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Purpose: To investigate the role of contrast-enhanced magnetic resonance imaging (CE-
MRI) radiomics for pretherapeutic prediction of the response to transarterial
chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC).

Methods: One hundred and twenty-two HCC patients (objective response, n = 63; non-
response, n = 59) who received CE-MRI examination before initial TACE were
retrospectively recruited and randomly divided into a training cohort (n = 85) and a
validation cohort (n = 37). All HCCs were manually segmented on arterial, venous and
delayed phases of CE-MRI, and total 2367 radiomics features were extracted. Radiomics
models were constructed based on each phase and their combination using logistic
regression algorithm. A clinical-radiological model was built based on independent risk
factors identified by univariate and multivariate logistic regression analyses. A combined
model incorporating the radiomics score and selected clinical-radiological predictors was
constructed, and the combined model was presented as a nomogram. Prediction models
were evaluated by receiver operating characteristic curves, calibration curves, and
decision curve analysis.

Results: Among all radiomics models, the three-phase radiomics model exhibited better
performance in the training cohort with an area under the curve (AUC) of 0.838 (95%
confidence interval (CI), 0.753 - 0.922), which was verified in the validation cohort (AUC,
0.833; 95% CI, 0.691 - 0.975). The combined model that integrated the three-phase
radiomics score and clinical-radiological risk factors (total bilirubin, tumor shape, and
tumor encapsulation) showed excellent calibration and predictive capability in the training
and validation cohorts with AUCs of 0.878 (95% CI, 0.806 - 0.950) and 0.833 (95% CI,
0.687 - 0.979), respectively, and showed better predictive ability (P = 0.003) compared
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with the clinical-radiological model (AUC, 0.744; 95% CI, 0.642 - 0.846) in the training
cohort. A nomogram based on the combined model achieved good clinical utility in
predicting the treatment efficacy of TACE.

Conclusion: CE-MRI radiomics analysis may serve as a promising and noninvasive tool
to predict therapeutic response to TACE in HCC, which will facilitate the individualized
follow-up and further therapeutic strategies guidance in HCC patients.
Keywords: hepatocellular carcinoma, radiomics, magnetic resonance imaging, transarterial chemoembolization,
therapeutic response
INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common
malignant tumor worldwide and ranks as the fourth leading cause
of cancer-related deaths (1). Curative therapeutic modalities, such as
surgical resection, liver transplantation, and local ablative therapy,
have been recommended for patients with early-stage HCC (2).
Unfortunately, 60% to 70% of HCC patients are already in the
intermediate or advanced stage at the time of their first diagnosis,
and they can only be treated with palliative treatment (3).
Transarterial chemoembolization (TACE) has been accepted as an
effective means to control tumor growth, prolong survival, palliate
symptoms, and improve quality of life for intermediate stage HCC
patients (2, 4). Monitoring tumor response to TACE is a
cornerstone in determining therapy efficacy, and plays a critical
role in prognosis prediction and future treatment decision-making.
Early objective response of HCC to TACE treatment has been
identified to be associated with delayed metastasis and better
survival (5, 6). Early discrimination of patients with favorable
response can facilitate the decision to perform early repeat
treatment in order to eradicate remnant viable tumor portions or
delay treatment with the aim of decreasing toxicity and treatment-
related morbidity. However, patients with HCC who respond
poorly to TACE would require timely switching to alternative
therapeutic strategies, such as radiofrequency ablation (RFA),
resection, or systemic therapy (5, 7, 8).

Several conventional scoring systems that rely on clinical,
laboratory, and imaging information have been developed to
predict the response to TACE and to guide the decision for
retreatment with TACE in HCC patients, including the
Assessment for Retreatment with TACE (ART) score (9),
the Selection for TACE Treatment (STATE) score (10), and the
Hepatoma Arterial Embolization Prognostic (HAP) score (11).
However, these scoring systems are not widely used in clinical
practice due to their disappointing accuracy (12). Magnetic
resonance imaging (MRI) has been regarded as the preferred
imaging modality for screening, early detection, and staging in
HCC patients, as well as provides imaging biomarkers for
prediction of therapeutic response and prognosis (13). Several
conventional imaging features have been shown to be associated
with negative response of patients with HCC: large tumor size,
multiple lesions, irregular margin, faint enhancement on arterial
phase, and arterial peritumoral enhancement (7, 14, 15). Although
radiologists had attempt to standardize interpretation of liver
2

imaging, the assessment of therapeutic response using such
qualitative imaging characteristics remains subjective and
variable. In recent years, functional MRI technologies such as
diffusion-weighted imaging (DWI), diffusion kurtosis imaging
(DKI), and dynamic contrast enhanced MRI (DCE-MRI) have
made it possible to effectively and quantitatively evaluate the
response of tumors to TACE (13, 16, 17). However, these
function imaging techniques require additional acquisitions and
stricter scanning conditions and are more affected by respiratory
motion, the MR device, scan parameters, etc, which may limit the
clinical application and promotion (18).

Radiomics is an emerging method for quantification of tumor
heterogeneity by converting images into high-dimensional mineable
data (19). The published studies on radiomics of HCC provide
encouraging results which have demonstrated the potential utility
for prediction of tumor biology, molecular profiles, post-therapy
response, and prognosis (20–23). Prior study used computed
tomography (CT) - based radiomics analysis to predict
therapeutic response to TACE in HCC with a discriminative
performance of 0.730 between the responders and non-
responders (22). MRI may be also promising in predicting the
efficacy of TACE treatment due to the advantage of depicting more
soft-tissue characteristics than CT (24). Abajian et al. (25)
constructed a model based on clinical data and traditional MR
imaging features to predict HCC response to TACE; however, the
small population of HCC patients and few imaging features have
limited the efficiency and stability of the predictive radiomics model.

In our study, we aimed to investigate the role of contrast-
enhanced MRI (CE-MRI) radiomics for predicting the response
of HCC to TACE treatment, which may facilitate the
individualized follow-up and further therapeutic strategies
guidance in HCC patients.
MATERIALS AND METHODS

Patients
The ethics committee approved this retrospective study and
waived the requirement for informed consent. Between February
2008 and November 2019, 328 consecutive patients with HCC
who underwent CE-MRI examination within two weeks before
receiving initial conventional TACE at our institution were
recruited. The diagnosis of HCC was determined by pathology
or imaging features on the basis of the guidelines of the American
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Association for the Study of Liver Disease (AASLD) (4). However,
for the patients who did not meet the noninvasive diagnostic
criteria, HCC diagnoses tended to depend on digital subtraction
angiography (DSA) examination (23). The exclusion criteria were
as follows: (1) previous treatments, including liver resection, RFA,
or chemotherapy (n = 29); (2) diffuse or infiltrative lesion (n = 19);
(3) the largest lesion size < 1 cm (n = 6); (4) liver resection, RFA, or
transplantation after initial TACE (n = 28); (5) loss to follow-up
after TACE or lack of a follow-up CE-MRI scan (n = 96); (6) the
interval time between the first follow-up MRI scan and initial
TACE was more than 2 months (n = 23); (7) unavailable or
incomplete clinical data or MRI sequences (n = 3); (8) poor image
quality (n = 2). Figure 1 illustrates the recruitment pathways for
patients. Finally, a total of 122 patients were enrolled and
randomly divided into the training cohort (85 cases) and the
validation cohort (37 cases) at a ratio of 7:3. The training cohort
was used to construct models that were verified by the
validation cohort.

Pretherapeutic clinical characteristics, including age, gender,
history of hepatitis B or C, alpha-fetoprotein (AFP), alanine
aminotransferase (ALT), aspartate aminotransferase (AST), g-
glutamyltranspeptadase (GGT), alkaline phosphatase (ALP),
total bilirubin (TBIL), albumin (ALB), platelet count (PLT),
prothrombin time (PT), Child-Pugh class, Eastern Cooperative
Oncology Group (ECOG) performance status, and Barcelona
Clinic Liver Cancer (BCLC) stage, were retrospectively collected.

MR Data Acquisition
MRI examination was performed using 1.5 T or 3.0 T MR
systems (Signa, HDXT, GE Healthcare) with an eight-channel
Frontiers in Oncology | www.frontiersin.org 3
phased array body coil. MR scan sequences included in- and
opposed-phase fast-spoiled gradient-recalled echo T1-weighted
(T1W) sequence, fat-suppressed fast spin-echo T2-weighted
(T2W) sequence, and contrast-enhanced imaging with fat-
suppressed T1-weighted three-dimensional (3D) fast-spoiled
gradient-recalled echo sequence. The images in arterial phase
(AP), portal venous phase (PVP), and delayed phase (DP) were
acquired during suspended respiration at 40 s, 70 s, and 90 s,
respectively, after initiation of the injection of gadolinium-
diethylenetriamine pentaacetic acid (Gd-DTPA) (Bayer Schering
Pharma AG) at a patient weight-dependent dose of 0.1 mmol/kg
with an injection rate of 2.5 ml/s through median cubital vein. Of
the 122 HCC patients described above, 100 patients were
examined with the 1.5 T system, and the other 22 patients with
the 3.0 T system. The detailed parameters of each scan sequence
are listed in Supplementary Data S1.

Analysis of Radiological Features
The imaging features of pretherapeutic MRI were evaluated by
two radiologists (reader 1, Y.Z., with 8 years of experience in
abdominal MRI; reader 2, N.W., with 7 years of experience in
abdominal MRI) in consensus who were aware that the patients
had HCC but were blinded to clinical data and imaging report.
The radiologists evaluated the following imaging traits: (1) tumor
size; (2) tumor location; (3) tumor number (6); (4) tumor shape;
(5) tumor margin; (6) intratumor necrosis; (7) intratumor
hemorrhage; (8) intratumor fat; (9) tumor encapsulation (26);
(10) arterial peritumoral enhancement (27); (11) satellite nodule
(23); (12) arterial phase hyperenhancement; (13) washout
appearance; (14) liver cirrhosis. If there was any discordance
FIGURE 1 | Flowchart of the recruitment pathway for patients.
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by both radiologists during the imaging analysis, the images were
evaluated by another senior radiologist (reader 3, J.H.L., with 20
years of experience in abdominal MRI). Detailed description of
imaging features are shown in Supplementary Data S2.

Treatment Modality and Treatment
Response Assessment
All conventional TACE procedures were carried out by two
interventional radiologists with more than 10 and 5 years of
experience with TACE. The detailed description of TACE
procedure is shown in Supplementary Data S3. Based on pre-
and post-therapeutic CE-MRI images, the modified Response
Evaluation Criteria in Solid Tumors (mRECIST 1.1) criteria was
applied to estimate the tumor response. The mRECIST system
classified different responses as follows: complete response (CR),
partial response (PR), stable disease (SD), and progression disease
(PD) (28). Objective response (OR) referred to sum of CR and PR,
whereas non-response (NR) referred to sum of SD and PD (6).

Tumor Segmentation and Radiomics
Feature Extraction
The CE-MRI (AP, PVP, and DP) images exported as digital
imaging data and communications in medicine (DICOM)
format were loaded into open source software ITK-SNAP
(version 3.6.0, http://www.itksnap.org/) for 3D manual
segmentation. The region of interests (ROIs) were manually
delineated around the entire tumor outline on each axial slice
by two abdominal radiologists independently. The ROIs were
required to include pseudo-capsule surrounding the tumor and
to exclude tumor surrounding vessels. To assess the intra-
observer and inter-observer reproducibility, reader 1 performed
the segmentation of all patients twice with a 1-month interval
and reader 2 independently performed the segmentation of all
patients followed the same procedure. The reproducibility was
analyzed by calculating intraclass correlation coefficient (ICC).
Frontiers in Oncology | www.frontiersin.org 4
Image preprocessing and feature extraction were performed
using A. K. software (Artificial Intelligence Kit, Version 3.2.5, GE
Healthcare). Images were resampled to a voxel size of 1 × 1 ×
1 mm via linear interpolation algorithm, which could correct the
pixel-spacing difference and restore the tumor volume, allowing
for a constant intensity resolution across all tumor images (21,
29, 30). Normalization of signal intensity was performed to
correct the scanner effect because MRI signal intensity is
usually relative with large differences between scanners (29,
31). Next, 789 radiomics features from each enhanced phase
were extracted, including the following categories: 42 histogram
features, 144 gray level co-occurrence matrix (GLCM), 180 gray
level run length matrix (GLRLM), 11 grey-level zone size matrix
(GLZSM), 10 Haralick features, 15 form factors, and 387
Gaussian transform features. A total of 2367 features were
extracted when all three phases were used. Details of radiomics
features are listed in Supplementary Data S4. Values of
extracted radiomics features were standardized using z-score in
the training cohort, and the feature values of the validation
cohort were then z-score standardized by using the mean and
standard deviation values of each radiomics feature derived from
the training cohort (30, 31). The workflow of the radiomics
analysis is depicted in Figure 2.

Feature Selection and Radiomics
Model Construction
A four-step procedure was devised for dimensionality reduction.
First, in order to ensure the robust and reproducibility of the
model, the radiomics features with high stability in both intra-
observer and inter-observer (ICC values > 0.8) were selected for
subsequent analysis. Second, the Spearman’s rank correlation
test was applied to exclude the redundant features (correlation
coefficient values ≥ 0.9). Next, the features with significant
differences between the OR and NR groups were selected using
univariate logistic regression (P < 0.05). Finally, the least absolute
A B D EC

FIGURE 2 | The workflow of radiomics analysis in our study. (A) Contrast-enhanced MR imaging was acquired. (B) Tumors were manually delineated around the
entire tumor outline on all axial slices of arterial phase (AP), portal venous phase (PVP), and delayed phase (DP) images, and three-dimensional segmentations were
formed. (C) Total 2367 radiomics features were extracted. (D) Four steps of feature dimensionality reduction were applied to all extracted features. (E) The radiomics
model was constructed using logistic regression algorithm, and a nomogram that incorporates the radiomics score and clinical-radiological risk factors was
established to provide a more understandable treatment response measurement for individualized evaluation, followed by receiver operating characteristic curve
analysis, calibration curve, and decision curve analysis.
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shrinkage and selection operator (LASSO) logistic regression
algorithm, with penalty parameter tuning conducted by 5-fold
cross-validation, was further performed to identify the top-
ranked and most valuable features to build the predictive
model. The radiomics models were constructed using the
selected features based on each phase and their combination
(AP, PVP, DP, AP-PVP, AP-DP, PVP-DP, and AP-PVP-DP) via
the multivariate logistic regression analysis. The radiomics score
(rad-score) was calculated for each patient via a linear
combination of the selected radiomics features weighted by
their respective coefficients.

Clinical-Radiological Model Construction
Variables with P value < 0.1 in the univariate analysis were included
in the multivariate logistic regression analysis to identify the
independent clinical-radiological risk factors associated with
therapeutic response (P < 0.05). Odds ratio and 95% confidence
interval (CI) were calculated for each risk factor. The clinical-
radiological model was constructed using the above independent
risk factors via multivariate logistic regression algorithm.
Combined Model Construction
and Nomogram Development
A combined model, which incorporated the radiomics score
derived from the highest performance radiomics model and the
independent clinical-radiological risk factors for predicting tumor
response, was established based on the proposed logistic regression
analysis. The collinearity analysis of the radiomics score and the
clinical-radiological risk factors was assessed using variance
inflation factor (VIF) (32). A nomogram was then constructed
based on the combined model to provide a visual tool for clinical
usefulness. In addition, we have constructed a radiological-
radiomics model which integrated the independent radiological
predictors and the radiomics score (based on the highest
performance radiomics model) for tumor response prediction.
Statistical Analysis
Continuous variables among clinical-radiological characteristics
in the training and validation cohorts were compared using the
Student’s t-test or Mann-Whitney U-test, and categorical
variables were compared using the chi-squared test or Fisher’s
exact test, when appropriate. The discrimination performance
was evaluated by using receiver operating characteristic (ROC)
curves in each model. The area under the curves (AUCs) of the
ROC curves, as well as accuracy, sensitivity, and specificity were
obtained. Comparisons between the AUCs of various models
were performed using the Delong’s test. We also performed
stratified analysis on the subgroups of MRI scanner of our
radiomics models. We used the ROC curve and AUC to
evaluate the performance of prediction models on the
subpopulations. Calibration curves were plotted to evaluate
the predictive accuracy of the nomogram, accompanied by the
Hosmer - Lemeshow test, and P values > 0.05 were considered
good. Decision curve analysis (DCA) was conducted to estimate
the clinical utility based on the net benefit of the radiomics
Frontiers in Oncology | www.frontiersin.org 5
model, clinical-radiological model, and nomogram across
different threshold probabilities. All statistical analyses were
conducted with R software (version 3.6.1, http://www.R-
project.org). A two-sided P value < 0.05 was considered
statistically significant.
RESULTS

Patient Characteristics
A total of 122 patients with HCC (109 male, 13 female; median
age, 59 years; range, 44 - 83 years) were ultimately collected in
the study. The diagnosis of HCC was determined by pathology in
10 patients and by specific imaging features on the basis of the
AASLD guidelines in 112 patients. The median interval time
between the initial TACE and the first post-therapeutic MRI was
38 days (range, 25 - 59 days). On the basis of the mRECIST
criteria, the patients for CR, PR, SD, and PD were 27 (22.1%), 36
(29.5%), 49 (40.2%), and 10 (8.2%), respectively. The baseline
characteristics in the training and validation cohorts are
summarized in Table 1. No significant difference was observed
in the demographic data, clinical characteristics, or radiological
features, except for ECOG performance status between the
training and validation cohorts.

Feature Selection and Radiomics
Model Building
After ICC analysis, a total of 1545 radiomics features were
considered stable with both intra-observer and inter-observer
stability (474 features from AP, 523 features from PVP, and 548
features from DP; ICC range: 0.804 - 0.999, 0.802 - 0.995, 0.802 -
0.995, respectively). These features obtained by reader 1 in the
first measurement were used for subsequent data analysis. The
Spearman’s rank correlation test, univariate logistic regression,
and LASSO logistic regression were then used for dimensionality
reduction in order. Based on each phase and their combination
(AP, PVP, DP, AP-PVP, AP-DP, PVP-DP, and AP-PVP-DP),
the 7, 6, 10, 6, 5, 7, and 6 radiomics features were ultimately
selected, respectively, applying for the radiomics model building.
The formulae of calculating the rad-score for each patient are
described in Supplementary Data S5.

Clinical-Radiological Model Building
The univariate and multivariate logistic regression analyses for
the prediction of therapeutic response in the training cohort are
shown in Supplementary Data S6. In the univariate analysis,
1 clinical characteristic (TBIL) and 5 radiological features (tumor
size, tumor shape, tumor encapsulation, satellite nodule, and
washout appearance) were found significantly different between
the OR and NR groups (all P < 0.05). Multivariate analysis
indicated that TBIL (Odd ratio = 0.342; 95% CI: 0.130 - 0.904;
P = 0.031), tumor shape (Odd ratio = 4.468; 95% CI: 1.216 -
16.415; P = 0.024), and tumor encapsulation (Odd ratio = 0.354;
95% CI: 0.130 - 0.964; P = 0.042) were independent risk factors
for predicting therapeutic response. The above three factors were
applied for clinical-radiological model construction.
March 2021 | Volume 11 | Article 582788
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Combined Model Building, Nomogram
Construction and Model Evaluation
We built 10 predictive models, including 1 clinical-radiological
model, 7 radiomics models, 1 combined model, and 1
radiological-radiomics model. The clinical-radiological model
yielded AUCs of 0.744 (95% CI, 0.642 - 0.846) and 0.757
TABLE 1 | Patient baseline characteristics.

Variables Training
cohort
(n = 85)

Validation
cohort
(n = 37)

Z/F
value

P
value

Patient demographics

Age (years), median
(interquartile range)

59 (56, 65) 60 (54, 65) -0.136 0.891

Gender, No. (%) 0.127 0.722

Male 77 (90.6) 32 (86.5)

Female 8 (9.4) 5 (13.5)

Clinical characteristics

History of hepatitis B or C,
No. (%)

0.012 0.913

Positive 56 (65.9) 24 (64.9)

Negative 29 (34.1) 13 (35.1)

AFP (IU/ml), No. (%) 0.072 0.788

≤ 400 55 (64.7) 23 (62.2)

> 400 30 (35.3) 14 (37.8)

ALT (U/L), No. (%) 3.376 0.066

≤ 50 47 (55.3) 27 (73.0)

> 50 38 (44.7) 10 (27.0)

AST (U/L), No. (%) 3.751 0.053

≤ 40 30 (35.3) 20 (54.1)

> 40 55 (64.7) 17 (45.9)

GGT (U/L), No. (%) 3.107 0.078

≤ 60 21 (24.7) 15 (40.5)

> 60 64 (75.3) 22 (59.5)

ALP (U/L), No. (%) 0.004 0.948

≤ 125 50 (58.8) 22 (59.5)

> 125 35 (41.2) 15 (40.5)

TBIL (umol/L), No. (%) 0.001 0.977

≤ 19 48 (56.5) 21 (56.8)

> 19 37 (43.5) 16 (43.2)

ALB (g/L), No. (%) 0.072 0.788

< 40 55 (64.7) 23 (62.2)

≥ 40 30 (35.3) 14 (37.8)

PLT (×109/L), No. (%) 2.864 0.091

< 125 44 (51.8) 13 (35.1)

≥ 125 41 (48.2) 24 (64.9)

PT (s), No. (%) 0.050 0.822

≤ 13 51 (60.0) 23 (62.2)

> 13 34 (40.0) 14 (37.8)

Child-Pugh class, No. (%) 0.009 0.924

A 65 (76.5) 28 (75.7)

B 20 (23.5) 9 (24.3)

ECOG performance status,
No. (%)

4.500 0.034

0 77 (90.6) 28 (75.7)

1 5 (5.9) 7 (18.9)

2 3 (3.5) 2 (5.4)

BCLC stage, No. (%) 2.120 0.145

A 41 (48.2) 15 (40.6)

B 31 (36.5) 10 (27.0)

C 13 (15.3) 12 (32.4)

(Continued)
TABLE 1 | Continued

Variables Training
cohort
(n = 85)

Validation
cohort
(n = 37)

Z/F
value

P
value

Radiological features
Tumor size, No. (%) 2.064 0.151
≤ 5 cm 51 (60.0) 17 (45.9)
> 5 cm 34 (40.0) 20 (54.1)

Tumor location, No. (%) 1.766 0.184
Left lobe 20 (23.5) 6 (16.2)
Junction lobe 1 (1.2) 2 (5.4)
Right lobe 63 (74.1) 28 (75.7)
Caudate lobe 1 (1.2) 1 (2.7)

Tumor number, No. (%) 2.349 0.125
≤ 3 77 (90.6) 37 (100.0)
> 3 8 (9.4) 0 (0.0)

Tumor shape, No. (%) 1.761 0.184
Circular 67 (78.8) 25 (67.6)
Irregular 18 (21.2) 12 (32.4)

Tumor margin, No. (%) 0.780 0.377
Smooth 64 (75.3) 25 (67.6)
Non-smooth 21 (24.7) 12 (32.4)

Intratumor necrosis, No. (%) 0.364 0.546
Present 23 (27.1) 12 (32.4)
Absent 62 (72.9) 25 (67.6)

Intratumor hemorrhage, No. (%) 0.009 0.924
Present 20 (23.5) 9 (24.3)
Absent 65 (76.5) 28 (75.7)

Intratumor fat, No. (%) 1.059 0.303
Present 12 (14.1) 8 (21.6)
Absent 73 (85.9) 29 (78.4)

Tumor encapsulation, No. (%) 1.290 0.256
Present 53 (62.4) 19 (51.4)
Absent 32 (37.6) 18 (48.6)

Arterial peritumoral
enhancement, No. (%)

1.395 0.238

Present 21 (24.7) 13 (35.1)
Absent 64 (75.3) 24 (64.9)

Satellite nodule, No. (%) 0.013 0.910
Present 8 (9.4) 3 (8.1)
Absent 77 (90.6) 34 (91.9)

Arterial phase
hyperenhancement, No. (%)

1.445 0.229

Present 79 (92.9) 37 (100.0)
Absent 6 (7.1) 0 (0.0)

Washout appearance, No. (%) 0.133 0.715
Present 58 (68.2) 24 (64.9)
Absent 27 (31.8) 13 (35.1)

Liver cirrhosis, No. (%) 1.536 0.215
Present 56 (65.9) 20 (54.1)
Absent 29 (34.1) 17 (45.9)
March 2
021 | Volume
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Except where indicated, data are shown as numbers of patients, with percentages in
parentheses. No significant difference was found between the training and validation cohorts,
except for ECOG performance status. AFP, alpha-fetoprotein; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; GGT, g-glutamyltranspeptadase; ALP,
alkaline phosphatase; TBIL, total bilirubin; ALB, albumin; PLT, platelet count; PT, prothrombin
time; ECOG, Eastern Cooperative Oncology Group; BCLC, Barcelona Clinic Liver Cancer.
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(95% CI, 0.595 - 0.920) in the training and validation cohorts.
Among all radiomics models, the three-phase radiomics model
(AP-PVP-DP model) had better discrimination capacity between
the OR and NR groups, with AUCs of 0.838 (95% CI, 0.753 -
0.922) and 0.833 (95% CI, 0.691 - 0.975) in the training and
validation cohorts. The AP-PVP-DP model individual feature
coefficients are presented in Figure 3. For the analysis of
radiomics models of the single phase, PVP model showed
higher AUCs of 0.797 (95% CI, 0.705 - 0.890) and 0.830 (95%
CI, 0.684 - 0.977) in the two cohorts. In addition, the stratified
analysis showed that our radiomics models were not influenced
by MRI scanners with different magnetic field strength (all P >
0.05) (shown in Supplementary Data S7). The combined model
integrating clinical-radiological factors (TBIL, tumor shape, and
tumor encapsulation) and radiomics score (based on AP-PVP-
DP model) was constructed, showing preferable predictive
performance with AUCs of 0.878 (95% CI, 0.806 - 0.950) and
0.833 (95% CI, 0.687 - 0.979) in the training and validation
Frontiers in Oncology | www.frontiersin.org 7
cohorts. The VIFs of four potential predictors (TBIL, tumor
shape, tumor encapsulation, and radiomics score) ranged from
1.007 to 1.219, which indicated that those predictors were not so
highly correlated. The combined model demonstrated a
significantly higher AUC than the clinical-radiological model
in the training cohort (P = 0.003), whereas there was no
significant difference in the AUC between the two models in
the validation cohort (P = 0.239). No significant differences in
AUC values were found between the combined model and the
radiomics model (P = 0.155, 1.000) and between the clinical-
radiological model and the radiomics model (P = 0.148, 0.344),
respectively, in the training and validation cohorts. The
discriminative performance of different predictive models are
shown in Table 2, Figures 4A, B. Performance evaluation of the
radiological-radiomics model is shown in Supplementary
Data S8.

The combined nomogram was established based on the
combined model to individually predict tumor response of HCC
FIGURE 3 | The histogram exhibits radiomics features contributed to the constructed radiomics model based on three-phase images. The y-axis represents
radiomics features, with their coefficients in the multivariate logistic regression analysis plotted on the x-axis.
TABLE 2 | Discriminative performance of different predictive models in the training and validation cohorts.

Predictive models Training cohort Validation cohort

AUC (95% CI) Accuracy Sensitivity Specificity AUC (95% CI) Accuracy Sensitivity Specificity

Clinical-radiological model 0.744 (0.642 - 0.846) 0.682 0.512 0.841 0.757 (0.595 - 0.920) 0.757 0.667 0.842
Radiomics model
AP 0.774 (0.675 - 0.873) 0.682 0.659 0.705 0.752 (0.592 - 0.911) 0.649 0.667 0.632
PVP 0.797 (0.705 - 0.890) 0.682 0.610 0.750 0.830 (0.684 - 0.977) 0.784 0.833 0.737
DP 0.736 (0.629 - 0.843) 0.682 0.561 0.795 0.757 (0.592 - 0.923) 0.730 0.667 0.789
AP-PVP 0.818 (0.729 - 0.907) 0.718 0.683 0.750 0.810 (0.671 - 0.949) 0.757 0.667 0.842
AP-DP 0.780 (0.681 - 0.879) 0.718 0.732 0.705 0.804 (0.652 - 0.956) 0.703 0.833 0.579
PVP-DP 0.800 (0.707 - 0.893) 0.706 0.683 0.727 0.830 (0.690 - 0.971) 0.757 0.889 0.632
AP-PVP-DP 0.838 (0.753 - 0.922) 0.753 0.732 0.773 0.833 (0.691 - 0.975) 0.703 0.889 0.526
Combined model 0.878 (0.806 - 0.950) 0.812 0.805 0.818 0.833 (0.687 - 0.979) 0.730 0.833 0.632
M
arch 2021 | V
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AP, arterial phase; PVP, portal venous phase; DP, delayed phase; AUC, area under the curve; CI, confidence interval.
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A B

FIGURE 4 | ROC curves for the radiomics model, clinical-radiological model, and combined model in the training cohort (A) and validation cohort (B).
A

B C

FIGURE 5 | Combined nomogram (A). The combined nomogram incorporated total bilirubin (TBIL), tumor shape, tumor encapsulation, and the radiomics score
(rad-score). Calibration curves of the combined nomogram in the training cohort (B) and the validation cohort (C). The y-axis represents the actual result, and the
x-axis represents the predicted probability. The diagonal dashed line indicates the ideal prediction by a perfect model. The solid line indicates the predictive
performance of the model. If the solid line is closer to the diagonal dashed line, it means a better prediction.
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patients after TACE treatment (Figure 5A). Furthermore, the
calibration curves demonstrated favorable calibration of the
combined nomogram in the training and validation cohorts
(Figures 5B, C). The Hosmer-Lemeshow test yielded non-
significant results in the two cohorts (all P > 0.05), suggesting a
satisfying fit of the nomogram. The decision curves displayed good
performance of the radiomics model, clinical-radiological model,
and combined nomogram in terms of clinical utility, which added
more benefit than either the treat-all or treat-none scheme across
the majority of the range of reasonable threshold probabilities in
the training and validation cohorts (Figures 6A, B).
DISCUSSION

In the present study, we established a novel radiomics-based
nomogram incorporating the clinical-radiological characteristics
and radiomics score from pretherapeutic CE-MRI images to
predict therapeutic response to TACE in HCC patients. Our
nomogram showed a satisfactory performance with AUCs of
0.878 and 0.833, respectively, in the training and validation
cohorts. To the best of our knowledge, this is the first study to
develop a radiomics model, using radiomics features from MRI
to predict therapeutic response of HCC undergoing TACE so far.
The proposed radiomics approach may aid in assessment of the
efficacy of TACE and facilitate prognosis prediction and further
treatment planning for unresectable HCC patients.

In our study, most of HCC patients receiving TACE therapy
had BCLC A or B stage, which was in accordance with previous
studies (23, 33). TACE is the standard therapy that
recommended for HCC patients with BCLC stage B. For
patients with BCLC A stage, TACE is not ideal therapeutic
modality, but could be an alternative option for those patients
Frontiers in Oncology | www.frontiersin.org 9
for whom ablation or resection would be unsuitable due to
several factors, such as age, severe complications, and tumor
location (23, 33). Therefore, HCC patients included in our study
reflect the real phenomenon in clinical setting.

Previous studies have showed that early response assessment
at initial TACE session is a significant and robust prognostic
indicator, which may help the modification of further treatment
strategies in an optimized manner in clinical practice (6, 34, 35).
Several scholars have focused on therapeutic response
assessment to TACE using texture analysis based on CT or
MRI images (36, 37). Park et al. (36) investigated texture analysis
based on hepatic-arterial CT images in 132 HCCs treated with
TACE, showing that tumors in CR group have significantly lower
homogeneity and higher mean attenuation, GLCM moments,
and CT number percentiles, and these parameters would be
helpful in prediction of therapeutic response before the
implementation of TACE. A study of 89 HCC patients has also
identified the value of texture analysis based on enhanced MRI
for predicting an early therapeutic response to TACE combined
with high-intensity focused ultrasound treatment in HCC
patients (37). However, the predictive efficiencies in above
studies were limited (with the highest AUCs of 0.720 and
0.760, respectively).

Radiomics focuses on improvement of image analysis by
extracting large amounts of quantitative features through
different mathematical algorithms and would be expected to
improve the diagnostic performance via medical images (38). In
the current study, the radiomics features were extracted from AP,
PVP, and DP images of CE-MRI to build predictive radiomics
models. The radiomics model based on PVP images showed a
superior predictive performance compared to those based on AP
or DP images. This indicated that pretherapeutic PVP images
could capture more information to reflect the heterogeneity of
A B

FIGURE 6 | Decision curve analysis for the radiomics model, clinical-radiological model, and combined nomogram in the training cohort (A) and the validation
cohort (B). The y-axis represents the net benefit, and the x-axis represents the threshold probability. The radiomics model, clinical-radiological model, and combined
nomogram obtained more benefit than either the treat-all-patients scheme (gray line) or the treat-none scheme (horizontal black line) within certain ranges of
threshold probabilities for predicting therapeutic response to TACE in HCC.
March 2021 | Volume 11 | Article 582788
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tumors, which was consistent with previous studies (23, 39).
Among all radiomics models, the AP-PVP-DP radiomics model
showed better discriminative power between the OR and NR
groups. We suggested that three-phase CE-MRI contained more
potential tumor heterogeneous information, and the
multiparametric approach was required for post-therapeutic
prognostic analysis of HCC (31, 40). In our AP-PVP-DP
model, six most important radiomics features for predicting
non-response were as follows: AP_ClusterProminence_
angle45_offset7, AP_LoG_LongRunEmphasis_angle0_offset1,
PVP_HaralickCorrelation_angle45_offset7, PVP_GreyLevel
Nonuniformity_angle135_offset1, DP_GLCMEntropy_
angle135_offset7, and DP_LoG_GreyLevelNonuniformity_
angle45_offset7. The above features describe the patterns or
spatial distribution of voxel intensities within the ROI, and
they have served as recognized parameters to capture tumor
heterogeneity. Intratumor heterogeneity can be caused by
variations in cellularity, angiogenesis, extracellular matrix, or
necrosis and therefore has the potential to be an important
prognostic factor (41). Recently, there has been an increasing
interest in tumor heterogeneity quantification and its effect on
treatment responses. Several studies have demonstrated that the
tumor response is closely related to tumor heterogeneity
identified by imaging radiomics features (22, 36, 37). A recent
study by Morshid et al. (22) suggested that CT-based radiomics
had moderate predictive performance with the AUC of 0.733 for
predicting the response to TACE in 105 HCC patients. Our AP-
PVP-DP model displayed a better performance than the previous
study, which may due to the following advantages: first, MR
imaging can provide better contrast and resolution in soft-tissue;
and second, we analyzed three-phase enhanced images, which
were possess of more image features and may more fully reflect
tumor heterogeneity. In addition, it is noted that the imaging
data resulted from the use of two MRI scanners with different
magnetic field strength might effect the variability of MRI signal
intensity with a resultant bias in the assessment of radiomics
features. However, normalization of signal intensity was
performed before tumor segmentation and thus to correct the
scanner effect. This phenomenon might also reflect clinical reality
because a mixture use of MRI scanners occurs frequently (23). In
this study, the stratified analysis showed that our radiomics
models were not influenced by MRI scanners with different
magnetic field strength, which indicating good generalizability
and robustness of the prediction models.

In our study, clinical-radiological factors including TBIL,
tumor shape and tumor encapsulation were used to construct
the predictive model. We suggested that the TBIL was an
independent risk factor for tumor response. However, several
previous studies have demonstrated that the TBIL cannot be
used as a clinical risk factor for the estimation of treatment
efficacy but could predict survival in HCC patients treated with
TACE (15, 25). Further research should be conducted on the
correlation between the TBIL and treatment efficacy of TACE.
Our study indicated that tumors with irregular shape were
inclined to show non-response to TACE. This might be
interpreted that the irregular morphology represent more
active growth pattern and more aggressive biological behavior.
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Our study demonstrated that tumors without encapsulation
showed poorer response in HCC patients undergoing TACE,
which was similar to previous studies (31, 42). The absence of the
tumor encapsulation has been reported to be one of imaging
features of microvascular invasion in HCC, and it may have
correlation with more strongly aggressiveness and poorer
survival (30, 31, 42, 43). Nevertheless, our clinical-radiological
model merely showed moderate predictive performance with
AUCs of 0.744 and 0.757 separately in the training and validation
cohorts, which may indicate that basic clinical and imaging traits
are rough surrogates for tumor biology.

Furthermore, adding the radiomics score to the clinical-
radiological model can lead to significant improvement of the
predictive efficiency in the training cohort (AUC, 0.744 to 0.878,
P = 0.003), which indicates that the multimarker analysis
combining the MRI radiomics features and clinical-radiological
characteristics maximizes the predictive value of therapy
effectiveness, and may potentially provide additional valuable
information about tumor biology and heterogeneity.
Interestingly, the radiomics model alone performed well in
predicting the treatment efficacy compared with the combined
model (P > 0.05). We speculated the reason that conventional
clinical-radiological factors losing its association in the combined
model may be that these clinical-radiological factors have much
less impact on the model than radiomics model (32). In
additional , the combined model had no significant
improvement in the AUC compared to the clinical-radiological
model in the validation cohort (P = 0.239), but it was a trend that
when adding the radiomics score, the performance was better
than the single clinical-radiological model with higher AUC. We
speculated the phenomenon was correlated with a small sample
size of HCC patients, and such application will require further
study for verification. Finally, this study also constructed an easy-
to-use, graphical analog computation device—the nomogram,
which allows clinicians to obtain results quickly and reliably by
simply drawing several lines (44). The nomogram based on the
combined model showed good discrimination, calibration, and
clinical usefulness, which carries potential clinical significance in
assisting clinicians for the visual and personalized estimation of
treatment efficacy of TACE in HCC patients.

There were several limitations in our study. First, it was a
single-center study without external validation. Second, the
retrospective nature of the study, the small population as well
as the long duration of the inclusion period, may affect
the robustness of our conclusions. Thus, a larger cohort
population of the prospective study based on multi-center is
necessary in the future to verify the performance of proposed
predictive models. Third, most of patients in our study were not
confirmed by pathology. In the future, we will try to collect more
HCC patients with pathological results to reinforce the
conclusions of our study. Fourth, the segmentation of entire
tumor was manually delineated by radiologists, and thus is time-
consuming and labor intensive and prone to user variability. In
the future, we will try to develop an automatic and reliable liver
tumor segmentation method to solve the problem. In addition, it
should be noted that the multi-sequence MRI data are not
included in this study. In the future, we will attempt to
March 2021 | Volume 11 | Article 582788
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develop a radiomics approach based on multi-sequence MRI for
response evaluation in HCC patients after TACE treatment.
Finally, future efforts are still necessary to discuss MRI-based
deep learning model for predicting the response to TACE with
the hope to improve the predictive ability.

In conclusion, radiomics features based on pretherapeutic
CE-MRI images may be potential biomarkers for predicting
HCC response to TACE. The combined nomogram integrating
the radiomics score with clinical-radiological risk factors
demonstrates a favorable discrimination performance, and may
aid in the individualized and visualized prediction of therapeutic
response of HCC patients undergoing TACE. The proposed
methodology may facilitate clinical decision-making and could
potentially recognize patients who would benefit from TACE,
thereby further guide treatment planning.
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