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Purpose: This study aims to develop a CT-based radiomics model to predict clinical
outcomes of advanced non-small-cell lung cancer (NSCLC) patients treated with
nivolumab.

Methods: Forty-six stage IIIB/IV NSCLC patients without EGFR mutation or ALK
rearrangement who received nivolumab were enrolled. After segmenting primary
tumors depicting on the pre-anti-PD1 treatment CT images, 1,106 radiomics features
were computed and extracted to decode the imaging phenotypes of these tumors. A L1-
based feature selection method was applied to remove the redundant features and build
an optimal feature pool. To predict the risk of progression-free survival (PFS) and overall
survival (OS), the selected image features were used to train and test three machine-
learning classifiers namely, support vector machine classifier, logistic regression classifier,
and Gaussian Naïve Bayes classifier. Finally, the overall patients were stratified into high
and low risk subgroups by using prediction scores obtained from three classifiers, and
Kaplan–Meier survival analysis was conduct to evaluate the prognostic values of these
patients.

Results: To predict the risk of PFS and OS, the average area under a receiver operating
characteristic curve (AUC) value of three classifiers were 0.73 ± 0.07 and 0.61 ± 0.08,
respectively; the corresponding average Harrell’s concordance indexes for three
classifiers were 0.92 and 0.79. The average hazard ratios (HR) of three models for
predicting PFS and OS were 6.22 and 3.54, which suggested the significant difference of
the two subgroup’s PFS and OS (p<0.05).

Conclusion: The pre-treatment CT-based radiomics model provided a promising way to
predict clinical outcomes for advanced NSCLC patients treated with nivolumab.
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INTRODUCTION

Over the past decade, immune checkpoint inhibitors targeting
programmed cell death protein-1 (PD-1) or programmed cell
death protein ligand-1 (PD-L1) have opened a new epoch of
treatment for advanced non-small-cell lung cancer (NSCLC),
with improved survival and durable responses compared
with chemotherapy in patients both in first- and second-line
treatment (1–5). PD-1 or PD-L1 inhibitors pembrolizumab,
nivolumab, and atezolizumab, prolonged overall survival (OS)
compared with chemotherapy in patients with previously treated
advanced NSCLC based on the results of Keynote-010 (1),
CheckMate 017/057 (2, 3) and OAK studies (4). The phase III
study CheckMate 078 has demonstrated consistent results of
superior OS by nivolumab compared with docetaxel in a
predominantly Chinese population with previously treated
advanced NSCLC (6).

Despite remarkable success of immunotherapy, up to 60% of
patients with advanced NSCLC could not benefit from PD-1 or
PD-L1 inhibitors (7). Different biomarkers have been
investigated to predict the efficacy and prognosis, such as PD-
L1 expression and copy number gains (1–4, 8–11), tumor
mutation burden (TMB) (12–14), microsatellite instability
(MSI) (15), tumor infiltrating lymphocytes (16–18) and
inflammatory cytokines (19). Even though the PD-L1
expression of tumor cell has been identified as a predictive
biomarker for response of immunotherapy in both newly
diagnosed or previously treated NSCLC (3, 4, 11), the
relationship between the PD-L1 expression and the therapeutic
effects of nivolumab is still unclear. Tumor heterogeneity,
instability of tissue specimens, non-standardized detection
techniques and the dynamic nature of the immune
microenvironment are also limitations of PD-L1 expression as
a predictive biomarker (20, 21). The urgent need to discover and
validate non-invasive, stable predictive biomarkers to select
patients who will benefit from immunotherapy remains an
ongoing challenge.

Since non-invasive diagnostic images can depict the
phenotypes of lung tumor, recently studies have illustrated that
utilization of imaging biomarker to predict the survival
stratification of advanced NSCLC patients with different
therapies is feasible. Among these non-invasive imaging based
prediction or classification models, CT image based radiomics
approach has been developed and applied to build the prognostic
prediction model for evaluating the effectiveness and necessity of
developing different therapies, e.g., targeted therapeutics,
chemotherapy, radiation therapy, and for early prediction of
clinical outcome. The non-invasive quantitative imaging
technique may provide a new approach to assess the clinical
outcome at an early stage of updated PD-1 therapeutic process.

In this study, we proposed a novel CT-based radiomics model
to predict the progression probability to the recommended
nivolumab therapy for individually patient. To decode the
imaging phenotypes of lung tumor, we computed and
extracted thousands of pretherapy CT features to deeply
interpret the patients treated with immunotherapy to select
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critical PD-1/PD-L1 associated phenotypic features. Then, we
used three machine-learning classifiers to develop the CT-based
radiomics models to stratify the risk of progression-free survival
(PFS) and overall survival (OS) in advanced stage NSCLC
patients. Finally, we analyzed and compared the Kaplan–Meier
survival estimators of the stratified subgroups with high and low
risk for progression and death (Figure 1).
MATERIALS AND METHODS

Patients
Forty-six patients with previously treated NSCLC were
prescribed with nivolumab from CheckMate 078 study,
CheckMate 870 study or clinical practice between Apr 2016
and Jan 2019 at Fudan University Shanghai Cancer Center. All
patients were histologically or cytologically-diagnosed with
locally advanced or metastatic NSCLC. Patients were included
regardless of tumor PD-L1 expression. Patients with epidermal
growth factor receptor (EGFR)-mutation or anaplastic
lymphoma kinase (ALK) translocation-positive tumors were
excluded. We retrospectively collected clinical data and
treatment outcomes from the patients’ medical records. The
clinical stage was assigned according to the 8th edition of the
TNM staging system.

The institutional review board of Fudan University Shanghai
Cancer Center approved this study.

Treatment
Patients received intravenous nivolumab at dose of 3 mg/kg or
fixed dose of 240mg every two weeks until disease progression or
discontinuation owing to intolerance of toxicity. All patients
received a diagnostic contrast-enhanced chest CT prior to
immunotherapy. All the CT scans were reconstructed by using
the standard convolution kernel. The pixel spacing of CT image
ranges from 0.672 mm to 0.822 mm, and the slice thickness is
1 mm or 1.5 mm. Each axial slice image was reconstructed with a
matrix 512×512 pixels. The pre-treatment CT scan was collected
and used as baseline imaging data.

Efficacy
Efficacy was assessed by determining PFS, OS, overall response
rate (ORR) and the disease control rate (DCR). PFS was defined
as the time from initiation of nivolumab therapy to disease
progression or death. Patients alive without progression at the
time of analysis were censored at their last follow-up. OS was
defined as the time from initiation of nivolumab therapy to
death. DCR was defined as the percentage of patients with a
complete response (CR), partial response (PR), and stable disease
(SD), while ORR was defined as the percentage with CRs and
PRs. The tumor response was initially assessed after 8 weeks of
nivolumab therapy and subsequently thereafter every 8 weeks
using the Response Evaluation Criteria In Solid Tumors
(RECIST, version 1.1). Responses were defined as the best
response from the start of treatment until disease progression.
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Statistical Analysis
CT images were first interpreted qualitatively and quantitatively by
two radiologists (Dr. Shengping Wang with 15 years experience
and Dr. Quan Liu with 28 years experience). Figure 2 shows the
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radiomics feature extraction process. To evaluate the therapeutic
effect, radiologists provided a standardized report to record lymph
node status and common sites of distant metastasis (i.e., bones,
liver, and brain) for each patient during the treatment cycles.
FIGURE 2 | The radiomics feature extraction process.
FIGURE 1 | Flowchart of our proposed model.
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Then, the radiologists delineated the 3D boundary of each primary
tumor and segmented the tumor volume by using the CT scan
examined before immune treatment. The largest tumor was
defined as target lesion for subject with multiple lesions in this
study. All the primary tumors were segmentedmanually in slice by
slice fashion on CT images. Due to the variant of CT parameters, a
B-spline curve interpolation algorithm was used to resample the
3D CT images to a spacing of (1, 1, and 1mm). In order to
character the imaging phenotypes of each tumor, 1,106 CT based
radiomics features were initially computed and extracted to
quantitative the tumor. Among these features, 274 LoG features,
728 wavelet features, 14 shape features, 18 histogram features, and
68 texture features were involved. The LoG features were
calculated based on image filtered with Laplacian of Gaussian
(LOG) filter, and wavelet features were extracted by using image
filtered with wavelet filter. Since each phenotypic feature has
different value range, a feature normalization technique was
used to transform these radiomics features to [0, 1].

Due to a large number of redundant features in the initial
feature pool, a L1-based feature selection method was applied
to the redundant features and reduce the dimensionality of
radiomics features remove. During this process, a linear support
vector classifier was used to build the meta-transformer to select
the robust imaging features. After feature selection, classification
models were built by training three different machine-learning
classifiers namely, support vector machine (SVM) classifier,
logistic regression classifier (LRC), and Gaussian Naïve Bayes
(GNB) classifier, respectively. To evaluate the performance of our
proposed models, a leave-one-out cross-validation (LOOCV) was
used to train and test the classifier. In order to avoid biases in
portioning dataset, the feature selection process and machine-
learning classifier were embedded into the LOOCV training/
testing cycles.

Finally, several statistical data analysis methods were applied
to measure the association between the model’s predicted low or
high risk scores and patients’ PFS and OS, which include 1) a
Harrell’s concordance index (C-index) analysis, 2) Kaplan–
Meier plots, and 3) Cox proportional hazards regression
models. To assess the model’s performance, the cases were
divided into two groups of low and high risk in cancer
progression by applying an operation threshold of 0.5 to the
prediction scores generated by three classifiers namely, SVM,
NBC, and LRC.

In this study, the prediction models were built by using
Python programming software (version 3.6, https://www.
python.org), and the statistical data analysis process was
implemented on R software (version 3.5.2, https://www.r-
project.org). To evaluate the performance of our proposed
model, a maximum likelihood based receiver-operating
characteristic (ROC) fitting program (ROCKIT, http://www-
radiology.uchicago.edu/krl, University of Chicago) was used to
compute the area under a ROC curve (AUC) value and the
corresponding 95% confidence interval (CI). PFS and OS were
estimated by the Kaplan-Meier method, along with hazard ratios
(HRs). All outcome measures were calculated with 95% CIs,
which were estimated by use of the Cox proportional hazard
Frontiers in Oncology | www.frontiersin.org 4
model. The significance level of statistical tests was set at p < 0.05.
All expressed p values and CIs were two-tailed. All the medical
image processes and performance evaluation processes were
performed on a computer with Intel Core i7-8700 CPU
3.2GHz × 2, 16 GB RAM.
RESULTS

Patient Characteristics
A total of 46 patients with previously treated advanced NSCLC
were administrated with nivolumab at Fudan University Shanghai
Cancer Center between Apr 2016 and Jan 2019. Their baseline
characteristics at the initiation of nivolumab therapy are shown in
Table 1. The patients’ median age was 62.0 years (range, 46 to 77
years). There was a higher proportion of males (34/46, 73.9%) than
females, and of current/former smokers (30/46, 65.2%) than never
smokers. Thirty-four patients (73.9%) were diagnosed with
adenocarcinoma while 12 patients (26.1%) were diagnosed with
squamous cell carcinoma; 42 (91.3%) had stage IV disease at
baseline. All 46 patients had an Eastern Cooperative Oncology
Group performance status (ECOG PS) of 1.

All patients had a routine examination before initiation of
nivolumab treatment, 22 patients (47.8%) had one metastatic
site, 16 patients (34.8%) had two metastatic sites and 8 patients
(17.4%) had more than two metastatic sites. In 42 patients
(91.3%), nivolumab was used as second-line treatment and in 4
patients (8.7%) as third-line or later treatment.

Efficacy
Tumor responses are shown in Table 2. One patient (2.2%)
achieved CR, 6 patients (13.0%) achieved PR and 12 (26.1%) had
TABLE 1 | Baseline patient characteristics (N = 46).

Characteristic All, No. of patients (%)

Age, median (range), years 62 (46–77)
Sex
Male 34 (73.9)
Female 12 (26.1)

ECOG PS
1 46 (100)

Smoking status
Current/former smoker 30 (65.2)
Never smoker 16 (34.8)

Number of lines of prior systemic cancer therapy
1 42 (91.3)
≥2 4 (8.7)

Tumor histology
Adenocarcinoma 34 (73.9)
Squamous cell carcinoma 12 (26.1)

Tumor Stage
IIIB 4 (8.7)
IV 42 (91.3)

No. of metastatic sites at baseline
1 22 (47.8)
2 16 (34.8)
≥3 8 (17.4)
February 2021 | Vo
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SD, resulting in an ORR of 15.2% (95% CI, 4.7–25.7%) and a
DCR of 43.5% (95% CI, 29.0–58.0%).

At the cutoff date Dec 13th 2019, median follow-up time was
11.5 months (range, 1.0–46.0 months). Nineteen patients
(41.3%) were still alive, 2 patients (4.3%) were lost to follow-up
and 25 patients (54.3%) were dead at the cutoff date. The median
PFS (Figure 3) was 3.0 months (95% CI, 1.9 to 4.1 months) and
the estimated median OS (Figure 4) was 17.0 months (95%CI,
7.3–26.7 months).
Frontiers in Oncology | www.frontiersin.org 5
Development of Prediction Model and
Survival Analysis
Figure 5 shows the boxplots of three imaging features frequently
selected in LOOCV process. By using the feature selection
method, three imaging features were selected from the initial
1,106 feature pool in PFS prediction process. Two LoG image
features and one wavelet feature were involved. The boxplots
showed that PD and non-PD category have different
distributions in three features. It indicated that the selected
features had a potential to classify between PD and non-PD
cases. Meanwhile, four imaging features were selected to build
OS prediction model, involving three LoG image features and
one wavelet feature.

Figure 6 illustrates the ROC curves of PFS and OS
classification models built with three classifiers. To predict the
risk of PD, SVM, LRC and GNB generated AUC values of 0.73 ±
0.07 [95% CI: (0.57, 0.85)], 0.73 ± 0.07 [95% CI: (0.57, 0.86)], and
0.74 ± 0.07 [95% CI: (0.58, 0.86)], respectively. Meanwhile, SVM,
LRC and GNB generated AUC values of 0.60 ± 0.08 [95% CI:
(0.43, 0.75)], 0.60 ± 0.08 [95% CI: (0.44, 0.75)], and 0.64 ± 0.08
[95% CI: (0.48, 0.79)]. To evaluate the inter classifier differences;
the p-values of the prediction scores generated by three classifiers
were computed by using a univariate z-score test. It showed that
the AUC values of three classifiers were no significant
difference (p>0.05).

Figure 7 shows the survival analysis results of three PFS
classification models. Figure 6A compares the Harrell’s C-
indexes for PFS generated by three classifiers. For SVM, LRC
and GNB classifier, the C-index was 0.93 [95% CI: (0.83, 1.0)],
0.91 [95% CI: (0.79, 1.0)], and 0.92 [95% CI: (0.80, 1.0)],
respectively. Figures 6B–D illustrates the Kaplan–Meier plots
of PFS by using SVM, LRC and GNB classifier, respectively. The
Kaplan–Meier survival curves demonstrated that the low risk
cohort predicted by three classifiers was significantly different
from the high-risk group by using immune therapy (p<0.05).
Table 3 lists the summary of data analyses of three cox regression
models for PFS. The hazard ratios (HR) of three models reach
over 5.6, which suggested the dramatic difference of the two
subgroup’s PFS in immune treatment (p<0.05).

Figure 8 shows the survival analysis results of three OS
classification models. Figure 8A compares the Harrell’s C-
indexes for OS generated by three classifiers. For SVM, LRC
and GNB classifier, the C-index was 0.76 [95% CI: (0.60, 0.93)],
0.76 [95% CI: (0.60, 0.92)], and 0.86 [95% CI: (0.74, 0.97)],
respectively. Figures 8B–D illustrates the Kaplan–Meier plots of
OS by three prediction models. It shows that the low risk OS
cohort was significantly different from the high-risk OS group in
Kaplan–Meier curve (p<0.05). Table 3 lists the summary of data
analyses of three cox regression models for OS. The hazard ratios
(HR) of three models reach over 2.5 (p<0.05).
DISCUSSION

Although immunotherapy has been a pivotal development in the
management of advanced NSCLC, durable responses and
FIGURE 3 | Kaplan-Meier curve of PFS of all patients.
FIGURE 4 | Kaplan-Meier curve of OS of all patients.
TABLE 2 | Tumor responses.

Responses All patients (n = 46) (n or %)

CR 1 (2.2)
PR 6 (13.0)
SD 12 (26.1)
PD 27 (58.7)
ORR 15.2% (95 CI, 4.7–25.7%)
DCR 43.5% (95% CI, 29.0–58.0%)
CR, complete response; DCR, disease control rate; ORR, objective response rate; PD,
progressive disease; PR, partial response; SD stable disease.
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improved survival have been observed only in 20–50% of
patients (1–5, 11, 22). Predictive biomarkers of response for
immunotherapy and superior survival are urgently needed to
improve patient selection and avoid toxicity in potential
non-responders.

PD-L1 expression is the only biomarker currently approved
by the US Food and Drug Administration (FDA) to select
patients who are most likely to benefit from immunotherapy.
Compared with docetaxel, nivolumab demonstrated better
Frontiers in Oncology | www.frontiersin.org 6
overall survival, with PD-L1 expression conferring enhanced
efficacy in pretreated patients with advanced non-squamous
NSCLC in Checkmate 057 study (3). However, among patients
with advanced, previously treated squamous-cell NSCLC in
Checkmate 017 study (2), OS, ORR, and PFS were significantly
better with nivolumab than with docetaxel, regardless of PD-L1
expression level. The survival benefit with nivolumab was also
observed regardless of PD-L1 expression level in Chinese
patients with previously treated NSCLC in Checkmate 078
A

B

FIGURE 5 | Boxplots of the frequently selected imaging features in the LOOCV process. (A) shows the imaging features selected in PFS prediction process,
(B) shows the imaging features in OS prediction process.
A B

FIGURE 6 | ROC comparisons of PFS and OS classification models built with three classifiers namely, SVM, LRC, and GNB, respectively. (A) Illustrates the ROCs of
PFS classification models, (B) illustrates the ROCs of OS prediction models.
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study (6). Another study explained that PD-L1 expression alone
was insufficient to determine whether patients should receive
PD-1 or PD-L1 blockade therapy (23). Furthermore, more and
more studies demonstrated that there were many factors
associated with the PD-L1 expression, including copy number
gains (24), heterogeneity (25), dynamic changes (20) and other
participants of immune cell subsets (26–28) in NSCLC. In
addition to PD-L1 expression, recent research indicated that
TMB of 10 or more mut/Mb was associated with improved
response and prolonged PFS in both tumor PD-L1 expression 1%
or greater and less than 1% subgroups and was thus identified as
a potential biomarker for first-line therapy of nivolumab plus
ipilimumab in advanced NSCLC (29). Although research on
Frontiers in Oncology | www.frontiersin.org 7
predictors of response to immunotherapy has sprung up, there
are still few well-recognized non-invasive biomarkers of
immunotherapy with high-specificity, high-sensitivity and stability.

To assess the immunotherapy response, irRECIST (Immune-
related Response Evaluation Criteria in Solid Tumors), iRECIST
and imRECIST (Immune-Modified Response Evaluation
Criteria In Solid Tumors) were proposed (30–33). In the
previously reported studies, PET/CT based response evaluation
models have been investigated and developed to evaluate the
short-term or long-term response of immunotherapy for lung
cancer (34, 35). These studies evaluated the treatment response
of immunotherapy effectively, but series PET/CT images during
the immunotherapy process were needed to analyze to build
A B

C D

FIGURE 7 | The results of survival analysis of three PFS classification models. (A) C-indexes generated by three PFS prediction models, (B–D) Kaplan–Meier PFS
estimates from all 46 patients by using SVM, LRC and GNB classifier, respectively.
TABLE 3 | Summary of data analyses of three cox regression models for PFS and OS.

PFS OS

HR 95% CI p-value HR 95% CI p-value

SVM 6.85 (1.61, 29.15) 0.0092 2.95 (1.17, 7.40) 0.021
LRC 5.63 (1.33, 23.85) 0.019 5.17 (2.04, 13.10) 0.00054
GNB 6.18 (1.46, 26.18) 0.013 2.50 (1.03, 6.03) 0.042
Febru
ary 2021 | Volume 11 | Article
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prediction models. In recent years, numerous studies have
evaluated the potential clinical utility of radiomics features
from CT images of NSCLC, correlated with tumor histology,
staging and patient prognosis (36–48). Nardone V et al. (37) used
pre- and post-contrast CT sequences to contour the gross tumor
volume (GTV) of the target lesions prior to nivolumab
treatment. The impact of variations on contouring was
analyzed by two delineations, which were performed on each
patient, and the CT texture analysis (TA) parameters were tested
for reliability using the Intraclass Coefficient Correlation method
(ICC). The study indicated that TA parameters could identify
patients that will benefit from PD‐1 blockage by defining the
radiological settings that were potentially suggestive of an active
immune response. Xu et al. (41) evaluated deep-learning
networks for predicting clinical outcomes through analyzing
time-series CT-images of locally advanced NSCLC patients. In
our study, only pre-immunotherapy CT images were used to
evaluate and predict the response results of immunotherapy.
Thus, the treatment response might be predicted before
conducting the immunotherapy by using CT images.

In this study, a non-invasive CT-based radiomics model was
developed to predict the effectiveness of immunotherapy for
Frontiers in Oncology | www.frontiersin.org 8
advanced NSCLC patients. Thousands of quantitative imaging
features were computed and investigated to decode the
phenotypes of primary lung tumor. Then, the optimal feature
pool selected from initial radiomics features were used to train
and test three machine-learning classifiers to build prognosis
prediction models. A LOOCV method was applied to test and
evaluate the model performance. The results demonstrated that it
was an effective way to predict the effectiveness of immunotherapy
for advanced NSCLC patients by using machine-learning based
models (i.e., results showed in Figure 6). If our models were robust
by testing on the more diverse and larger dataset in future studies,
it would provide a new way to predict patient’s short-term
treatment response before immunotherapy prescribed in the
advanced lung cancer.

To further investigate that how much extra benefit we could
obtain for predicting individual patient’s PFS and OS by using
the risk scores predicted by our machine-learning models, we
also analyzed the survival analysis to evaluate and compare the
outcomes of patients with different risk factor. Three machine-
learning classifiers yielded high concordance with clinical
evaluation outcomes determined by independent radiology
review (IRR) for predicting PFS (i.e., C-index for SVM: 0.93,
A B

C D

FIGURE 8 | The results of survival analysis of three OS classification models. (A) C-indexes generated by three OS prediction models, (B–D) Kaplan–Meier OS
estimates from all 46 patients by using SVM, LRC and GNB classifier, respectively.
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LRC: 0.91, and GNB: 0.92) and OS (i.e., C-index for SVM: 0.60,
LRC: 0.60, and GNB: 0.64). Then, the Kaplan–Meier survival
analysis illustrated significant difference between the high and
low risk patient group for PFS and OS analysis (p<0.05).

Despite of promising results, our study had some limitations.
Firstly, to develop CT radiomics models, three machine-learning
classifiers were trained and tested on a relatively small dataset
with only forty-six cases. Although the LOOCV method was
applied in the classifier training and testing process to avoid
biases, the robustness and effectiveness of our model were still
needed to be evaluated by using more diverse and larger data
sets. Secondly, only CT-based radiomics features were used to
predict the PFS and OS of advanced NSCLC patients. Some of
the other potentially useful clinical information and image
features (i.e., biomarkers, MRI image, PET image) have not
been explored. Thus, different kinds of features needed to be
investigated in our future studies. Thirdly, only the selected target
lesions were analyzed instead of all the lesions; nevertheless, the
degree of enhancement after CT enhanced scanning of target
lesions in different tissues will be different. Lastly, this was only a
primary technology development study that just developed a CT-
based radiomics model to predict clinical outcomes of advanced
NSCLC patients treated with nivolumab. Due to the incomplete
data of retrospective studies, we did not include clinical data,
genomics and other factors for analysis. Before our prediction
models were applied into clinical practice, we will conduct more
clinical validation studies to improve the performance of
prediction model by combining imaging technologies, clinical
characteristics, genomics and other factors.

In conclusion, the novel CT-based radiomics model has the
ability to predict the progression probability for patients with
advanced NSCLC receiving nivolumab therapy.
Frontiers in Oncology | www.frontiersin.org 9
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