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Purpose: Treatment of multiple brain metastases with single-isocenter volumetric
modulated arc therapy causes unnecessary exposure to normal brain tissue. In this study,
a longitudinal grouping method was developed to reduce such unnecessary exposure.

Materials and Methods: This method has two main aspects: grouping brain lesions
longitudinally according to their longitudinal projection positions in beam’s eye view, and
rotating the collimator to 90° to make the multiple leaf collimator leaves conform to the
targets longitudinally group by group. For 11 patients with multiple (5–30) brain
metastases, two single-isocenter volumetric modulated arc therapy plans were
generated using a longitudinal grouping strategy (LGS) and the conventional strategy
(CVS). The prescription dose was 52 Gy for 13 fractions. Dose normalization to 100% of
the prescription dose in 95% of the planning target volume was adopted. For plan quality
comparison, Paddick conformity and the gradient index of the planning target volume,
and the mean dose, the V100%, V50%, V25%, and V10% volumes of normal brain tissue
were calculated.

Results: There were no significant differences between the LGS and CVS plans in
Paddick conformity (p = 0.374) and the gradient index (p = 0.182) of the combined
planning target volumes or for V100% (p = 0.266) and V50% (p = 0.155) of the normal brain.
However, the V25% and V10% of the normal brain which represented the low-dose region
were significantly reduced in the LGS plans (p = 0.004 and p = 0.003, respectively).
Consistently, the mean dose of the entire normal brain was 12.04 and 11.17 Gy in the CVS
and LGS plans, respectively, a significant reduction in the LGS plans (p = 0.003).

Conclusions: The longitudinal grouping method can decrease unnecessary exposure
and reduces the low-dose range in normal brain tissue.
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INTRODUCTION

Brain metastases (BMs) are the most common type of
intracranial tumors. About 20–40% of patients with cancer
develop BMs in their tumor history (1), and multiple BMs are
present in approximately 70% of patients with BMs. With recent
advances in medical care, chemotherapy, and targeted therapies,
overall survival has improved in patients with cancer. With
advances in the control of systemic disease, treatment of BMs
has become a greater challenge for oncologists (2).

With the continuous development of stereotactic radiosurgery
(SRS) and hypofractionated stereotactic radiotherapy (HFSRT)
technologies, several studies have found that patients with 5–10
BMs showed similar overall survival to patients with two to four
BMs who were treated with SRS (3–5). The SRS and HFSRT has
been an effective choice for patients with five or more BMs,
especially those who have previously been treated with whole
brain radiotherapy.

Traditionally, multiple BMs have been treated individually
with SRS or HFSRT. For each lesion, the plan employs one
isocenter with several arcs or static beams from a linac or uses
several focuses with Gamma Knife shots. When the number of
BMs reaches five, the duration of a complete treatment can be
many hours. Furthermore, planning is more difficult and
requires more care with an increased number of BMs.

Volumetric modulated arc therapy (VMAT), which has been
developed in the past decade, has been widely used in tumor
treatment at various sites because it produces highly conformal
dose distributions and has short treatment delivery times (6).
Clark GM et al. (7) contended that single-isocenter VMAT plans
can deliver conformity equivalent to that of multiple-isocenter
VMAT techniques. In recent years, many studies (8–11) have
verified the quality of single-isocenter VMAT plans, and they
have been an option in SRS or HFSRT for the treatment of
multiple BMs.

However, two problems are introduced by employing single-
isocenter VMAT in the treatment of multiple BMs using SRS or
HFSRT. One problem is how to manage the rotational
uncertainties of the patient setup. Many studies (12–15) have
focused on this problem and provided advice to address it.
Faught AM et al. (13) suggested that clinical medical physicists
revisit the quality assurance tolerances of gantry and multi-leaf
collimator (MLC) angles. Miao J et al. (15) proposed the method
of expanding the nonuniform gross target volume (GTV) or
clinical target volume by adding a planning target volume (PTV)
margin. The other problem is how to reduce unnecessary
exposure of normal brain tissue. In multiple-target single-
isocenter VMAT treatment planning, it is common for a pair
of targets to share MLC leaf pairs when they are aligned along the
direction of MLC leaf travel [i.e., the “island-blocking” problem
proposed by Jun Kang (16)]. The island-blocking problem and
the larger jaw openings used in VMAT plans result in increased
leakage of the dose between the leaves, which is the main reason
for the increase in unnecessary exposure of normal brain tissue.
Some researchers (16, 17) have proposed some new algorithms to
select the optimal couch and collimator angles to reduce the
island-blocking problem. However, those methods require couch
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rotation during treatment, which would not only increase
treatment time but also introduce new errors during the
patient setup procedure. If such methods are employed, the
problem of increased dose leakage between the leaves caused
by the larger jaw openings in single-isocenter VMAT plans still
exists. Therefore, the existing methods have limitations.

Helical tomotherapy (HT) employs a small 6-MV linac
mounted on a ring gantry. It benefits from its binary MLC,
which is perpendicular to the transverse plane of the body and
the helical treatment mode. It has excellent dose modulation
ability and can deliver a complex dose distribution. The island-
blocking problem and the larger jaw opening issue no longer exist
when patients with multiple BMs undergo helical tomotherapy.

Inspired by the treatment mode of HT, we developed a
longitudinal grouping method to reduce unnecessary exposure
of normal brain tissue without couch rotation in single-isocenter
VMAT technology for treatment of multiple BMs by SRS or
HFSRT. The method can reduce the low-dose range of normal
brain tissue, and it is easy to implement.
MATERIALS AND METHODS

Method Description
In this study, we developed a longitudinal grouping method to
reduce the impact of the island-blocking problem and the larger
jaw opening problem in single-isocenter VMAT treatment of
multiple BMs. In this method, multiple BMs were divided into
several groups according to their locations. Then, treatment arcs
were added, and dose optimization was performed. One
therapeutic arc was added to each group. The number of
therapeutic arcs depended only on the group number, not on
the number of BMs in each group. The grouping technique is the
most important aspect of this method. In general, the
longitudinal positions of the targets on the beam’s eye views
(BEVs) throughout all 360° of beam angles are the primary
consideration. If the targets’ longitudinal projections overlap
when the gantry rotates, they can be grouped together. If a
target is located between two groups, and the two groups have
targets that overlap with it, group assignment is more difficult. In
such cases, the target can be viewed on CT images to observe its
relationship to adjacent targets, and then it can be classified into
the group that is closest to it on the CT images. After the
grouping process, it should be verified that the distance
between the adjacent surfaces of the longitudinal projections of
any two lesions in the same group does not exceed 1 cm. Figure 1
is a grouping example shown in BEV. Then, the collimator can
be rotated to 90° to align the MLC conformal to the targets in the
longitudinal direction group by group, analogously to the
treatment mode of HT. The difference is that in this method,
the MLC leaf can stay in any position in the field, whereas the
MLC leaves have only on and off modes in HT.

The method has four planning steps. First, all of the multiple
BMs are grouped. For each patient, all BMs are composited as a
structure named PTVall, and they are divided into several groups
longitudinally according to the above grouping method. The
associated lesions in each group are combined into a structure
June 2021 | Volume 11 | Article 578934
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named PTV Gnumber, where PTVall is divided into PTV
G1, PTV G2, PTV G3, etc. (Figure 1). Each PTV group
corresponds to a prescription, and the prescriptions are also
named according to the corresponding numbers of the PTV
groups (e.g., prescription1, prescription2). Figure 2 shows four
prescriptions for an example patient. Second, the isocenter is set,
and the first arc is added. The isocenter is positioned at the
centroid of all the targets. After the isocenter is set, the first full
arc is added and combined with the first prescription in either
the clockwise or counter-clockwise direction. The collimator of
the arc is set to 90° to ensure that the MLC leaves longitudinally
conform to the lesions in the first group. Third, the first arc is
optimized. Only the lesions in the first group are added as the
target objects. The organs-at-risk (OARs), the rings (i.e., the
rings around PTVall), and normal tissue are set as constrained
objects. Fourth, another arc is added and optimized group by
group. After the optimization of the first lesion group, the second
arc is added, the collimator is rotated to 90°, the second group of
lesions replaces the first lesion group as the new target objects,
Frontiers in Oncology | www.frontiersin.org 3
and the constrained objects are adjusted according to the new
situation. This process is repeated until all lesion groups are
added and optimized.

Patient Selection and Treatment Planning
To evaluate the method’s effectiveness, 11 patients with 5–30
previously treated BMs were retrospectively studied in this work.

According to our clinical practice, patients were treated with
HFSRT, and the prescription dose was 52 Gy delivered in 13
fractions for each patient. The CT images were acquired on a
Somatom Definition AS 40 (Siemens Healthcare, Forchheim,
Germany) or Brilliance CT Big Bore (Philips Healthcare, Best,
Netherlands) system with 2-mm slice thickness. The MR images
were fused with the CT images for GTV contouring, and the PTVs
were derived using a 2-mm expansion from the GTVs. Each
patient’s PTVs were combined into a PTVall for plan evaluation.
The mean volume of PTVall was 24.49 cm3 (2.93–62.51 cm3).

In each patient, two VMAT plans were generated for
comparison to verify the method’s ability to reduce the low-
FIGURE 2 | Example prescription settings.
FIGURE 1 | An example of PTV groups in 0° and 90° BEVs. The patient had 14 BMs, which were longitudinally divided into four groups marked by different colors
according to their longitudinal projections.
June 2021 | Volume 11 | Article 578934
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dose range of exposure to normal brain tissue. One plan was
designed using the longitudinal grouping strategy devised in this
work (named the LGS plan), and the other plan was developed
using the conventional strategy, in which all lesions were
optimized simultaneously (named the CVS plan). The
isocenter and number of VMAT arcs were identical between
the CVS and LGS plans. Except for the fact that PTVall was set as
the target of optimization, the other constraint objectives were
consistent with the final optimization objectives in the LGS plan,
and the structures of the constrains were the same in the two
planning methods. All plans were designed using the Pinnacle
version 16.2 (Philips Healthcare, Best, Netherlands) treatment
planning system and the adaptive convolution algorithm. We
used a 6-MV flattening filter-free photon beam with a maximum
dose rate of 1,400 MU/min. The MLC with 2.5-mm leaves
(Varian HD120) was used for planning and delivery, and each
plan was calculated with high-resolution dose grid spacing of
2 mm. All plans were normalized so that 95% of the PTVall
volume received 100% of the prescription dose.
Plan Evaluation and Comparison
The dosimetric parameters of PTVall and the OARs were derived
from the dose volume histograms for plan evaluation. According
to International Commission on Radiation Units and
Measurements reports 83 (18) and 91 (19), the conformity
index (CI) and gradient index (GI) were quantitatively assessed
as tumor evaluation parameters. The CI represents the degree to
which the prescription dose region conforms to the surface of
PTVall, and it is calculated using the Paddick formula (20):
(TVPV)2/(TV × PV), where TVPV represents the volume of
PTVall, which is covered by the prescription dose; TV represents
the volume of PTVall; and PV represents the prescription
isodose volume. The GI is used to evaluate the dose falloff, and
it was defined as PVhalf/PV, where PVhalf denotes the volume
enclosed by the isodose surface of half the prescription dose, and
PV is the volume enclosed by the prescription isodose surface.
The median absorbed dose (D50%), the near maximum dose
(D2%), and the near-minimum dose (D98%) of PTVall were
recorded for target evaluation.

To evaluate the method’s effectiveness at minimizing
unnecessary exposure to normal brain tissue, the dose received
by normal brain tissue was also recorded for statistical analysis,
including V100%, V50%, V25%, V10%, and Dmean of normal brain.
The decreased proportions of V25% (1 − V25%, LGS plan/V25%, CVS

plan), V10% (1 − V10%, LGS plan/V10%, CVS plan), and Dmean (1 −
Dmean, LGS plan/Dmean, CVS plan) of normal brain in LGS plans were
calculated, and the relationships between the decreased
proportions and the number of lesions were analyzed.
Statistical Analysis
Paired Wilcoxon signed rank two-sided tests were performed on
all datasets with IBM SPSS Statistics 19 (SPSS, Inc., Chicago, IL,
USA). Individual comparisons between dosimetric parameters
were performed, and p-values of <0.05 were considered significant.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

All plans achieved 95% coverage of PTVall. Figure 3 shows
representative axial, sagittal, and coronal dose distributions for
the two plans. The LGS plan achieved better low-dose distribution.
By checking the BEV of each arc (see Figure 4), we found that all of
the control points of the LGS plan were shaped like narrow strips
and did not have the island-blocking problem, whereas the jaw
openingwasmuch larger for the control points of theCVSplan, and
the island-blocking problem could not be avoided in the CVS plan.
Table 1 contains a summary of the plan evaluation parameters and
the respective descriptive statistics.

The LGS plans achieved a similar level of conformity to that
of the CVS plans (CI = 0.80 ± 0.05 and 0.79 ± 0.06, respectively;
p = 0.374). There was also no significant difference in GI between
the plans (LGS: 6.35 ± 1.15; CVS: 6.53 ± 1.24; p = 0.182).
Figures 5 and 6 show the relationship between CI value, GI
value, and lesion number: there was no significant correlation
between CI, GI, and the number of BMs. There was also no
significant difference in the near-maximum dose (D2%) of PTVall
between the two plans (p = 0.534). However, the near-minimum
dose (D98%) of the LGS plan was slightly higher than that of the
CVS plan, and the median absorbed dose (D50%) of the LGS plan
was slightly but significantly lower than that of the CVS plan
(p = 0.006 and p = 0.041, respectively).

Consistently with the equivalence in GI values, no significant
difference between the two plans resulted for V100% and V50% of
normal brain: 1.61 ± 2.17 cm3 and 129.72 ± 109.82 cm3,
respectively, for LGS plans and 2.13 ± 3.26 cm3 and 139.26 ±
121.21 cm3, respectively, for CVS plans (p = 0.266 and p = 0.155,
respectively). Statistically significant improvement in favor of LGS
plans was achieved for V25% and V10% of normal brain: the value
decreased from (543.72 ± 353.44 cm3, 1015.68 ± 366.79 cm3),
respectively, for CVS plans to (511.37 ± 342.54 cm3, 928.45 ±
385.76 cm3), respectively, for LGS plans (p = 0.004 and p = 0.003,
respectively). Consistently, the LGS plans’ mean dose of normal
brain tissue (1116.68 cGy) was significantly lower than that of CVS
plans in statistics (1,204.35 cGy; p = 0.003).

As we mainly focused on evaluating the reduction of
unnecessary exposure of normal brain tissue, we determined the
relationships between the decreasing proportion ofV25%, V10%, and
Dmean of normal brain and the number of lesions in the two plans.
Figures 7 and 8 show that there was no particular relationship
between the decreased proportions of V25%, V10%, and Dmean of
normal brain in the LGS plans and the number of lesions, but the
decreased proportions in theDmean value of normal brain tended to
decrease with an increased number of lesions.
DISCUSSION

In this work, we developed a practical method for application in
single-isocenter VMAT treatment planning for multiple BMs.
This method’s strategy is to mimic the treatment mode of HT in
single-isocenter VMAT plans. In our department, HT has been
used in multiple BMs radiotherapy and has obtained good
June 2021 | Volume 11 | Article 578934
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clinical results (21). Accordingly, if the collimator setting of the
C-arm linac is maintained at 90°, the motion of the MLC leaves
would be similar to the motion of binary MLC in HT, but more
flexible when the optimized target objective is limited to a group
of lesions. Since the maximum adjacent surface distance between
the longitudinal projections of lesions in the same group did not
exceed 1 cm, even when two or more lesions shared the same
MLC leaf pairs, there was no unnecessary exposure to normal
brain because there was only a narrow exposure gap between the
lesions. Furthermore, each VMAT arc only covered lesions in the
same group, which indirectly mitigates the deleterious effects of
large jaw-defined field sizes. This reduces the island-blocking
Frontiers in Oncology | www.frontiersin.org 5
problem, and reducing the area of the jaw opening also decreases
the leakage dose between the leaves, is which caused by the large
jaw opening. The present study’s results verify this reasoning.

The results of comparisons between the two plan types
showed no differences in conformity or gradient between the
two methods. This may be because except for the first VMAT arc,
the other VMAT arcs were optimized with the previously
optimized dose, which may affect the optimization results of
the current arc. Although there was no statistical difference
between the two plan types’ average values of CI and GI, the
conformity and gradient of the LGS plan were slightly better than
those of the CVS plan.
FIGURE 3 | Transverse, sagittal, and coronal dose distributions of two plans for an example patient. The patient had 14 BMs, which were divided into four
groups. The 100, 75, and 50% prescription isodose lines did not show much difference between the two plans, but the differences between the 25 and 10%
prescription isodose lines between the two plans were obvious. The dark blue ovals mark the areas where there is a significant difference in dose distribution
between the two plans.
June 2021 | Volume 11 | Article 578934
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FIGURE 4 | One segment of LGS and CVS in BEV. The control points in the LGS plan are shaped like narrow strips that do not have the island-blocking problem.
However, in the CVS plan, the issues of the island-blocking problem and large jaw opening inevitably arise.
TABLE 1 | Statistics of plan evaluation parameters for the two plan types.

LGS plan CVS plan P

Range Median Mean Range Median Mean

PTVall D2% 6,026–6,365 6,229 6,210.55 5,820–6,506 6,253 6,236.82 0.534
D98% 5,048–5,103 5,072 5,074.36 4,983–5,119 5,035 5,037.45 0.006
D50% 5,583–5,805 5,689 5,690.91 5,569–5,950 5,755 5,760.82 0.041
CI 0.69–0.86 0.80 0.80 0.65–0.86 0.79 0.79 0.374
GI 5.08–8.53 6.04 6.35 4.95–8.80 6.22 6.53 0.182

Normal brain V100% 0.24–7.81 1.02 1.61 0.20–11.28 1.11 2.13 0.266
V50% 18.85–367.44 91.95 129.72 18.92–383.79 91.07 139.26 0.155
V25% 87.81–1,047.50 434.11 511.37 100.48–1,048.71 505.99 543.72 0.004
V10% 348.24–1,389.17 921.81 928.45 403.40–1,414.54 1,154.37 1,015.68 0.003
Dmean 398.50–1,829.70 1,079.80 1,116.68 475.50–1,954.50 1,184.90 1,204.35 0.003
Frontiers in Oncology
 | www.frontiers
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FIGURE 5 | Conformity values of the two plans for the 11 patients.
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FIGURE 7 | The relationship between the decreased proportion of V25% and V10% of normal brain in LGS plans and the number of lesions. There was no obvious
correlation between the two factors.
FIGURE 8 | The relationship between the decreased proportion of Dmean of normal brain in LGS plans and the number of lesions. It seemed that the decreased
proportions in the Dmean value of normal brain tended to decrease with an increased number of lesions.
FIGURE 6 | Gradient index values of the two plans for the 11 patients.
Frontiers in Oncology | www.frontiersin.org June 2021 | Volume 11 | Article 5789347
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The method proposed in this study decreased the low-dose
region of normal brain tissue in some patients, but in some
patients, the magnitude of the decrease was small. We can
analyze this method’s effectiveness according to the number and
location distribution of the BMs. First, Figure 8 shows that this
method’s effectiveness may decrease with an increased number of
BMs, in line with our expectations. When the number of BMs
increased, most BMs were adjacent to each other on BEVs. Even if
the VMAT plan is created by conventional methods, this reduces
the island-blocking problem, and most of the leakage between
MLC leaves is also irradiated into tumors, reducing the impact on
the low-dose range of normal brain tissue. The locations of BMs
are also an influencing factor. The distribution of targets in BEVs
can fall into the following three categories: (a) very concentrated;
(b) very scattered; (c) partly concentrated, partly scattered. If the
targets are very concentrated (i.e., all BMs show closely adjacent
status on BEVs), there is no need to use this method because the
impact of the problems mentioned above is very small. Thus, the
longitudinal grouping method is mainly useful for the other two
categories. Furthermore, if there is a large distance between the
BMs in the cephalo-caudal direction, a large area of normal brain
tissues between those targets may be exposed to low-dose
irradiation if the VMAT plan is devised by conventional
methods. In addition, the low dose region may be larger if the
jaw is fixed during optimization. The longitudinal grouping
method would be more advantageous in the latter situation.

Although the proposed method was applied to multiple BMs
treated with VMAT, it can also be applied to other situations in
which multiple target volumes are treated by either VMAT
or IMRT.

In the current method, tumors are grouped manually. This
makes the planning process more complicated and time-
consuming than the conventional method, in which all of the
lesions are planned at the same time. Automatic grouping could
solve this limitation, but such methods would require cooperation
from the vendors of treatment planning systems. This method can
also be applied to non-coplanar situations, but the effects of that
specific application require further research.

In conclusion, the longitudinal grouping method can decrease
unnecessary exposure and reduces the low-dose range of
exposure to normal brain tissue.
Frontiers in Oncology | www.frontiersin.org 8
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