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Purpose: To develop and validate a radiomics nomogram for identifying sub-1 cm benign
and malignant thyroid lesions.

Method: A total of 171 eligible patients with sub-1 cm thyroid lesions (56 benign and 115
malignant) who were treated in Yantai Yuhuangding Hospital between January and
September 2019 were retrospectively collected and randomly divided into training (n =
136) and validation sets (n = 35). The radiomics features were extracted from unenhanced
and arterial contrast-enhanced computed tomography images of each patient. In the
training set, one-way analysis of variance and least absolute shrinkage and selection
operator (LASSO) logistic regression were used to select the features related to benign
and malignant lesions, and the LASSO algorithm was used to construct the radiomics
signature. Combined with clinical independent predictive factors, a radiomics nomogram
was constructed with a multivariate logistic regression model. The performance of the
radiomics nomogram was evaluated by using the receiver operating characteristic (ROC)
and calibration curves in the training and validation sets. The clinical usefulness was
evaluated by using decision curve analysis (DCA).

Results: The radiomics signature consisting of 13 selected features achieved favorable
prediction efficiency. The radiomics nomogram, which incorporated radiomics signature
and clinical independent predictive factors including age and Thyroid Imaging Reporting
and Data System category, showed good calibration and discrimination in the training
(area under the ROC [AUC]: 0.853; 95% confidence interval [CI]: 0.797, 0.899) and
validation sets (AUC: 0.851; 95% CI: 0.735, 0.931). DCA demonstrated that the
nomogram was clinically useful.

Conclusion: As a noninvasive preoperative prediction tool, the radiomics nomogram
incorporating radiomics signature and clinical predictive factors shows favorable
predictive efficiency for identifying sub-1 cm benign and malignant thyroid lesions.
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INTRODUCTION

According to ultrasound (US) screening and autopsy studies,
thyroid lesions, which mainly include benign lesions and thyroid
cancer, are common diseases with a prevalence of 30%–67% in
the general population (1, 2). Papillary thyroid microcarcinoma
(PTMC) is a subtype of papillary thyroid carcinoma (PTC),
which is defined by the WHO as having a maximum diameter of
1.0 cm or less (3, 4). In recent decades, the incidence of thyroid
cancer has rapidly increased throughout the world (5–7), with
PTMC accounting for half of new cases (3, 8, 9). Although
PTMCs usually have an indolent course, 24%–63% of patients
may develop cervical regional lymph node metastasis at
presentation (10, 11). To avoid overtreatment of thyroid
lesions, benign lesions should be accurately distinguished from
malignant ones before performing a biopsy or surgical resection
(8, 9, 12).

At present, the main methods used to diagnose thyroid
lesions are US and US-guided fine-needle aspiration biopsy
(US-FNAB) (13, 14). However, US examinations show a
diagnostic sensitivity of only 27%–63% for detecting lesion
malignancy and are highly dependent on radiologists’
experience (15). Previous studies have shown that different
radiologists can make different diagnoses after reviewing the
US images of the same thyroid nodule (16). US-FNAB has a
sensitivity of 54%–90% and a specificity of 60%–98% in
diagnosing PTMC, and it has a sensitivity of approximately
30% in detecting non-diagnostic and indeterminate lesions
(17–19). The American Thyroid Association guidelines do not
recommend biopsy for sub-1 cm lesions that are highly
suspicious for PTC on US. No non-invasive method can
effectively and reliably diagnose PTMC. Thus, the methods for
diagnosing sub-1 cm thyroid lesions should be improved, and the
need for biopsy and diagnostic surgery should be reduced.

Computed tomography (CT), a common imaging
examination method, is of great auxil iary value in
preoperatively evaluating and determining the extent,
localization, and lymph node status of the tumor (20).
However, most diagnostic information from CT is based on
visual inspection by a radiologist, who may miss critical
diagnostic information. Thus, conventional CT is not effective
in diagnosing thyroid lesions, especially sub-1 cm ones (21). In
recent years, radiomics, which is the quantitative analysis of a
large amount of data in medical images by means of computer
technology, has received increasing attention due to its improved
diagnosis and prediction accuracy (22–27). When combined
with other relevant clinicopathological variables, radiomics-
derived data can produce a more accurate and robust
evidence-based decision system (28). Although the radiomics
features of CT images can be used to help radiologists identify
benign and malignant thyroid lesions (29), to the best of our
knowledge, no radiomics-based study has predicted sub-1 cm
benign and malignant thyroid lesions.

Therefore, the present study aimed to develop and validate a
radiomics nomogram that incorporates radiomics features and
clinical risk factors for identifying sub-1 cm benign and
malignant thyroid lesions.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Patients
This study was approved by the ethics committee of the Yantai
Yuhuangding Hospital. The informed consent requirement was
waived. Patients with thyroid lesions who were treated at Yantai
Yuhuangding Hospital from January to September 2019 were
consecutively collected according to the inclusion and exclusion
criteria. The inclusion criteria were as follows: (1) the pathology
of surgical specimens was certain; (2) the maximum diameter of
the thyroid lesion was ≤1 cm; and (3) clinical, US, and CT data
were complete. The exclusion criteria were as follows: (1) biopsy
or resection had been performed before the US and CT
examination, (2) patients suffering from other tumor diseases,
(3) patients with Hashimoto’s thyroiditis, and (4) cases with
artifacts or noise affecting image quality. Figure 1 shows the
recruitment pathway of patients. A total of 171 fully eligible
patients with sub-1 cm thyroid lesions met the criteria (mean
age, 46.47 ± 11.03 years; range, 21 to 71 years) were included.
The patients were divided into two sets at a ratio of 8:2 using
computer-generated random numbers: training set (n = 136;
mean age, 46.21 ± 11.18 years; range, 21 to 71 years) and
independent validation set (n = 35; mean age, 47.46 ± 10.54
years; range, 25 to 63 years).

The clinical data of each patient were obtained by reviewing
the medical records, including age, gender, Thyroid Imaging
Reporting and Data System (TI-RADS) category, CT
characteristics (maximum diameter, calcification, and location
of nodule), free triiodothyronine (FT3), free thyroxine (FT4),
and thyroid-stimulating hormone (TSH). Two senior
radiologists reviewed all images and reassessed each lesion
according to the 2017 American College of Radiology TI-
RADS scoring criteria. The CT characteristics were re-
examined and recorded by two radiologists with 10 years (Dr.
A) and 8 years (Dr. B) of experience in the diagnosis of thyroid
lesions. Any disagreements were resolved through negotiation to
ensure accuracy and repeatability.

CT Image Acquisition
All patients underwent contrast-enhanced thyroid CT with a 64-
slice spiral CT scanner (Siemens, Germany) or 256-slice spiral
CT scanner (Philips, Netherlands). The exposure parameters for
the CT scan were as follows: 120 kV, 300 effective mAs, scanning
slice thickness 1.25 mm, pitch of 0.97, and matrix of 512 × 512.
The scan range was from the skull base to the subclavian region.
After unenhanced CT scanning, a contrast-enhanced CT scan
was performed. Approximately 80–100 ml of nonionic contrast
material (iopamidol, 320 mg/ml) was injected into the cubital
vein at a rate of 3.5 ml/s, and then saline (30 ml) was injected at
the same rate. Arterial-phase images were obtained at 30 s. All
images were derived from the Picture Archiving and
Communication System with the data format of Digital
Imaging and Communications in Medicine. The images were
imported into Radcloud (Huiying Medical Technology Co., Ltd.)
and preprocessed. This process consisted of three steps, namely,
standardization of the gray value of the region of interest (ROI),
discretization of the gray level, and image resampling (30–32).
June 2021 | Volume 11 | Article 580886
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ROI Segmentation, Radiomics Feature
Extraction, and Radiomics Signature
Construction
Figures 2 and 3 present the radiomics workflow and study
flowchart. The tumor ROI was manually segmented on the
unenhanced and arterial contrast-enhanced CT images of the
largest cross-sectional section. The manual segmentations were
performed by Dr. A and Dr. B who were blinded to the
pathologic results. Radiomics features (shape, firstorder, texture
features) were extracted automatically from the ROIs of each
image. ROI segmentation and radiomics feature extraction were
performed using Radcloud (Huiying Medical Technology
Co., Ltd.).

Intra- and inter-class correlation coefficients (ICCs) were
used to evaluate the intra- and inter-observer reproducibility of
radiomics feature extraction. First, Dr. A and Dr. B randomly
analyzed the images of 30 patients to evaluate the inter-class
Frontiers in Oncology | www.frontiersin.org 3
reproducibility. Two weeks later, Dr. A repeated the same
procedure. An ICC greater than 0.8 indicates good agreement
of the feature extraction. The remaining ROI segmentation was
performed by Dr. A.

Then, one-way analysis of variance (ANOVA) and least
absolute shrinkage and selection operator (LASSO) logistic
regression were used to select the most useful predictive
radiomics features from the training set. For the LASSO
algorithm, the optimal penalization coefficient lambda (l) was
set by five-fold cross-validation, and radiomics features with
non-zero coefficients within the training set were finally selected
to construct the radiomics signature (33–35). The radiomics
signature score (Rad-score) formula was generated using a linear
combination of the selected features, which were weighted by
their respective coefficients. Then, the Rad-score was calculated
for each patient using this formula to compare the significant
difference between the Rad-score of sub-1 cm benign and
FIGURE 1 | Recruitment pathways for patients.
June 2021 | Volume 11 | Article 580886
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malignant lesions in the training and validation sets (Mann–
Whitney U test). The predictive efficiency of the radiomics
signature was quantified by using the area under the receiver
operating characteristic (ROC) curve (AUC) in the training and
validation sets.

Clinical Predictive Factors Selection and
Radiomics Nomogram Construction
One-way ANOVA and multivariate logistic regression were
performed to select independent predictive factors related to
the identification of benign and malignant thyroid lesions,
including clinical characteristics and Rad-score in the training
set. Then, a radiomics nomogram was constructed on the basis of
the multivariate logistic regression model.

Performance of the Radiomics Nomogram
ROC curves were plotted to assess the discrimination
performance of the radiomics nomogram for sub-1 cm benign
and malignant lesions. The calibration performance of the
radiomics nomogram was evaluated by using calibration
(agreement between the observations and the predicted
malignant probability) curve. The main and ultimate purpose
of using the nomogram is to combine the research results with
clinical decisions so as to maximize patient benefit. However,
discrimination and calibration could not capture the clinical
consequences of a particular level of discrimination or degree of
miscalibration. Therefore, decision curve analysis (DCA) was
conducted to determine the clinical usefulness of the radiomics
nomogram by quantifying the net benefits at different threshold
probabilities in the validation set (net benefit is defined as true-
Frontiers in Oncology | www.frontiersin.org 4
positive rate minus false-positive rate, weighted by the relative
harm of false-positive and false-negative results).

Statistical Analysis
All statistical analyses were performed using R software 3.5.3 and
Python 2.7 software. Continuous data are reported as mean ±
standard deviation or median (interquartile range). Categorical
data are reported as numbers (%). All the levels of statistical
significance were two-sided, and P-values < 0.05 were considered
significant. The “SelectKBest” and “LassoCV” in Scikit-learn
were used for selecting radiomics features. The “glm” function
was used for multivariate logistic regression analysis. The
“glmnet” package was used for LASSO logistic regression.
The “vioplot” package was used to plot the violin diagram. The
“Hmisc” package was used to draw the radiomics nomogram.
The “pROC” package was used to plot the ROC curves and
measure the AUCs. The “rms” package was used to plot the
calibration curves. The “rmda” package was used to
perform DCA.
RESULTS

Clinical Characteristics
The clinical characteristics of patients in the training and
validation sets are summarized in Table 1. No significant
differences were found between the training and validation sets
in terms of gender, TI-RADS category, CT characteristics
(maximum diameter, calcification, and location of nodule), age,
FT3, FT4, TSH, or pathology (P > 0.05).
FIGURE 2 | Flowchart showing the process of radiomics. An example of imaging segmentation and features extraction for patients with malignant nodule. ROI
segmentation is performed on unenhanced and arterial contrast-enhanced computed tomography images. Features are extracted from the ROI, including tumor
shape, intensity and texture. ROI, region of interest.
June 2021 | Volume 11 | Article 580886
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Construction of Radiomics Signature
In the training set, a total of 1409 radiomics features were
extracted from each CT image. Favorable inter-observer and
intra-observer reproducibility of feature extraction was
achieved with intra-observer ICCs ranging from 0.856 to
0.914 and inter-observer ICCs ranging from 0.817 to 0.897.
Then, 13 non-zero coefficient features associated with benign
and malignant lesions were selected after using the ANOVA
and LASSO algorithms (Figures 4A, B and Table 2), which
included one morphological feature, six first-order features,
Frontiers in Oncology | www.frontiersin.org 5
and six texture features. Rad-score of each lesion was calculated
by the 13 radiomics features. The results showed that the Rad-
scores (median [interquartile range]) of the malignant lesions
and benign lesions were significantly different (0.02 [-0.06 to
0.10] vs. -0.07 [-0.12 to 0.00], respectively, P < 0.05, Mann–
Whitney U test); this difference was confirmed in the validation
set (0.07 [-0.03, 0.15] vs. 0.03 [-0.08, 0.01], respectively, P <
0.05). The violin distribution of Rad-scores for benign and
malignant lesions in the training and validation sets is
presented in Figures 4C, D.
FIGURE 3 | Study method flowchart.
June 2021 | Volume 11 | Article 580886
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Construction of Radiomics Nomogram
After performing one-way ANOVA and multivariate logistic
regression, age, TI-RADS category, and Rad-score were
identified as final predictors of sub-1 cm thyroid malignancy.
A radiomics nomogram incorporating these three predictors was
constructed (Figure 5).

Performance of Radiomics Nomogram
Figures 6A, B show the ROC curves of the nomogram, Rad-score,
and clinical predictionmodel in the training and validation sets. The
results of AUCs for the nomogram, Rad-score, and clinical
prediction model were 0.853 (95% confidence interval [CI]: 0.797,
0.899), 0.742 (95% CI: 0.676, 0.801), and 0.813 (95% CI: 0.752,
0.864) in the training set and 0.851 (95% CI: 0.735, 0.931), 0.707
(95% CI: 0.574, 0.818), and 0.775 (95% CI: 0.648, 0.873) in the
validation set, respectively. The sensitivity and specificity of three
models in the training and validation sets were exhibited in the
Table 3, which showed the radiomics nomogram had good
discrimination efficiency. Figure 6C illustrates the calibration
curve of the radiomics nomogram. The calibration curve showed
good calibration in the training set. The favorable calibration of the
radiomics nomogram was confirmed with the validation set
(Figure 6D). DCA was used to assess the clinical usefulness of
the radiomics nomogram, radiomics signature, and clinical
prediction model in the validation set (Figure 7). If the threshold
probability of clinical decision was between 0.0 and 1.0,using the
nomogram to predict malignancy providedmore benefit than either
the treat-all (assuming all lesions were malignant) or treat-none
strategy (assuming all lesions were benign). Moreover, the use of
radiomics nomograms to predict malignancy provided more net
Frontiers in Oncology | www.frontiersin.org 6
benefit than the use of the radiomics signature alone or clinical
prediction model alone.
DISCUSSION

In recent years, themorbidity of PTMChas dramatically increased.
Studies have shown that somePTMCs canbe associatedwith highly
aggressive histological variants and even exhibit early localized
invasion or lymph node and distant metastasis (36–39).
Unfortunately, the accuracy of diagnosing PTMC is inefficient,
resulting in a proportion of patients being mistreated or
misdiagnosed. In the present study, the potential ability of CT-
based radiomics for identifying sub-1 cm benign and malignant
thyroid lesions was discussed. Our results indicated that the
radiomics nomogram combined with radiomics signature and
clinical risk factors could preoperatively predict small thyroid
lesions with good performance.

To construct the radiomics signature, a LASSO logistic
regression model was used to reduce the radiomics features. This
method is widely used in discriminating benign and malignant
lesions (37, 40, 41), and it is designed to avoid overfitting (42, 43). In
our study, 13 radiomics features were finally selected as the most
closely related features to the sub-1 cm thyroid lesion status,
including 1 shape feature, 6 first order statistics features, 2 gray
level dependence matrix (GLDM)-derived texture features, 2 gray
level run-length matrix (GLRLM)-derived texture features, and 2
gray level size zone matrix (GLSZM)-derived texture features.
Among them, sphericity accounted for the greatest weighted,
indicating that the shape feature of the lesion may be the most
TABLE 1 | Clinical characteristics of patients in the training and validation sets.

Training set (n=136) Validation set (n=35) P-value

Gender 0.144
Male 40(29.41) 6(17.14)
Female 96(70.59) 29(82.86)
TI-RADS 0.138
3 5(3.68) 4(11.43)
4A 31(22.79) 4(11.43)
4B 82(60.29) 25(71.43)
4C 17(12.50) 2(5.71)
5 1(0.74) 0(0.00)
CT-location 0.708
Left 69(50.74) 19(54.29)
Right 67(49.26) 16(45.71)
CT-calcification 0.668
Yes 23(16.91) 7(20.00)
No 113(83.09) 28(80.00)
Age(years),mean ± SD 46.21 ± 11.18 47.46 ± 10.54 0.554
CT-diameter(cm)*,mean ± SD 0.64 ± 0.19 0.59 ± 0.19 0.184
FT3,mean ± SD 4.95 ± 0.68 5.27 ± 1.77 0.088
FT4,mean ± SD 16.19 ± 2.38 16.96 ± 4.52 0.171
TSH,mean ± SD 2.41 ± 1.24 2.60 ± 1.85 0.489
Nodule pathology 0.828
Benign 44(32.35) 12(34.29)
Malignant 92(67.65) 23(65.71)
June 2021 | Volume 11 | Article
TI-RADS, Thyroid imaging reporting and data system; CT, computed tomography; SD, standard deviation; FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid stimulating
hormone; Data are number of patients and percentage if not specified.
*Largest diameter of the target lesion.
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important feature affecting the diagnosis of sub-1 cm benign and
malignant thyroid lesions. Several studies have shown that shape
features differentiate benign and malignant lesions on the basis of
CT scans (44–46). At the same time, sphericity was inversely
correlated with the radiomics signature, which is consistent with
the findings of Limkin et al. (47). The radiomics signature based on
unenhanced and arterial contrast-enhanced CT images showed
good discrimination ability in the training (AUC: 0.742) and
validation sets (AUC: 0.707).

It iswell known thatUSandUS-FNABhave significant advantages
in determining thyroid lesions, but Zhang et al. (48) found that the
sensitivity, specificity, and AUCofUS in identifying PTMCwere only
0.684, 0.771 and 0.728, which means that the diagnostic ability of US
in PTMC is varies greatly. On the other hand, US-FNAB did show a
greater advantage in the diagnosis of PTMC, Gao et al. (49) showed
that the sensitivity, specificity, and AUC of US-FNAB in identifying
PTMCwere 0.988, 0.905, and 0.947, respectively. As a contrast, in our
study, the sensitivity, specificity, and AUC of the nomogram model
were 0.775, 0.790, and 0.851, respectively. However, CT is a more
objective and non-invasive option.
TABLE 2 | Radiomics features selected in ANOVA and LASSO regression
analysis.

Radiomics features Coefficients

original_shape_Sphericity_pv -0.099838
original_firstorder_Kurtosis_pv 0.060079
original_firstorder_Range_pv 0.032309
logarithm_firstorder_Energy_pv -0.017484
original_firstorder_TotalEnergy_pv -0.015415
original_firstorder_Energy_pv -0.014501
logarithm_firstorder_Skewness_pv -0.006939
logarithm_gldm_DependenceNonUniformity_av -0.076419
original_glrlm_RunEntropy_pv 0.042593
original_glszm_SmallAreaEmphasis_pv 0.014181
original_glrlm_RunLengthNonUniformity_pv -0.005117
original_glszm_SmallAreaLowGrayLevelEmphasis_pv 0.004510
original_gldm_DependenceNonUniformity_pv -0.001145
Thirteen radiomics features with non-zero coefficients in one-way analysis of variance
(ANOVA) and the least absolute shrinkage and selection operator (LASSO) logistic
regression model were selected. The radiomics signature was constructed based on
the regression analysis with a radiomics score calculated for each patient. The formula
to calculate the score of radiomics signature is Rad-score = Radiomics features×
Coefficient.
A B

C D

FIGURE 4 | Computed tomography (CT) image features selection using one-way analysis of variance (ANOVA) and the least absolute shrinkage and selection
operator (LASSO) logistic regression model in the training set. (A) The five-fold cross-validation and the minimal criteria process was used to generate the
optimal penalization coefficient lambda (l) in the LASSO model. The vertical line define the optimal values of l, where the model provides its best fit to the data.
The optimal l value of 0.165 with -log (l) =1.8 was selected. (B) LASSO coefficient profiles of the radiomics features. The vertical line was drawn at the value
selected using five-fold cross-validation, where optimal l resulted in 13 nonzero coefficients. Violin distribution of Rad-score for benign and malignant nodules in
the training (C) and Validation (D) Sets. Green violin plots show data distribution of benign nodules, blue ones data distribution of malignant nodules. In
each violin plot, the white point represents the median value of each group; the vertical black line represents the range.
June 2021 | Volume 11 | Article 580886
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The present study indicated that age and TI-RADS category
were significant predictive factors. However, whether age is one of
the important clinical risk factors of PTC still remains to be
elucidated. Chen et al. (50) recently provided evidence that
age, margin, shape, echogenic foci, echogenicity, and nodule halo
Frontiers in Oncology | www.frontiersin.org 8
sign are independent risk factors, whereas Liang et al. (51) reported
that age has no significant relevance with PTC diagnosis.

The present study has several strengths. First, an independent
validation set was used to verify the discrimination ability of the
nomogram model. The results also had good diagnostic ability
A B

C D

FIGURE 6 | Receiver operating characteristic (ROC) curves of the nomogram (red lines), Rad-score model (brown lines) and clinical model (blue lines) in the training
(A) and validation (B) sets, respectively. Calibration curves of the nomogram in the training (C) and validation (D) sets, respectively. The diagonal dotted line
represents an ideal prediction, while the solid lines represent the performance of the nomogram. Closer fit to the diagonal dotted line indicates a better prediction.
FIGURE 5 | Radiomics nomogram for the prediction of benign and malignant thyroid nodules of sub-1cm.
June 2021 | Volume 11 | Article 580886
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(AUC: 0.851), which demonstrates that the nomogram model
has good generalization ability. However, the previous study
failed to determine the usefulness of the radiomics nomogram in
the clinical setting (52, 53). Hence, DCA was used to assess
whether the radiomics nomogram could improve individual
benefit. The results showed that if the threshold probability
was more than 0, the predictive ability of the radiomics
nomogram was more favorable than that with or without
patient treatment. To improve the feature recognition rate, the
gray value of ROI was standardized, discretized, and resampled.
It effectively improved the repeatability of the research results.
Finally, to comprehensively reflect the radiomics features of
PTMC, unenhanced and arterial contrast-enhanced CT images
were extracted for radiomics analysis.

This study has several limitations. First, bias is inevitable as
the present study is retrospective in nature. Prospective studies
are needed to control for confounding variables. Second, this
study utilized a single center and had a small sample size. A large
sample size and multiple centers are needed to improve the
Frontiers in Oncology | www.frontiersin.org 9
efficiency of the model. Third, a manual method is applied to
image segmentation. Although manual segmentation is the gold
standard, it may increase the variability of feature extraction. To
avoid this disadvantage, the consistency of feature extraction was
validated by using ICC.

In conclusion, this study presents a noninvasive predictive
tool that incorporates CT radiomics signature and clinical risk
factors. The radiomics nomogram shows favorable predictive
accuracy in identifying sub-1 cm benign and malignant thyroid
lesions. Multicenter retrospective validation and prospective
randomized clinical trials should be performed in subsequent
studies to obtain high-level evidence for the clinical application
of this nomogram.
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FIGURE 7 | Decision curve analysis (DCA) of each model derived from the
validation set. The y-axis measures the net benefit. The x-axis shows the
corresponding risk threshold. The grey line represents the assumption that all
lesions were malignant. The black line represents the assumption that all nodules
were benign. If the threshold probability was more than 40%, using the
nomogram to predict malignancy added more benefit than the Rad-score model
(red line) and clinical model (blue line).
TABLE 3 | Predictive performance of three models.

Model Training set Validation set

AUC (95%CI) Sensitivity Specificity AUC (95%CI) Sensitivity Specificity

Nomogram 0.853 0.803 0.757 0.851 0.775 0.79
(0.797-0.899) (0.735-0.931)

Rad-score 0.742 0.720 0.671 0.707 0.725 0.684
(0.676-0.801) (0.574-0.818)

Clinical 0.813 0.735 0.671 0.775 0.675 0.632
(0.752-0.864) (0.648-0.873)
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