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Background: Colorectal cancer (CRC) is a common malignant solid tumor with an
extremely low survival rate after relapse. Previous investigations have shown that
autophagy possesses a crucial function in tumors. However, there is no consensus on
the value of autophagy-associated genes in predicting the prognosis of CRC patients.
This work screens autophagy-related markers and signaling pathways that may
participate in the development of CRC, and establishes a prognostic model of CRC
based on autophagy-associated genes.

Methods: Gene transcripts from the TCGA database and autophagy-associated gene
data from the GeneCards database were used to obtain expression levels of autophagy-
associated genes, followed by Wilcox tests to screen for autophagy-related differentially
expressed genes. Then, 11 key autophagy-associated genes were identified through
univariate and multivariate Cox proportional hazard regression analysis and used to
establish prognostic models. Additionally, immunohistochemical and CRC cell line data
were used to evaluate the results of our three autophagy-associated genes EPHB2,
NOL3, and SNAI1 in TCGA. Based on the multivariate Cox analysis, risk scores were
calculated and used to classify samples into high-risk and low-risk groups. Kaplan-Meier
survival analysis, risk profiling, and independent prognosis analysis were carried out.
Receiver operating characteristic analysis was performed to estimate the specificity and
sensitivity of the prognostic model. Finally, GSEA, GO, and KEGG analysis were
performed to identify the relevant signaling pathways.

Results: A total of 301 autophagy-related genes were differentially expressed in CRC.
The areas under the 1-year, 3-year, and 5-year receiver operating characteristic curves of
the autophagy-based prognostic model for CRC were 0.764, 0.751, and 0.729,
respectively. GSEA analysis of the model showed significant enrichment in several
tumor-relevant pathways and cellular protective biological processes. The expression of
EPHB2, IL-13, MAP2, RPN2, and TRAF5 was correlated with microsatellite instability
(MSI), while the expression of IL-13, RPN2, and TRAF5 was related to tumor mutation
burden (TMB). GO analysis showed that the 11 target autophagy genes were chiefly
enriched in mRNA processing, RNA splicing, and regulation of the mRNA metabolic
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process. KEGG analysis showed enrichment mainly in spliceosomes. We constructed a
prognostic risk assessment model based on 11 autophagy-related genes in CRC.

Conclusion: A prognostic risk assessment model based on 11 autophagy-associated
genes was constructed in CRC. The new model suggests directions and ideas for
evaluating prognosis and provides guidance to choose better treatment strategies
for CRC.
Keywords: colorectal cancer, autophagy, prognostic model, splicing, markers
INTRODUCTION

Colorectal cancer (CRC) is a prevalent disease worldwide (1). Even
with improvements in living standards and changes in dietary
structure, the morbidity and fatality of CRC have remained high in
recent years (2). At present, the prognosis of CRC patients is
primarily assessed using the tumor-node-metastasis (TNM)
staging system. Generally, the earlier the stage it occurs, the
better the prognosis is. Autophagy is a lysosome-dependent
degradation pathway characterized by cytoplasmic vacuolation
(3). It can degrade damaged structures in the cytoplasm and
produce small organic molecules, and other substances for protein
compound and energy metabolism, enabling cells to adapt to
hypoxia and starvation (4). The process of autophagy is modulated
by multifarious complex signaling molecules (5). Failure of this
regulatory mechanism is closely related to tumor development,
neurodegenerative diseases, and aging (6–8). Current
experimental data demonstrate that autophagy is related to CRC
(9). Raptor and autophagy-related 5 (ATG5), which are
autophagy-related genes, contribute to CRC metastasis and drug
resistance by regulating autophagy (10, 11), suggesting that
autophagy may be significant in treatment and prognosis
prediction for CRC. Although many investigations have
explored the pathogenesis of CRC, further studies are needed to
fully elucidate its detailed molecular mechanisms.

In the present study, autophagy-associated genes differentially
expressed in CRC were screened using a bioinformatics
approach. In addition, a simple prognostic model of
autophagy-associated genes related to the prognosis of CRC
patients was constructed based on Cox analysis, in order to
obtain evidence for the application of these genes in prognosis
prediction and clinical treatment of CRC patients.
MATERIALS AND METHODS

Data Download and Identification of
Differentially Expressed Genes
Raw CRC transcript data, clinical patient data, and the metadata
for all DNA whole-exome BAM files were collected from The
Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/; released before October 27, 2019) (12), and data
for 1,526 autophagy-associated genes with a relevance score
of >1.5 were obtained from the GeneCard database (https://
www.genecards.org; released before February 19, 2020) (13). As
2

15 genes, including MARCHF7, CCN2, H2AX, and SARS1, were
not found in the TCGA CRC sample, only 1,511 autophagy-
associated genes were obtained. TCGA CRC mutation data
(VarScan2 Variant Aggregation and Masking) were
downloaded from UCSC (https://xenabrowser.net/datapages/;
released before March 30, 2020) (14). Sample expression values
from the above data were collated using perl (version
10.0.18363.1256), and the ENSEMBL gene ID was converted
into a gene name. The Wilcox test was performed on the
autophagy-associated genes from CRC tissues and normal
tissues using the R software (version 3.6.1) “limmar” package,
and the differentially expressed genes (DEGs) were defined by
the absolute values of log (fold change) >1 and FDR (false
discovery rate) <0.05.

Prognostic Model Construction
DEGs were subjected to univariate Cox analysis using the
“survival” R package. Autophagy-associated genes related with
CRC prognosis were identified, and multivariate Cox analysis
was carried out to construct a prognostic model according to the
best Aike information criterion.

Assessment of the Accuracy of the
Prognostic Model
By combining the expression of autophagy-associated genes and the
coefficients obtained by multivariate Cox regression analysis, a final
formula for calculating risk scores was listed next: risk scores =
SLCO1A2exp × 1.24168405018345 + RAB6Bexp ×
0.425074259002984 + SNAI1exp × 0.480196885198325 +
NOL3 e xp × 0 . 4 7 3 8 3 0 4 6 9 5 5 4 9 8 8 − ULK4 e x p ×
1.04014423940406 − EPHB2exp × 0.295212904754073 +
TRAF5exp × 0.379124034189421 − PPARGC1Aexp ×
0.516127561999247 + MAP2exp × 0.742235003720545 −
RPN2exp × 0.557629664887039 − IL13exp × 6.47343548405588.
According to the above formula, we calculated the prognostic risk
value for each sample in the TCGA data (the median value of the
risk score was the standard for defining the high-risk and low-risk
groups). Then, the “survival” and “survminer”R packages were used
for survival analysis and independent prognosis analysis using the
risk score, as well as for visualization of the results. We also
performed Kaplan-Meier (KM) survival analysis of 11 autophagy
genes in themodel. Receiver operating characteristic (ROC) analysis
was conducted using the “survivalROC” R package. Finally, the
concordance index (C-index) of the autophagy-related prognostic
model was calculated. The values of C-index and AUC have low
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accuracy when they are from 0.50 to 0.70, moderate accuracy when
they are from 0.71 to 0.90, and high accuracy when they are greater
than 0.90.
Evaluation of EPHB2, NOL3, and SNAI1
For the evaluation of protein level, IHC samples of CRC were
downloaded from EPHB2, NOL3, and SNAI1 in the human
protein atlas (HPA) database (https://www.proteinatlas.org/)
(15) and the integrated optical density (IOD) was analyzed.
The IOD of IHC was analyzed by Image-Pro Plus 6.0 software
and GraphPad software 8 (statistical significance between groups
was examined with an independent-samples t-test). For the
evaluation of cell level, the verification of EPHB2, NOL3, and
SNAI1 was performed using the Cancer Cell Line Encyclopedia
(CCLE) database (https://portals.broadinstitute.org/ccle/about)
(16), and GraphPad software 8 was used to visualize the
mRNA expression of these genes in nine common CRC cell
lines (CACO2, HCT116, HT29, LOVO, RKO, SW1116, SW48,
SW480, and SW620) obtained from the CCLE database. When
the p value is less than 0.05, the data are considered to be
statistically significant.

Identification of Related
Signaling Pathways
To identify potential signaling pathways related to prognosis in
CRC, we divided CRC patients into high- and low-risk groups for
Gene Set Enrichment (GSEA) analysis using the prognostic
model. To determine the biological functions and signaling
pathways related to the genes in the prognostic model, the
target genes of 11 autophagy genes in the model were obtained
using the online RNA prediction platform ENCORI
(encyclopedia of RNA interactions, http://starbase.sysu.edu.cn/
rbpClipRNA.php?source=mRNA; released before February 19,
2020) (17), and Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were carried out.

The Relationship Between the Expression
of 11 Autophagy-Associated Genes and
MSI and TMB
According to the previous steps (18), the algorithmMANTIS was
used to calculate the MSI score of each sample of CRC, and then
R was used to analyze the correlation between these autophagy-
related genes and MSI (Spearman), and draw the radar map of
the correlation between these genes and MSI. Perl was used to
collate the TCGA CRC mutation data obtained from UCSC and
calculate the TMB data of each sample. The TMB data of each
sample were collated and calculated by perl, and the TMB was
calculated as the total number of somatic mutations (including
non-synonymous point mutations, insertions, and deletions in
the coding region of exons)/the size of the target region, in units
of mutations/Mb. Then R was used to analyze the correlation
be tween these autophagy-re la ted genes and TMB
(Spearman). Finally, the radar map of the correlation between
these genes and TMB was drawn.
Frontiers in Oncology | www.frontiersin.org 3
RESULTS

Differential Expression of Autophagy-
Associated Genes
According to the mRNA matrix data for 568 CRC tissues and 44
normal tissues in TCGA, absolute values of mRNA expression
levels with log (fold change) >1.0 and FDR <0.05 were used as
screening criteria. A total of 301 autophagy-associated DEGs
were obtained, of which 134 were significantly downregulated
and 167 were significantly upregulated. The scatter plot is shown
in Figure 1A, and the top five autophagy genes with the most
significant upregulation and downregulation are presented in
Table 1.

Prognostic Model Construction
To further understand whether autophagy-associated DEGs were
associated with the survival of CRC patients, we obtained 30
prognosis-associated genes by univariate Cox analysis
(Figure 1B), which were screened and modeled by further
multivariate Cox analysis (Table 2). Finally, a box plot was
used to show the expression of genes used to build the model in
normal and CRC tissues (Figure 1C).
Assessing the Accuracy of the
Prognostic Model
Based on the analysis results, the median value of the risk score
was determined. According to the median value, all samples were
classified into high- and low-risk groups. The analysis results
were visualized and a distribution map of the risk score was
drawn. Figure 2A shows the probability distribution of the risk
score. Red points represent samples of the high-risk group, and
green points represent samples of the low-risk group. Figure 2B
presents the distribution of risk scores and survival time. The
ordinate is the survival time (in years), the red points denote
dead cases, and the green points denote alive cases. Survival
analysis of risk scores showed significant statistical differences
between the two groups (p = 1.277e-07) (Figure 2C). The results
of KM survival analysis of the 11 autophagy prognostic genes in
the model indicated that EPHB2, NOL3, and SNAI1 were
relevant to the survival of patients with CRC (Figures 3A–C).
According to the prognostic model, the survival rates of the high-
and low-risk groups were predicted (Table S1). The 5-year
survival rate of CRC patients in the low-risk group was
approximately 0.738, with a 95% confidence interval (CI) of
0.618-0.881. The 5-year survival rate of CRC patients in the high-
risk group was about 0.477 with a 95% CI of 0.365-0.623.
Univariate and multivariate independent prognostic analyses
uncovered that the risk score for this prognostic model was an
independent prognostic factor (p < 0.001) (Figures 2D, E). The
AUC values for the 1-year, 3-year, and 5-year ROC curves were
0.764, 0.751, and 0.729, respectively (Figures 3D–F). Finally, the
C-index was applied to evaluate the prediction ability of the
model. The C-index is the proportion of all patient pairs in which
the predicted consequences are in agreement with the practical
consequences. The C-index of the prognostic model was
April 2021 | Volume 11 | Article 566539
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calculated to be 0.734 (standard error = 0.028). In summary, the
above results show that the model has a moderate accuracy.
Evaluation of EPHB2, NOL3, and SNAI1
EPHB2, NOL3, and SNAI1 were highly expressed at the protein
level (Figure 4) and cellular level (Figures 5A–C), which were
consistent with the data obtained in TCGA. The most
upregulated expressions of EPHB2, NOL3, and SNAI1 in the
Frontiers in Oncology | www.frontiersin.org 4
nine common CRC cell lines were SW620, HT29, and CACO2,
respectively (Figures 5D–F).

Acquisition of Potential
Signaling Pathways
According to the GSEA analysis, the high-risk group was mainly
associated with the Notch, VEGF, WNT, MAPK, and TGF-b
signaling pathways, which are tumor-related pathways
(Figure 6A; Table 3). The low-risk group had a negative
A B

C

FIGURE 1 | (A) Volcano map of autophagy-associated DEGs. (B) Screening of autophagy-associated genes associated with the prognosis of CRC by univariate
Cox analysis. (C) Box plot showing expression of 11 autophagy-associated genes in normal tissues and CRC. **p < 0.01, ***p < 0.001.
April 2021 | Volume 11 | Article 566539
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correlation with DNA replication, RNA degradation, cell cycle,
mismatch repair (MMR), peroxisome, and glutathione
metabolism, which are mainly involved in cytoprotective
response (Figure 6B; Table 3). GO analysis revealed that the
primary biological processes of the target genes of the model
included mRNA processing, RNA splicing, and regulation of
mRNA metabolic process (Figure 7A). KEGG analysis revealed
that the major enriched pathways included spliceosome, RNA
transport, mRNA surveillance pathway, and ribosome biogenesis
in eukaryotes (Figure 7B). These pathways are mainly
Frontiers in Oncology | www.frontiersin.org 5
concentrated in the processes of splicing and metabolism
of mRNA.

Some Autophagy-Associated Genes Were
Related to MSI and TMB
Based on the previous data, a correlation between MMR pathway
and low-risk groups was discovered, so we speculate that the
expression of these autophagy-associated genes may be related to
MSI. A previous report has shown that high TMB in CRC is
usually related to MSI and mismatch repair defects (19).
A

B

C D

E

FIGURE 2 | (A) Risk scores for all samples from clinical data. (B) Distribution of risk scores and survival time of patients. (C) KM assessment of survival time for samples
from TCGA clinical data using the autophagy prognostic model. Forest plot of (D) univariate and (E) multivariate independent prognostic analysis of the model.
April 2021 | Volume 11 | Article 566539
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Therefore, we also analyzed the relationship between these
autophagy-related genes and TMB. As can be seen from
Figures 7C, D, EPHB2, IL-13, MAP2, RPN2, and TRAF5 are
correlated with MSI, EPHB2 (R = -0.204), RPN2 (R = -0.255),
and TRAF5 (R = -0.295) are negatively correlated with MSI,
while IL-13 (R = 0.102) and MAP2 (R = 0.141) are positively
correlated. IL-13, RPN2, and TRAF5 were correlated with TMB,
RPN2 (R = -0.244) and TRAF5 (R = -0.094) were negatively
Frontiers in Oncology | www.frontiersin.org 6
correlated with TMB, while IL-13 (R = 0.093) was positively
correlated with TMB.
DISCUSSION

CRC is caused by abnormal cell growth in the colon or rectum.
Increasing numbers of studies confirm the importance of
A

B

C

D

E

F

FIGURE 3 | (A–C) KM survival analysis for EPHB2, NOL3, and SNAL1. (D–F) 1-year, 3-year, and 5-year ROC curves and AUC based on the autophagy prognostic model.
April 2021 | Volume 11 | Article 566539
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autophagy in CRC at various stages (20, 21). In the current work,
we used bioinformatics analysis to identify autophagy-associated
genes with statistically significant differences in expression
in CRC.
Frontiers in Oncology | www.frontiersin.org 7
As the early symptoms of CRC are not obvious, the prognosis
of CRC patients is poor once CRC progresses (22). Hence, the
identification of effective prognostic markers is important to
guide assessment and treatment of CRC patients. Huang et al.
A

B

C

FIGURE 4 | IHC analysis of EPHB2 (A), NOL3 (B), and SNAI1 (C) in CRC tissues. *p < 0.05, **p < 0.01.
TABLE 1 | Top five autophagy-associated genes significantly upregulated and downregulated in CRC.

Gene Full name logFC P value FDR

COL10A1 Collagen Type X Alpha 1 Chain 8.019405808 3.63E-26 2.50E-24
AQP5 Aquaporin 5 5.844415496 1.27E-10 3.06E-10
CLDN2 Claudin 2 5.622786050 2.19E-23 3.62E-22
INHBA Inhibin Subunit Beta A 5.494599523 5.10E-28 2.34E-25
CLDN1 Claudin 1 4.979004650 7.39E-28 2.38E-25
HSPB8 Heat Shock Protein Family B (Small) Member 8 -3.538252884 5.48E-19 3.46E-18
NR1H4 Nuclear Receptor Subfamily 1 Group H Member 4 -3.757236985 2.43E-20 1.98E-19
MYH11 Myosin Heavy Chain 11 -4.283574351 2.55E-22 3.10E-21
CYP3A4 Cytochrome P450 Family 3 Subfamily A Member 4 -4.896328336 1.75E-11 4.63E-11
APOB Apolipoprotein B -6.433852158 1.98E-06 3.41E-06
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constructed a prognostic model that has been confirmed by
experiments to have a clear correlation with CRC, and the
marker based on multi-RNA had a higher prognostic accuracy
than TNM staging (23). Zhou et al. identified five autophagy
Frontiers in Oncology | www.frontiersin.org 8
genes to establish an early recurrence classifier. The report shows
that autophagy score can be used to predict the postoperative
survival rate of CRC (24). Qian and his colleagues constructed a
competitive endogenous RNA (ceRNA)-ceRNA interaction
A

B

C

D

E

F

FIGURE 5 | mRNA analysis of EPHB2 (A, D), NOL3 (B, E), and SNAI1 (C, F) in CRC cell lines.
TABLE 2 | Construction of 11 autophagy-associated genes for prognosis.

No. Gene Full name Coef HR Relevance score

1 SLCO1A2 Solute Carrier Organic Anion Transporter Family Member 1A2 1.24168405 3.461437794 2.75
2 RAB6B Member RAS Oncogene Family 0.425074259 1.52970401 1.8
3 SNAI1 Snail Family Transcriptional Repressor 1 0.480196885 1.616392615 2.12
4 NOL3 Nucleolar Protein 3 0.47383047 1.606134675 1.94
5 ULK4 Unc-51 Like Kinase 4 -1.040144239 0.353403704 2.42
6 EPHB2 EPH Receptor B2 -0.295212905 0.74437309 2.18
7 TRAF5 TNF Receptor Associated Factor 5 0.379124034 1.461004239 1.94
8 PPARGC1A PPARG Coactivator 1 Alpha -0.516127562 0.596827255 2.84
9 MAP2 Microtubule Associated Protein 2 0.742235004 2.100625177 2
10 RPN2 Ribophorin II -0.557629665 0.572564627 1.59
11 IL13 Interleukin 13 -6.473435484 0.001543913 3.19
April 2021 | Volume 1
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A

B

FIGURE 6 | (A) GSEA analysis of main enriched pathways in the high-risk group. (B) GSEA analysis of main enriched pathways in the low-risk group.
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network mediated by autophagy in CRC by integrating the
systematic expression profiles of long non-coding RNA and
mRNA (25). Some people even screened the autophagy-related
non-coding RNA, for network construction or prognostic model
construction based on the characteristics of autophagy genes
(26). Most of the above studies used the human autophagy
database to obtain a small number of autophagy-related genes,
in order to identify biomarkers related to the prognosis of CRC.
However, these studies ignored the potential key autophagy-
related genes that have not been paid attention to, which is of
great significance in mining the prognosis, occurrence, and
development of CRC. As autophagy affects the progression and
prognosis of CRC and may even lead to chemotherapy
resistance, we established a prognostic model of CRC based on
1,511 autophagy-associated genes. It was a new simple
prognostic model based on the listed genes (SLCO1A2,
RAB6B, SNAI1, NOL3, ULK4, EPHB2, TRAF5, PPARGC1A,
MAP2, RPN2, and IL-13) and established using univariate Cox
analysis and multivariate Cox analysis. ULK4, EPHB2,
PPARGC1A, RPN2, and IL-13 had hazard ratio (HR) values
less than 1 and were thus good prognostic factors, whereas
SLCO1A2, RAB6B, SNAI1, NOL3, TRAF5, and MAP2 with a
HR greater than 1 were considered poor prognostic factors. The
5-year survival rates of CRC patients in the high-risk group and
low-risk group were 73.8% and 47.7%, respectively. These results
indicate that the survival rates of patients with high-risk scores
were markedly lower than those of patients with low-risk scores.
We deduced the following rule from the risk curve: the higher the
risk score, the greater the number of deaths and the larger the
proportion of death. Independent prognostic analysis revealed
that the risk value obtained from the autophagy prognostic
prediction model was an independent prognostic factor.
Higher risk scores were correlated with poorer patient prognosis.

According to the KM survival analysis, the autophagy-
associated genes EPHB2, NOL3, and SNAI1 in the prognostic
model were statistically significant (p < 0.05). EPHB2 encodes the
receptor tyrosine kinase transmembrane glycoprotein family
member EPHB2, which engages in lots of cellular processes
including movement, division, and differentiation (27). EPHB2
functions in the gastrointestinal homeostasis and is an essential
Frontiers in Oncology | www.frontiersin.org 10
factor regulating the classification of mature epithelial cells (28).
EPHB2 primarily generates in epithelial cells and is the highest
level of EPH receptor in the ordinary intestine (29). Studies in
human breast cancer have shown that the expression of EPHB2
can induce the increase of ATG5/12 and LC3II, thereby inducing
autophagy (26). Based on experimental results, Kandouz and
colleagues propose that EPHB2 may affect autophagy via the
ERK1/2 and PI3K pathways (27, 30). Moreover, they observed
LC3 accumulation and transformation from LC3I to LC3II in
EPHB2-upregulated cells. Knock-out of the autophagy
regulatory genes ATG5/7 can significantly reduce cellular death
induced by EPHB2. Some researchers have found that reducing
tyrosine phosphorylation of EPHA1 and EPHB2 induces
autophagy in CRC cells (28). There are also reports that the
expression of EPHB2 is reduced during the development of CRC
tumors, and its high expression may inhibit the development of
tumors and reduce the invasion of cancer cells (31). This is
consistent with the relationship between the low expression of
EPHB2 and the poor prognosis of CRC in our survival analysis.
EPHB2 is a tumor suppressor that affects the progression of CRC
by acting on autophagy (27).

On the contrary, according to the results of our survival
analysis, high expression of NOL3 was connected to poor
prognosis in CRC. NOL3 encodes an anti-apoptotic protein
that is involved in pathways including apoptosis and
autophagy, apoptosis regulation, and signal transduction (32).
The caspase recruitment domain (CARD) of NOL3 can
downregulate the activity of p53 via CARD–CARD interaction
(32). p53 is a well-known tumor suppressor protein (33). Some
research indicates that p53 may induce autophagy whether it is
inhibited or activated, and current data suggest that p53
promotes cell autophagy by inhibiting the mechanistic target of
rapamycin kinase (mTOR) (34). SNAI1 participates in the
stimulation of epithelial-to-mesenchymal transition (EMT) and
exerts a vital role in tumor drug resistance, cellular proliferation
inhibition, survival, and movement (35). SNAI1 is a pivotal
regulator of EMT and controls CRC invasion and proliferation
(36). Recent research suggests that autophagy degrades SNAI1 in
cancer cells via LC3 and/or (sequestosome 1) SQSTM1, thereby
inhibiting tumor progression (30).

Furthermore, the other eight genes in the model are closely
related to the tumor. Some studies suggest that RAB6B, one of
the RAS oncogene family members, functions in retrograde
transport at the Golgi complex level or in retrograde transport
in nerve cells (37). Silencing RAB6B in gastric cancer inhibits the
AKT/JNK signaling pathway, suppressing gastric cancer cell
proliferation, and impels apoptosis by furthering the p38
MAPK pathway (38). Overexpression of Caveolin-1 has been
shown to reduce paclitaxel resistance of osteosarcoma cells via
weakening autophagy, and the AKT/JNK pathway is an effective
regulator for autophagy (39, 40). Furthermore, p38 MAPK can
inhibit autophagy and promote microglial inflammation via
phosphorylating unc-51-like autophagy activating kinase 1
(ULK1) (41), and the stimulation of the p38 MAPK pathway
via osteopontin can advocate malignant change in CRC, and
suppress autophagy (42).
TABLE 3 | Display of GSEA enrichment results in high and low risk groups.

Name 1NES 2NOM p-val 3FDR q-val

Notch signaling pathway 2.1448512 0 0.006673426
Wnt signaling pathway 1.8196449 0.003795066 0.056357715
Pathways in cancer 1.7476273 0.021442495 0.07196092
TGF-b signaling pathway 1.7448014 0.021484375 0.06931268
MAPK signaling pathway 1.7017577 0.021526419 0.08378335
VEGF signaling pathway 1.6328211 0.02330097 0.11057795
DNA replication -2.026768 0 0.021217022
RNA degradation -1.93148 0.006147541 0.026900437
Cell cycle -1.9373425 0.020283977 0.027462965
Mismatch repair -2.0285935 0.004040404 0.024248024
Peroxisome -2.2689974 0 0.011890192
Glutathione metabolism -1.9067883 0.004065041 0.03125281
1NES represents the normalized enrichment score 2NOM p-val is the p value, which
represents the credibility of the enrichment results 3FDR q-val represents the p value after
correction by multiple hypothesis tests.
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FIGURE 7 | (A) GO analysis and (B) KEGG analysis of the target genes of 11 autophagy-associated genes in the model. The radar maps of 11 autophagy-
associated genes are analyzed with MSI (C) and TMB (D), respectively. Regulatory relationships between the 11 genes in the model and autophagy (E). *p < 0.05,
**p < 0.01, ***p < 0.001.
Frontiers in Oncology | www.frontiersin.org April 2021 | Volume 11 | Article 56653911

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


He et al. Autophagy Markers in Colorectal Cancer
SLCO1A2 is the gene encoding organic anion-transporting
polypeptide 1A2 (OATP1A2), which belongs to the organic
anion transport polypeptide (OATP) subunit of the
superfamily of drug transporters. OATP1A2 is mainly found in
epithelial tissue and can affect the distribution of many drugs,
xenobiotics, and endophytes (43). OATP1A2 dysfunction may
damage the pharmacokinetics and traits of a drug, thereby
affecting the effectiveness of the treatment, and it may also
hinder the absorption of endogenous organisms to the target
tissue (43). OATP1A2 is regulated by AMPK, which has an
impact on its membrane target, internalization, reuse, and
degradation processes (44). Some researchers found that
OATP1A2 could not be detected in the large intestine of
normal controls when conducting intestinal transport protein
research, but in another study, OATP1A2 was found to be widely
expressed in patients with CRC liver metastases (45, 46).
Therefore, OATP1A2 could be an influential factor altering the
effect of oral drug treatment in CRC. As shown in Figure 2, the
expression level of the SLCO1A2 tumor group was higher than
that of the normal group. The interaction between autophagy
and drug transporters is reported to be related to drug resistance
(47). For example, high expression of the transporter ATP
binding cassette subfamily G member 2 can promote
autophagy, and the activation of autophagy greatly increases
the survival rate of cells (48). TRAF5 regulates the stimulation of
the typical nuclear factor kappa B (NF-kB) pathway (49, 50).
Most investigations have found that activation of the NF-kB
pathway can inhibit autophagy (51).

RPN2 is tremendously overexpressed in CRC and promotes
cell proliferation by regulating the glycosylation state of
epidermal growth factor receptor (52, 53). RPN2 has been
manifested to repress autophagy in liver cancer (54). IL-13,
one of the autophagy genes used to construct the model, is an
important T cell-derived cytokine that induces EMT in CRC cells
(55). In the airway epithelium, IL-13 can activate autophagy and
affect cell secretion (56). Besides, in breast carcinoma, IL-13 can
regulate the expression of Beclin 1 as well as light chain 3 beta
(LC3B), increasing the formation of autophagosomes via IKKb/
NFkBp65 (57). The protein encoded by PPARGC1A is a
transcriptional co-activator that modulates genes involved in
energetic metabolism (58). This protein cooperates with a variety
of transcription elements to enhance mitochondrial oxidative
phosphorylation (OXPHOS) under conditions of high energy
demand (58). In various malignant tumors, including CRC,
ascendant expression of PPARGC1A is strongly related to
metabolism and advances the growth, distant spread, and
chemical resistance of tumor cells (58). Overexpression of
PPARGC1A increases the amount of the OXPHOS protein
complex, accelerates autophagy, and activates tumor
development in breast cancer cells (59). In melanoma cells,
downregulating PPARGC1A/PPARGC1B results in decreased
OXPHOS activity, creating an acidic tumor environment and
triggering autophagy (60). MAP2 is mainly involved in neurite
outgrowth and neuronal migration during neuronal
development (61, 62). However, there have been few studies of
MAP2 in non-nerve cells (61). Some researchers have observed
Frontiers in Oncology | www.frontiersin.org 12
that a high level of MAP2 is absent from normal mucosa in
aggressive oral neoplasm (61). MAP2 interacts with growth
factor receptor-bound protein 2 to enhance the ERK signaling
pathway (63). In RAS-driven cancers (including CRC), it has
been demonstrated that RAF/MEK/ERK inhibition can cause
cancer-cell-protective autophagy (63). ULK4 belongs to a
member of the unc-51-like serine/threonine kinase family
functioning in the neuron (64). Lebovitz et al. investigated
more than 200 human autophagy-related signatures and
cancer-associated changes in the DNA sequence as well as
RNA expression, and used sequence data from TCGA to
examine their relationships with multiple cancer types and
patient survival outcomes (65). ATG7 and ULK4, which are
core autophagy genes, showed effective selection of mutations in
renal cancer and endometrial cancer, respectively, indicating that
the expression and mutation of ULK4 may be closely related to
autophagy (65). The above data demonstrate that the 11 genes
used to build the model are all involved in autophagy to a greater
or lesser extent, as illustrated in Figure 7E. However, owing to a
lack of research, the mechanisms by which ULK4 and SLCO1A2
interact with autophagy remain unclear. They appear to be key
genes regulating the autophagy pathway in CRC; however, more
experiments are needed to confirm this.

Some signaling transduction pathways are known to be
abnormally activated during the occurrence and progression of
CRC, in particular, Notch, VEGF, WNT, MAPK, and TGF-b
signaling, and these pathways cooperate with cell autophagy to
determine the fate of the cell (66–69). Our GSEA enrichment
analysis showed that the high-risk group with higher mortality
than the low-risk group had a mainly positive role in the relevant
mechanisms of tumor cells, including the Notch, VEGF, WNT,
MAPK, and TGF-b signaling pathways, 11 autophagy associated
genes may be related to the biological pathway related to CRC,
and its dysfunction may lead to poor prognosis of CRC. While
the low-risk group had mainly negative correlations with DNA
replication, RNA degradation, cell cycle, MMR, peroxisome, and
glutathione metabolism, all of which are normal cell protective
responses. A considerable number of studies have concluded that
autophagy is a protective mechanism for cancer cells, limiting the
response to various therapeutic interventions (70, 71). These
results indicate that autophagy is largely based on the interaction
with various abnormal signaling pathways to influence the
progress of CRC. A large number of studies have proved that
the MMR pathway plays an important role in repairing DNA
replication errors in normal and tumor cells (72, 73). The
deficiency of DNA MMR protein, which determines the
microsatellite instability-high (MSI-H), may lead to
the accumulation of mutations and the production of new
antigens, which may stimulate the anti-tumor immune
response (74). Clinical trials have shown that MSI-H status is
associated with long-term benefits for patients treated with an
immune checkpoint inhibitor. It has been reported that the
expression level of autophagy key factor LC3B-II in CRC is
higher than that in MSI (75). UVRAG, a key autophagy tumor
suppressor, produces truncated mutations when CRC patients
have MSI (76). The mutated UVRAG loses its ability to inhibit
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autophagy and promotes tumorigenesis (76). A recent study
report also suggested that autophagy-related genes were
expressed differently in an MSI group and microsatellite
stability (MSS) group, which suggested that autophagy may be
closely related to tumor MSS. According to our analysis of the
results, we found that EPHB2, IL-13, MAP2, RPN2, and TRAF5
are related to MSI, and EPHB2 has been experimentally
confirmed to be negatively related to MSI-H (77), which is the
same as the result of our analysis. From the results, we discovered
that RPN2 and TRAF were negatively correlated with TMB and
MSI, while IL-13 was positively correlated with TMB and MSI.
The correlation between RPN2, TRAF, and IL-13 in TMB and
MSI was consistent, which partly explains the consistency with
high TMB and high MSI, and suggests that autophagy-related
genes may have a key effect on MSI.

At the same time, to further understand the potential
mechanism between the 11 autophagy-associated genes of this
model and CRC, we analyzed their targeted genes by GO and
KEGG. According to Figure 7B, all the targeting genes of the 11
autophagy-associated genes used to construct the prognostic
model may be related to RNA splicing. Splicing factors are key
regulators of the mRNA alternative splicing (78). Researchers
have investigated the expression level of more than 20 splicing
factors, meanwhile autophagy was stimulated by hypoxia in oral
tumors and found that the serine and arginine rich splicing
factor 3 (SRSF3) was considerably downregulated (78). The
results show that the splicing factor SRSF3 is a carcinogen in
CRC, and the silencing of its expression can induce autophagic
death of CRC cells (79). The variable transcripts of Beclin 1 are
produced by selective 3’ splicing, and its translation products
show reduced activity during starvation-induced autophagy,
suggesting that the subtype of splicing may be a negative
regulator of autophagy (80). As a proliferation regulatory
factor of CRC, splicing factor proline and glutamine rich
(SFPQ) can cooperate with peroxisome proliferator activated
receptor gamma (PPARg) (81). PSF gene knockout induces
autophagosome generation via suppressing PPARg (81). In
malignant tumor cells, knockdown of the core spliceosome
components small nuclear ribonucleoprotein polypeptide E
and small nuclear ribonucleoprotein D1 polypeptide resulted
in cancer cell death through autophagy rather than apoptosis
(82). Consequently, preceding investigations also support our
hypothesis that RNA splicing affects the progression of CRC by
regulating autophagy. However, the connection between the
conservative processes (autophagy and RNA splicing) is not
completely clear, and more experiments are needed.

The series of bioinformatics analyses described here show that
the autophagy prognostic model had a certain level of accuracy
in predicting the prognosis of CRC patients. Nevertheless, more
Frontiers in Oncology | www.frontiersin.org 13
research and clinical evidence are needed to confirm the validity
of this model.

In total, 301 DEGs in CRC were identified by bioinformatics
analysis. GSEA, GO, and KEGG analyses indicated that
autophagy may have an essential function in key signaling
pathways of CRC, thereby deepening our understanding of the
mechanism by which autophagy participates in the development
of CRC. The analysis of the relationship between autophagy-
associated genes and MSI and TMB suggests that autophagy may
be an important process affecting MSI and TMB. We also
established a simple prognostic model using bioinformatics
tools. The model was based on screening autophagy-associated
genes that were extremely relevant to the appearance and
evolvement of cancers. A series of analysis methods were used
to assess the predictive capability of the model. We believe that
the autophagy prognostic model might have a far-reaching role
in improving traditional TNM staging and histological
classification for the prognosis prediction and treatment of
CRC patients.
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