviations in signaling transduction.
Braunstein et al. showed that binding lncRNA HOTAIR with
miR-218 resulted in a phenotypical radiation-sensitive breast
tumor. The research suggested that the inhibition of HOTAIR
could be a novel target in breast cancer treatment (39).
CANCER STEM CELLS

In recent decades, a tumor cell population with cancer stem cell
(CSC) phenotype has accumulated attention for its role in
resistance to treatments. These cells have the ability to self-
renew and initiate subpopulations of differentiated progeny (40).
Cancer stem cells have been identified in a variety of tumors,
including brain cancers, breast cancers, prostate, and melanoma
(41). This population of cancer cells has presented evidence of
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resistance to radiation therapy and chemotherapy (42–44).
Research has presented evidence that the hypoxic tumor
microenvironment is ideal for CSC survival (45). Further
research is needed to better understand the role of the CSC
phenotype subpopulation, but this subpopulation may be a new
target to increase radiation sensitivity in cancer therapy.

Lin28 is a stem cell marker that is associated with radiation
resistance in breast cancer (46). Apoptotic proteins poly(ADP-
ribose) polymerase (PARP), caspase-3, and caspase-9 have
significantly lower cleavage levels, thus less activation, in Lin28
overexpressing cells (46). As such, it was suggested that the
overexpression of Lin28 mediated radioresistance by inhibiting
radiation-induced apoptosis. Additionally, it has been shown that
the Let-7 miRNA is downregulated in association with upregulation
of Lin28 (47); and when the stabilized cells are transfected with Let-
7 miRNA precursor, radiation sensitivity is resumed (46). Lin28
regulates Let-7 by directly interacting with the precesors of Let-7
family members (48). This suggests that Lin28 and Let-7 could be
used as predictive biomarkers of response to radiation therapy.

The stem cell marker CD44+/CD24- is recognized primarily
in triple-negative breast cancer (TNBC) stem cells (49). CD44+/
CD24- has been associated with breast cancer resistance to
ionizing radiation. In a 2011 study, Yin et al. showed that
BRCA1 and Ataxia-Telangiectasia Mutated Kinase (ATM)
activity are increased in CD44+/CD24- cells (42). As an
initiating factor for homologous recombination (HR), ATM is
essential for the repair of radiation-induced double-strand
DNA breaks (27, 50). ATM, a Ser/Thr kinase itself, is activated
by autophosphorylation during double-strand DNA breaks. In
CD44+/CD24- cell lines and the primary culture of patient breast
cancer cells, elevation in both expression and phosphorylation of
ATM were found. Inhibition of ATM increased radiation
sensitivity of the isolated CD44+/CD24- cell, which suggests
that ATM is a potential target to improve radiation sensitivity
in breast cancer therapy (42).

Many studies have verified the breast cancer stem cell line
with the CD44+/CD24-/ALDH+ marker, and recently the high
expression of aldehyde dehydrogenase (ALDH+) was associated
to therapeutic resistance. Croker et al. reported on the roles of
ALDH+/CD44+ in breast cancer, where ALDH+/CD44+ was
associated with chemoresistance, radiation resistance, poor
prognosis, and played a role in metastasis (51). Considering
that these stem cells are more resistant to therapy and promote
proliferation in tumors (52), they may be more prone to distant
metastasis. Additionally, it has been shown that this subset of
cells expressed higher levels of therapy resistance proteins, p-
glycoprotein, GSTpi, and/or CHK1 (51). Consistently, inhibition
of ALDH+ using diethylaminobenzaldehyde (DEAB) or all trans
Frontiers in Oncology | www.frontiersin.org 5
retinoic acid (ATRA) resulted in significantly improved radiation
sensitivity, suggesting ALDH could be a potential target for
improving therapeutic results (51).
CONCLUSION

As one of the most used methods to treat breast cancer, ionizing
radiation in radiation therapy creates reactive oxygen species that
cause cell damage and induce cell death. The hypoxic
microenvironment of breast cancer cells promotes tumor cell
proliferation, apoptosis resistance, metastasis, and resistance to
radiation as well as other therapeutics. The overexpression and
stabilization of the protein HIF-1a do not only result from low
oxygen levels within the microenvironment, but also promote the
advancement of hypoxia and facilitates tumor cell survival within
the hypoxic microenvironment. The cancer cell’s capacity to
survive in a low oxygen environment presents a major challenge
to effective radiation therapy. In addition, the adaptation to the
hypoxic microenvironment also promotes additional alterations,
including metabolic changes, mutations, signaling pathways,
upregulation and downregulation of various cellular components.
Many of these adaptations decrease radiation sensitivity.

Extensive studies have been performed to elucidate the
hypoxic response mechanisms, anti-apoptotic pathways, and
cascades that lead to resistance to radiation. This led to the
discovery of promising therapeutic targets for drug development
to sensitize tumors to radiations. Importantly, the presence of the
radiosensitizing targets will be critical to predict the prognosis
after radiaotherpy. To achieve these goals, a deeper
understanding of the development of radiation resistance in
breast cancers, especially for the subgroups, is needed to
develop specified and personalized therapy.
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