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One of the characteristic features of metastatic breast cancer is increased cellular storage
of neutral lipid in cytoplasmic lipid droplets (CLDs). CLD accumulation is associated with
increased cancer aggressiveness, suggesting CLDs contribute to metastasis. However,
how CLDs contribute to metastasis is not clear. CLDs are composed of a neutral lipid
core, a phospholipid monolayer, and associated proteins. Proteins that associate with
CLDs regulate both cellular and CLD metabolism; however, the proteome of CLDs in
metastatic breast cancer and how these proteins may contribute to breast cancer
progression is unknown. Therefore, the purpose of this study was to identify the
proteome and assess the characteristics of CLDs in the MCF10CA1a human
metastatic breast cancer cell line. Utilizing shotgun proteomics, we identified over 1500
proteins involved in a variety of cellular processes in the isolated CLD fraction.
Interestingly, unlike other cell lines such as adipocytes or enterocytes, the most
enriched protein categories were involved in cellular processes outside of lipid
metabolism. For example, cell-cell adhesion was the most enriched category of
proteins identified, and many of these proteins have been implicated in breast cancer
metastasis. In addition, we characterized CLD size and area in MCF10CA1a cells using
transmission electron microscopy. Our results provide a hypothesis-generating list of
potential players in breast cancer progression and offers a new perspective on the role of
CLDs in cancer.
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INTRODUCTION

Breast cancer is the leading type of cancer among women in the
United States and is predicted to account for 30% of new cancer
cases in 2021 (1). Although breast cancer survival rates are
relatively high if the cancer remains localized, life expectancy
dramatically decreases once the cancer metastasizes to distant
organs such as bone and lung (2). Therefore, understanding the
characteristic features of metastatic breast cancer cells is critical
in order to develop strategies to prevent the progression of
breast cancer.

Metastatic breast cancer cells often exhibit altered lipid
metabolism, which is an adaptation that allows cells to survive
in nutrient-depleted conditions (3). One of these alterations
includes the accumulation of neutral lipid in cytoplasmic lipid
droplets (CLDs). The degree of CLD accumulation associates
with breast cancer aggressiveness (4–6); however, the
mechanisms behind this relationship are incompletely
understood. CLDs are composed of a neutral lipid core of
triacylglycerol (TAG) and/or cholesteryl esters surrounded by a
phospholipid monolayer and associated proteins (7). The role of
CLDs differs depending on cell type, for example serving as the
body’s TAG storage pool in adipocytes (8), acting as a local
energy source for skeletal and cardiomyocytes (9, 10), and
mediating the process of dietary fat absorption in enterocytes
(11). Although multiple hypotheses exist for how CLDs
contribute to cancer progression, including protection from
cellular stress or serving as a storage pool for fatty acids that
can be used for cellular energy, biosynthetic processes, or
signaling (6, 12, 13), the exact role of CLDs in metastatic
breast cancer cells has not been determined.

Proteins that associate with CLDs serve a variety of functions,
but their role in metastasis in unknown. A common function of
CLD proteins is to mediate TAG synthesis and lipolysis,
reflecting the main purpose of CLDs in storing neutral lipid
and maintaining cellular lipid homeostasis (14). However, recent
functional studies of CLD proteins demonstrate novel cellular
roles for CLDs by regulating cellular protein location,
degradation, and functional activity. For example, histone
proteins and transcription factors sequester at the CLD as a
mechanism to regulate gene expression (15–17). In addition,
some CLD proteins are destined for degradation (18) such as
apolipoprotein B-100, a component of very-low-density
Abbreviations: ABHD5, 1-acylglycerol-3-phosphate O-acyltransferase ABHD5;
ATGL, adipose triglyceride lipase; CANX, calnexin; CHO, Chinese Hamster
Ovary; CLD, cytoplasmic lipid droplet; EMT, epithelial-mesenchymal transition;
ER, endoplasmic reticulum; FF, floating fraction; GAPDH, glyceraldehyde 3-
phosphate dehydrogenase; GO_BP, Gene Ontology Biological Process; GPAT4,
glycerol-3-phosphate acyltransferase 4; HMGCS1, hydroxymethylglutaryl-CoA
synthase; IQGAP1, IQ motif containing GTPase activating protein 1; LC-MS/
MS, liquid chromatography-tandem mass spectrometry; LFQ, label-free
quantification; MS, mass spectrometry; NSDHL, sterol-4-alpha-carboxylate 3-
dehydrogenase; PBS, phosphate buffered saline; PCYT1A, choline-phosphate
cytidylyltransferase A; PLIN, perilipin; PNPLA2, patatin-like phospholipase
domain-containing protein 2; SDS-PAGE, sodium dodecyl sulfate-
polyacrylamide gel electrophoresis; SQLE, squalene epoxidase; STK24, serine/
threonine kinase 24; TAG, triacylglycerol; TEM, transmission electron
microscopy; WCL, whole cell lysate.
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lipoproteins, which translocates from the endoplasmic
reticulum (ER) to the CLD for degradation in hepatocytes (19,
20). Finally, CLD proteins may also have specific functions on
the CLD, for example mediating inflammatory signaling
pathways (21–23). Despite the identification of proteins
involved in a variety of roles in CLD proteomic studies, the
functional significance of the majority of CLD proteins has yet to
be uncovered. Further, the functional significance of CLD
proteins in metastatic breast cancer cells and whether they
reflect unique roles for CLDs in cancer is unknown.

The purpose of this study was to identify the proteome of
CLDs in metastatic breast cancer cells to generate hypotheses
about how CLDs promote breast cancer progression and
contribute to altered lipid metabolism and/or other cell
functions. To do this, we performed untargeted shotgun
proteomic analysis and utilized transmission electron
microscopy (TEM) to identify the proteome and characteristics
of CLDs from the human metastatic breast cancer cell
line, MCF10CA1a.
MATERIALS AND METHODS

Cell Culture
The MCF10CA1a human metastatic mammary cell line was
utilized for these studies. Cells were cultured in Dulbecco’s
Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12,
1:1), supplemented with 5% horse serum, 100 units/mL
penicillin, and 100 µg/mL streptomycin in a humidified
environment at 37°C with 5% CO2. Cells were harvested at 70-
80% confluence for each experiment.

CLD Isolation
Cells from eight 150 mm dishes were pooled and considered one
sample. Four samples were prepared for CLD isolation as
follows. Cells were rinsed with phosphate buffered saline (PBS,
pH 7.4, 137 mMNaCl, 2.7 mM KCl, 8 mMNa2HPO4, and 2 mM
KH2PO4) scraped and pelleted by centrifugation. CLDs were
isolated from pelleted cells using a previously established sucrose
gradient ultracentrifugation protocol (24, 25). Briefly, cells were
lysed in ice cold sucrose lysis buffer (175 mM sucrose, 10 mM
HEPES and 1 mM EDTA pH 7.4) and disrupted by passing
through a 23 gauge, 1 inch needle. An aliquot was taken
representing the whole cell lysate (WCL) to be used for later
applications. The remaining lysate was transferred into a 13.2 mL
Open-Top Thinwall UltraClear tube (Beckman Coulter,
#344059) and ice-cold lysis buffer was layered on top of the
lysate. Samples were centrifuged at 100,000 x g at 4°C for one
hour. After centrifugation, the white floating fraction (FF) from
each sample was aspirated using a pipette. The remaining soluble
and pellet fractions were removed in 1 mL increments. Samples
were stored at -80°C until analysis.

Triacylglycerol and Protein Concentration
TAGconcentrationsof each fractionweremeasuredusing theWako
L-Type Triglyceride M kit (FUJIFILM Wako Diagnostics U.S.A.).
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Protein concentrations of each fraction were measured using the
Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific).

Validation of CLD Isolation by
Western Blotting
An aliquot of each isolated fraction (CLD fraction through pellet
fraction) and the WCL was delipidated with 2:1 chloroform:
methanol, then proteins were precipitated with ice-cold acetone.
The precipitated proteins were pelleted by centrifugation, then
dried and resuspended in Laemmli loading buffer. Samples were
subjected to SDS-PAGE using a 12% Tris-glycine gel (Bio-Rad
#4561046). Samples were loaded into the gel by volume: 10 µL each
of the FF through fraction 10, 5 µL of the pellet fraction and 5 µL of
the WCL. See Supplementary Figure 1 for representative
Ponceau stain demonstrating differences in protein levels between
fractions. The membrane was probed with one of the following
primary antibodies at a 1:1,000 concentration (PLIN3, Sigma-
Aldrich HPA006427; GAPDH, Cell Signaling Technologies
#14C10; CANX, Santa Cruz Biotechnology SC-11397). After
washing, a fluorescent secondary antibody was added at a
concentration of 1:10,000 (LI-COR IRDye donkey anti-rabbit
680RD, 926-68073). Membranes were imaged using the LI-COR
Odyssey CLx Imaging System (LI-COR Biosciences).

Transmission Electron Microscopy
One 60 mm dish of MCF10CA1a cells and one 60 mm dish of
MCF10A-ras cells were prepared for TEM. Cells were fixed in
2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, rinsed,
and embedded in agarose. Small pieces of cell pellet were post-
fixed in 1% osmium tetroxide containing 0.8% potassium
ferricyanide and stained in 1% uranyl acetate. They were then
dehydrated with a graded series of ethanol, transferred into
acetonitrile, and embedded in EMbed-812 resin. Thin sections
were cut on a Reichert-Jung Ultracut E ultramicrotome and post-
stained with 4% uranyl acetate and lead citrate. Images were
acquired on a FEI Tecnai T12 electron microscope equipped with
a tungsten source and operating at 80kV.

CLD Size Analysis
Acquired TEM images were analyzed using ImageJ (26). 50 cells
were counted and used for CLD analysis. CLD diameter was
assessed using ImageJ.

Immunocytochemistry
MCF10CA1a cells were cultured in a #1.5H-N high performance
glass bottom 12 well plate (Cellvis) and processed for
immunofluorescence microscopy. The cells were fixed in 4%
paraformaldehyde, permeabilized with 0.1% Triton X-100, and
blocked with BlockAid (Invitrogen, B10710). Cells were probed
with antibodies for PLIN3, SQLE, and NSDHL (Sigma,
HPA006427; SantaCruz Biotechnologies, sc-271651; Atlas
Antibodies, HPA000571, respectively). Proteins were detected
using secondary AlexaFluor antibodies (Life Technologies, A-
21070 and A-21052), and cells were counterstained for neutral
lipids using 1 mg/mL 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-
3a,4a-diaza-s-indacene (BODIPY 493/503; Life Technologies,
Grand Island, NY, United States), and for nuclei using 300 nM
Frontiers in Oncology | www.frontiersin.org 3
4’,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI;
Invitrogen, D1306). Samples were imaged using a Nikon A1R-
MP inverted confocal microscope (Nikon Instruments Inc.,
Melville, NY, United States). Images were acquired using the Plan
Apo l 100x Oil objective, 76.63 µm pinhole size, and DAPI, FITC,
and Cy5 lasers. All image processing was conducted using Nikon
NIS-Elements AR acquisition and analysis software. A Landweber
2D deconvolution algorithm was implemented, with point scan
confocal modality, clear noise, and 12, 12, 12 iterations.

CLD Protein Isolation and
In-Solution Digestion
An aliquot of each CLD fraction containing 50 mg protein was
prepared for proteomic analysis. The CLD fractions were
delipidated and precipitated as above. The dried protein pellets
were reduced and solubilized using 10mMdithiothreitol/8M urea,
then alkylated using iodoethanol. Samples were dried using a
vacuum centrifuge. Proteins were digested with 4 mg Trypsin/Lys-
CMix,Mass SpecGrade (Promega)per sampleusing abarocycler at
50°C, 20 kpsi, 60 cycles (BarocyclerNEP2320, Pressure Biosciences,
INC). Peptides were cleaned with MacroSpin C18 spin columns
(The Nest Group, Inc) and dried using a vacuum centrifuge. Dried
peptides were resuspended in 3% acetonitrile/0.1% formic acid in
preparation for mass spectrometry.

Liquid Chromatography/Tandem Mass
Spectrometry (LC-MS/MS)
Samples were analyzed by reverse-phase LC-ESI-MS/MS system
using the Dionex UltiMate 3000 RSLC nano System coupled to the
Orbitrap Fusion Lumos Mass Spectrometer (Thermo Fisher
Scientific). Peptides were loaded onto a trap column (300 mm
ID ´ 5 mm) packed with 5 mm 100 Å PepMap C18 medium, then
separated on a reverse phase column (50-cm long × 75 µm ID)
packed with 2 µm 100 Å PepMap C18 silica (Thermo Fisher
Scientific). The column temperature was maintained at 50°C. All
MSmeasurementswere performed inpositive ionmodeusing a 120
minute LC gradient and standard data-dependent mode. MS data
were acquired with a Top20 data-dependent MS/MS scan method.

LC-MS/MS Data Analysis
LC-MS/MS data were analyzed using MaxQuant software
version 1.6.3.4 (27–29). Data was searched against the
UniProtKB Homo sapiens reference proteome (www.uniprot.
org). Trypsin/P and Lys-C were selected with a maximum of 2
missed cleavages. Oxidation of methionine was set as a variable
modification, iodoethanol set as a fixed modification. First search
peptide mass tolerance was set to 20 ppm, main search peptide
mass tolerance was set to 10 ppm. False discovery rate was set to
1%. Match between runs was selected and Label-free
quantification (LFQ) was used.

Proteomic Data Analysis
Reverse identifications and contaminants were removed from the
dataset. LFQ values were subjected to Log2 transformation. A
protein was considered identified if it was present in at least three
out of four samples. Uniprot accession numbers in the Majority
June 2021 | Volume 11 | Article 576326
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Protein IDs column were used to categorize proteins into Gene
Ontology Biological Process (GO_BP) terms using The Database
for Annotation, Visualization and Integrated Discovery
(DAVID) v6.8 (30, 31). Functional relationships between
proteins were visualized using STRING version 11 (32).
RESULTS

Characterization of CLDs in
MCF10CA1a Cells
To characterize CLDs in the metastatic breast cancerMCF10CA1a
cell line, we visualized cells by TEM. A representativeMCF10CA1a
cell containing CLDs is shown in Figure 1A. CLDs present within
the cell are highlighted (Figure 1B). To determine the distribution
ofCLDs across cells, we assessed the number and diameter ofCLDs
per cell (Table 1 and Figure 2). Ninety percent of cells counted
contained CLDs, and the number of CLDs per cell ranged from 0-
41. CLD diameter also varied across cells. CLD diameter ranged
from 0.17-1.38 mm (Figure 2), with an average CLD diameter of
0.58 µm. As expected, only 10% of non-metastatic MCF10A-ras
cells of the same cell series analyzed contained CLDs (data not
shown). A representativeMCF10A-ras cell without CLDs is shown
in Supplementary Figure 2. Due to the absence of CLDs in most
MCF10A-ras cells, we were unable to isolate CLDs fromMCF10A-
ras cells and therefore only assessed the proteome of CLDs from
MCF10CA1a cells.
CLD Isolation From MCF10CA1a Cells
To confirm successful isolation of CLDs fromMCF10CA1a cells,
we determined the TAG to protein ratio of each isolated fraction
after sucrose density gradient ultracentrifugation (Figure 3A). A
high TAG to protein ratio in the floating fraction (FF) indicates
the presence of CLDs. In addition, we determined the purity of
Frontiers in Oncology | www.frontiersin.org 4
our isolation based on the presence of specific cell component
markers in each isolated fraction (Figure 3B). Perilipin (PLIN) 3,
a bona-fide CLD-associated protein and marker of CLDs (33), is
present in the FF. PLIN3 resides in the cytosol but associates with
CLDs when CLDs are present (34), which is consistent with its
identification in the soluble fractions. The localization of PLIN3
FIGURE 1 | Cytoplasmic lipid droplets (CLDs) are present in MCF10CA1a cells. (A) Representative transmission electron microscopy (TEM) image of a MCF10CA1a
cell containing CLDs (boxed region), scale bar 2 mm. (B) Magnified image of the CLDs present in (A) scale bar 1 mm.
TABLE 1 | Number and size of CLDs within MCF10CA1a cells. 50 cells were
counted and used for the analysis.

% of cells
containing
CLDs

# CLDs
per cell

Average #
CLDs per cell

CLD diameter
range (mm)

Average CLD
diameter (mm)

90 0-41 12 0.17-1.38 0.58
June 2
021 | Volume 11
CLD diameter was measured using ImageJ. Distribution of CLD diameters is shown in
Figure 2.
FIGURE 2 | Cytoplasmic lipid droplet (CLD) size distribution. Percentage of
CLDs analyzed in Table 1 within the indicated size range. 50 cells were
counted and used for the analysis. CLD diameter was measured using ImageJ.
| Article 576326
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to CLDs was confirmed by immunocytochemistry (Figure 4).
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a
cytosolic marker, is present in the FF and soluble fractions but
absent in the pellet fraction (Figure 3B). GAPDH is identified in
CLD proteomic studies of certain cell types (35, 36), and the
identification of GAPDH in the FF suggests GAPDH is a CLD-
associated protein in MCF10CA1a cells. Calnexin (CANX), a
marker of ER, is present in only the pellet fraction (Figure 3B), as
expected based on published CLD isolation protocols (24).
Isolated fractions were loaded by volume and therefore contain
different amounts of protein; see representative Ponceau stain in
Supplementary Figure 1 for the relative amount of protein in
each fraction.

Proteomic Characterization of CLDs in
MCF10CA1a Cells
To determine the proteome of CLDs in MCF10CA1a cells, we
performed untargeted shotgun proteomic analysis of the isolated
Frontiers in Oncology | www.frontiersin.org 5
CLD fraction using LC-MS/MS. We identified 1534 proteins
(Supplementary Table 1) that are involved in a wide array of
cellular functions (Figure 5A). Many of the proteins identified
have functions in DNA and RNA metabolic processes (19%) and
protein metabolism (18%). To determine whether a specific
category of proteins was overrepresented in our dataset, we
sorted proteins by Gene Ontology Biological Process (GO_BP)
enrichment (Figure 5B). Cell-cell adhesion was the most enriched
category of proteins identified, followed by translational initiation,
and cotranslational protein targeting to membrane (Figure 5B
and Supplementary Table 2). Surprisingly, proteins involved in
lipid metabolism comprise only 3% of the proteins identified
(Figure 5A), and lipid metabolic terms are not represented
within the top 50 most enriched GO_BP categories
(Supplementary Table 2). Low abundance of lipid metabolism
proteins is in contrast to other CLD proteomic studies, where they
are frequently enriched (14). We analyzed the 41 proteins
identified as associated with lipid metabolism (Figure 6). Most
of these proteins are involved in cholesterol synthesis, including
hydroxymethylglutaryl-CoA synthase, cytoplasmic (HMGCS1),
squalene monooxygenase (SQLE), and sterol-4-alpha-
carboxylate 3-dehydrogenase, decarboxylating (NSDHL). The
localization of SQLE and NSDHL to CLDs was confirmed by
immunocytochemistry (Figure 7). Both SQLE and NSDHL are
shown to concentrate around CLDs. Other identified proteins
have basic roles in CLD metabolism, including lipolysis [patatin-
like phospholipase domain-containing protein 2/adipose
triglyceride lipase (PNPLA2/ATGL), 1-acylglycerol-3-phosphate
O-acyltransferase ABHD5 (ABHD5)], phospholipid synthesis
[choline-phosphate cytidylyltransferase A (PCYT1A)], TAG
synthesis [glycerol-3-phosphate acyltransferase 4 (GPAT4)], and
the PLINs (PLIN3 and PLIN4).

Proteins Involved in Cell-Cell Adhesion Are
Implicated in Breast Cancer Progression
We further analyzed the proteins belonging to the cell-cell
adhesion category, as this was the most enriched GO_BP term
of proteins identified (Figure 5B). To determine how CLDs and
their proteins contribute to breast cancer metastasis, we chose
proteins in the cell-cell adhesion category that also had GO_BP
terms in cell migration and signaling. Proteins with these criteria
are listed in Table 2. Many of these proteins have been shown to
A

B

FIGURE 3 | Validation of cytoplasmic lipid droplet (CLD) isolation.
(A) Triacylglycerol (TAG) to protein ratio of each isolated fraction. CLDs were
isolated from MCF10CA1a cells using sucrose density gradient
ultracentrifugation. Fractions were removed sequentially from the top of the
gradient to the bottom. Floating fraction (FF): isolated CLDs, 1-10: soluble
fractions, P: pellet. (B) Western blot of isolated fractions and whole cell lysate
(WCL). Fractions were loaded by volume: 10 mL FF-10, 5 mL P and WCL.
Membrane was probed for markers of CLDs (PLIN3), cytosol (GAPDH), and
endoplasmic reticulum (CANX). Approximate molecular weight markers for
each protein are listed. See Supplementary Figure 1 for a representative
Ponceau stain reflecting the relative levels of protein in each fraction.
FIGURE 4 | PLIN3 surrounds cytoplasmic lipid droplets (CLDs) in MCF10CA1a cells. Representative immunofluorescence images of MCF10CA1a cells. Cells were
stained with Alexa Fluor 633 to visualize PLIN3, BODIPY to visualize CLDs, and DAPI to visualize nuclei. Signals from all three channels were merged for the final image.
June 2021 | Volume 11 | Article 576326
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promote breast cancer progression, and the references for each
are included in Table 2.
DISCUSSION

To determine mechanisms by which CLDs contribute to breast
cancer metastasis, we examined the characteristics and proteome
of CLDs in the human metastatic breast cancer cell line,
MCF10CA1a, using TEM and LC-MS/MS. We found that the
majority of MCF10CA1a cells analyzed contain multiple CLDs
that associate with a variety of proteins. To our knowledge, this is
the first report of the proteome of CLDs in metastatic breast
cancer cells. We identified 1534 proteins in the isolated CLD
fraction representing a wide array of cellular functions. Many of
the proteins identified are implicated in breast cancer metastasis.
Our results provide a hypothesis-generating list of potential
players contributing to cancer progression and provide a new
perspective on the role of CLDs in metastatic breast cancer.

Our results are consistent with previous work demonstrating
that neutral lipid accumulation in breast cancer cells correlates
Frontiers in Oncology | www.frontiersin.org 6
with cancer aggressiveness (4, 5, 78–80). MCF10CA1a cells are
the most metastatic in the MCF10A series of breast cancer
progression (81) and contain twelve times more TAG than the
non-metastatic MCF10A-ras cell line from which they were
derived (82). Consistently, while most MCF10CA1a cells
analyzed contained at least one CLD (Table 1), almost no
CLDs were present in non-metastatic MCF10A-ras cells
(Supplementary Figure 2). The underlying mechanism driving
increased CLDs in metastatic MCF10CA1a cells and not in
MCF10A-ras cells is not clear, however, several factors may
contribute. For example, metastatic breast cancer cells may have
an increased ability, compared to non-metastatic cells, to take up
or synthesize FA and cholesterol which are used as substrates for
TAG and cholesteryl ester synthesis and subsequently stored in
CLDs (6). Overall, these results support our use of the
MCF10CA1a cell line as a model of mammary metastasis to
investigate the CLD proteome.

CLD size is often used to estimate the amount of cellular neutral
lipid storage and the metabolic state of the cell. For example, cells
that store large amounts of TAG, such as adipocytes (83) and
enterocytes (84), have large CLDs (ranging up to 100 µm), whereas
A

B

FIGURE 5 | General functions of identified proteins and Gene Ontology (GO) term enrichment. (A) Identified proteins grouped into general categories. Data shown
as a percent of total proteins identified. Categories with the highest to lowest percent of proteins listed from top to bottom and are read clockwise around the pie
chart. (B) Chart of the top 10 most enriched Gene Ontology Biological Process (GO_BP) terms. Most to least enriched term listed from top to bottom. Data shown
as -log10 (p-value). Enrichment scores/p-values calculated in DAVID. See Supplementary Table 2 for full list of enriched GO terms and enrichment scores.
June 2021 | Volume 11 | Article 576326
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FIGURE 6 | STRING analysis of identified proteins involved in lipid metabolism. Proteins with known functions in lipid metabolism and those associated with lipid-
related Gene Ontology Biological Process (GO_BP) terms. Red: cholesterol biosynthetic process; green: fatty-acyl-CoA metabolic process; purple: phospholipid
metabolic process; yellow: lipid droplet organization.
A

B

FIGURE 7 | SQLE and NSDHL localize to cytoplasmic lipid droplets (CLDs) in MCF10CA1a cells. Representative immunofluorescence images of MCF10CA1a cells.
Cells were stained with Alexa Fluor 633 to visualize SQLE (A) and NSDHL (B), BODIPY to visualize CLDs, and DAPI to visualize nuclei. Signals from all three
channels were merged for the final image in (A, B).
Frontiers in Oncology | www.frontiersin.org June 2021 | Volume 11 | Article 5763267
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other cell types tend to have smaller CLDs. Consistent with the size
of CLDs in cell types that do not store large amounts of TAG,
including skeletal myocytes (85), hepatocytes (86), and Chinese
Hamster Ovary (CHO) cells (87), the diameter of CLDs in the
MCF10CA1a cells averaged 0.58 µm (Table 1). Further, the
distribution of CLDs of various sizes in MCF10CA1a cells
(Figure 2) may reflect different pools of CLDs that have
potentially distinct functions (35, 88). For example, specific pools
of CLDs in brown adipose tissue are differentially involved in fatty
acidoxidationorTAGsynthesis (89). It ispossible that uniquepools
of CLDs with different functions may exist in MCF10CA1a cells;
however, this requires further investigation.

The proteome of CLDs identified in MCF10CA1a cells has
similarities and differences compared to that of other cell types.
Many of the proteins identified are consistent with the general
categories of proteins commonly found on CLDs. These include
proteins involved in lipid andCLDmetabolism, translation, protein
folding and degradation, cytoskeleton, and histones (14). Several of
the proteins identified involved in lipid metabolism have been
validated as CLD-associated proteins and also have functional
roles at the CLD surface, including PLIN3 in CLD maintenance
(90),GPAT4 (91) andPCYT1A (92, 93) inCLDexpansion and size,
ATGL in CLD lipolysis (94), and NSDHL in cholesterol synthesis
(95, 96). The identification of lipidmetabolismproteins onCLDs in
MCF10CA1acells suggestsCLDsacross cell typesmay share similar
lipid metabolic machinery and core CLD proteins.

A key difference between the proteomeofCLDs inMCF10CA1a
cells and that of other cell types is the representation of proteins in
the commonly identified categories. For example, lipid
metabolism was not a highly enriched protein category in
MCF10CA1a cells as it is in other cell types (14). Further, many
Frontiers in Oncology | www.frontiersin.org 8
of the proteins we identified in the lipid metabolism category are
involved in cholesterol metabolism, suggesting CLDs in
MCF10CA1a cells may store cholesterol (97, 98). Consistently,
cholesteryl ester accumulation and altered cholesterol metabolism
is a common feature of cancer (99, 100). We found that two
enzymes involved in cholesterol synthesis, NSDHL and SQLE,
concentrate in areas aroundCLDs inMCF10CA1a cells (Figure 7).

The identification of NSDHLwith CLDs in breast cancer cells is
consistent with previous observations of its functional association
with CLDs and role in metastasis. NSDHL modifies lanosterol
before its synthesis into cholesterol (101), and has been shown to
localize toCLDs uponoleate loading inCHOcells (95) and inCOS-
7 cells (96). In fact, oleate loading and CLD formation in CHO cells
decreased the synthesis of C-27 sterols, which includes cholesterol,
and increased the synthesis of precursor sterols, including
lanosterol (95). These results suggest the localization of NSDHL
to CLDs may be a mechanism to regulate cholesterol synthesis.
NSDHLhas also been shown to promote breast cancer progression.
NSDHLispresent at higherprotein levels inmetastatic compared to
non-metastatic breast cancer cell lines (102), and knockdown of
NSDHL in metastatic BT-20 and MDA-MB-231 cells reduced cell
viability, colony formation, and cell migration (102). However,
whether these effects are due to lack of NSDHL itself or lack of
cholesterol synthesis due toNSDHL inhibition is unclear. Thus, the
localization of NSDHL toCLDs inMCF10CA1a cells shown in this
study suggests that it may promote breast cancer progression by
regulating cholesterol synthesis. Future studies are required to
determine the role of NSDHL on CLDs in MCF10CA1a cells and
its contribution to metastasis.

The identification of SQLE with CLDs in breast cancer cells is
also consistent with previous observations of its functional
TABLE 2 | Proteins in cell-cell adhesion are associated with breast cancer metastasis.

Protein name Gene General function Proposed role in breast cancer metastasis References

IQ motif containing GTPase activating
protein 1

IQGAP1 Scaffold protein; signaling and cytoskeleton
dynamics

Promotes cell proliferation, migration, tumor growth (37–41)

Serine/threonine kinase 24 STK24 MAPK signaling Promotes cell proliferation, tumor growth (42)
S100 calcium binding protein P S100P Calcium signaling Promotes cell proliferation, migration, motility (43–45)
Fascin actin-bundling protein 1 FSCN1 Actin-binding protein; cell adhesion, motility,

migration
Promotes metastasis through NFkB and STAT3
signaling

(46–51)

GIPC PDZ domain containing family
member 1

GIPC1 Scaffold protein; signaling Involved in cell cycle, apoptosis, motility (52, 53)

Profilin 1 PFN1 Actin-binding protein; cytoskeletal dynamics Suppresses cell migration and cell cycle (54–57)
Tumor-associated calcium signal
transducer 2

TACSTD2 Calcium signaling Promotes cell growth, migration, proliferation through
AKT signaling

(58, 59)

Syndecan binding protein SDCBP Adaptor protein; signaling and cytoskeletal
dynamics

Promotes cell proliferation, growth, motility, cell cycle (60–63)

RAB1A, member RAS oncogene family RAB1A Vesicle trafficking from ER to Golgi Involved in cell proliferation, migration, EMT; involved
in mTORC1 signaling

(64, 65)

STE20 like kinase SLK Apoptosis, cytoskeletal dynamics Promotes cell migration (66)
Coronin 1B CORO1B Actin-binding protein; cell motility Involved in cell cycle progression (67)
Heat shock protein family A (Hsp70)
member 5

HSPA5 Protein folding Promotes cell motility and proliferation (68–70)

Microtubule associated protein RP/EB
family member 1

MAPRE1 Microtubule dynamics Promotes cell proliferation and tumor growth (71)

Radixin RDX Binds actin Involved in cell motility; interacts with ERBB2
receptors

(72, 73)

Signal transducer and activator of
transcription 1

STAT1 Transcription factor; responds to cytokines
and growth factors

Either promotes or inhibits tumor growth (74–77)
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association with CLDs and role in metastasis. SQLE catalyzes the
epoxidation of squalene and is considered the second rate-limiting
step in cholesterol synthesis (103). SQLE localizes to CLDs in yeast
cells (104) and has been shown to regulate CLD dynamics. For
example, inhibition of SQLE results in CLD clustering and
squalene accumulation in yeast (105), and CLD accumulation in
MCF7 breast cancer cells (106). SQLE may regulate CLD
dynamics by interacting with microprotein CASIMO1 (106).
CASIMO1 in MCF7 cells was shown to regulate the expression
of SQLE as well as CLD formation. How CASIMO1 and/or SQLE
influences CLDs is not clear; however, it may involve changes in
the cytoskeleton. Interestingly, SQLE has been identified as an
oncogene in breast cancer cells (107), suggesting it plays a role in
breast cancer metabolism. Consistently, inhibiting SQLE in MCF7
breast cancer cells reduces cell proliferation and ERK
phosphorylation/activation (106), which is a key factor involved
in initiating cell proliferation and migration in cancer cells (108).
ERK phosphorylation and activation has previously been shown to
be regulated by SQLE in other cell types including hepatocellular
carcinoma cells (109) and lung squamous cell carcinoma cells
(110). In fact, SQLE-mediated cholesterol synthesis preserves
breast cancer stem cell stemness through PI3K/AKT signaling,
another proliferative survival pathway, upon stabilization of SQLE
mRNA by long non-coding RNA 030 and poly(rC) binding
protein 2 (111). Therefore, the metabolites produced by the
action of SQLE may activate cell signaling pathways necessary
for cancer cell proliferation. Overall, these results suggest that the
localization of enzymes involved in cholesterol synthesis to CLDs
in MCF10CA1a cells may be a metabolic adaptation by cancer
cells that stimulates cell proliferation. Future studies are required
to determine the role of SQLE on CLDs in MCF10CA1a cells.

Instead of lipid metabolism proteins representing the
majority of the CLD proteome, proteins with roles in cell-cell
adhesion, translation, and mRNA metabolism were the most
prevalent in the CLD fraction of MCF10CA1a cells, suggesting
these proteins may have a novel functional role on CLDs in
cancer. The most enriched category of proteins identified were
those involved in cell-cell adhesion. This is particularly
interesting, since loss of cell adhesion is a critical first step in
the metastatic cascade (112). Many of the proteins identified in
this category have been implicated in breast cancer metastasis
(Table 2), suggesting CLDs may play a novel role in this process.
For example, CLDs may serve as a hub for signaling pathways
and cytoskeletal remodeling proteins that are needed to facilitate
the epithelial-mesenchymal transition (EMT). However, CLD
proteins may either play an active role at the CLD surface or may
be mislocalized from their typical cell location, which could
interrupt their function and contribute to metastasis. Future
studies are required to determine the role of signaling and
cytoskeletal proteins identified in Table 2 on CLDs in
MCF10CA1a cells.

Another category of proteins identified in the isolated CLD
fraction of MCF10CA1a cells is RNA binding proteins and
translational proteins. Some of these proteins are also
implicated in cell motility and breast cancer metastasis (113,
114), suggesting their localization on CLDs contributes to
Frontiers in Oncology | www.frontiersin.org 9
metastatic potential. For example, downregulation of the RNA-
binding protein ZBP1 in metastatic breast cancer cells increased
cell migration by altering the expression of mRNAs involved in
cell-cell adhesion, cytoskeleton, and cell proliferation (115). In
addition, overexpression of the 60S ribosomal subunit RPL15 in
circulating tumor cells isolated from patients with metastatic
breast cancer increased the translation of ribosomal proteins and
proteins involved in cell proliferation, and when injected into
mice resulted in increased metastasis and tumor formation (116).
Interestingly, RNA localizes to CLDs in human mast cells (117)
and ribosomes localize to CLDs in human monocyte U937 cells
and leukocytes (118). It is possible that CLDs in MCF10CA1a
cells house RNA-binding and translational proteins in order to
facilitate localized gene expression and protein translation to
promote cell migration. This hypothesis requires testing in
future experiments.

Validation of proteins identified in the CLD fraction by
methods such as immunocytochemistry is needed to conclude
that a protein associates with CLDs. It is possible that some
proteins identified localize near, but may not directly associate
with, CLDs. CLDs interact with multiple cellular organelles (119)
and proteins associated with an interacting organelle may be
isolated with the CLD fraction. Since we have not validated all
the proteins in our analysis for cellular location via another
mechanism, only hypotheses about their localization and
function in cancer progression can be made. Despite this
limitation, our analysis has generated a novel list of proteins
that can be studied in more detail in future experiments.

In summary, we characterized CLDs and the CLD proteome
isolated from the human metastatic breast cancer cell line,
MCF10CA1a. The identification of an interesting variety of
proteins in the isolated CLD fraction reflects both similarities
with CLDs in other cell types, as well as differences that may
support a novel role of CLDs in cancer. It is possible that proteins
associated with CLDs in metastatic cancer cells may play a role in
permitting the advantageous metabolic plasticity that supports
cancer progression. It would be interesting to assess the
similarities and differences of CLD proteomes in other metastatic
breast cancer cell lines which may further our understanding of
cancer progression and identify factors that can be targeted to
prevent metastasis. In conclusion, this study provides a new
perspective on the role of CLDs in breast cancer metastasis.
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