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Background: Lung cancer is a malignant disease that threatens human health. Hence,

it is crucial to identify effective prognostic factors and treatment targets. Single-cell RNA

sequencing can quantify the expression profiles of transcripts in individual cells.

Methods: GSE117570 profiles were downloaded from the Gene Expression

Omnibus database. Key ligand-receptor genes in the tumor and the normal groups

were screened to identify integrated differentially expressed genes (DEGs) from the

GSE118370 and The Cancer Genome Atlas Lung Adenocarcinoma databases. DEGs

associated with more ligand-receptor pairs were selected as candidate DEGs for Gene

Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis, and survival analysis. In addition, we conducted validation

immunohistochemical experiments on postoperative specimens of 30 patients with

lung cancer.

Results: A total of 18 candidate DEGs were identified from the tumor and the normal

groups. The analysis of the GO biological process revealed that these DEGs were mainly

enriched in wound healing, in response to wounding, cell migration, cell motility, and

regulation of cell motility, while the KEGG pathway analysis found that these DEGs

were mainly enriched in proteoglycans in cancer, bladder cancer, malaria, tyrosine

kinase inhibitor resistance in Epidermal Growth Factor Receptor (EGFR), and the ERBB

signaling pathway. Survival analysis showed that a high, rather than a low, expression of

platelet endothelial cell adhesion molecule-1 (PECAM-1) was associated with improved

survival. Similarly, in postoperative patients with lung cancer, we found that the overall

survival of the PECAM-1 high-expression group shows a better trend than the PECAM-1

low-expression group (p = 0.172).

Conclusions: The candidate DEGs identified in this study may play some important

roles in the occurrence and development of lung cancer, especially PECAM-1, which

may present potential prognostic biomarkers for the outcome.

Keywords: non-small cell lung cancer, single-cell RNA-seq, gene expression omnibus database (GEO), the Cancer

Genome Atlas (TCGA), PECAM-1 (CD31)
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INTRODUCTION

Lung cancer (LC) is the leading cause of cancer-related deaths
among men and the third most common type of cancer among
women, accounting for an estimated 2.1 million new cases and
∼1.9 million deaths worldwide in 2018. Non-small cell LC
(NSCLC) is the most common type of LC, accounting for about
85% of cases (1). Tumors of NSCLC typically undergo extensive
genomic changes. Recently, molecularly targeted therapies and
immune checkpoint inhibitors have dramatically improved the
survival of patients with genomic changes to somatic cells (2).
However, patients with LC often have different outcomes with
the same therapy, and resistance to targeted therapies and
immunotherapies remains problematic. Hence, the identification
of a new biomarker of prognosis is needed.

Single-cell genomics is a powerful tool to explore genetic
and functional heterogeneity, reconstruct evolutionary lineages,
and detect rare subpopulations (3). Single-cell RNA sequencing
(scRNA-seq) of human tumors has revealed new insights
into tumor heterogeneity and the identification of different
cell subpopulations, which are crucial to elucidate the
mechanisms underlying tumorigenesis (4, 5). Furthermore,
a better understanding of the gene expression profiles of the
tumor microenvironment (TME) may help to improving
prognosis and identifying molecular therapeutic targets.

Recently, intra-tumor mutational diversification analysis of
LC at the single-cell level has been conducted (2, 6, 7). However,
the scRNA-seq analysis has not yet been implemented to compare
the gene expression profiles of non-small cell LC with those of
normal tissues.

In the present study, the genomic features of LC cells and
adjacent normal cells were obtained from GSE117570 and were
analyzed to sort and screen key genes coding for ligand receptors.
Then, candidate differentially expressed genes (DEGs) from The
Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAC)
and GSE118370 databases were used for an enrichment analysis
to identify those associated with crucial ligand-receptor activities
to improve the efficacy of individualized treatment regimens
for LC.

MATERIALS AND METHODS

Patients
This analysis enrolled patients with newly diagnosed,
pathologically confirmed NSCLC at the Shanghai Chest Hospital
(Shanghai, China) from December 1, 2012 to December 31,
2017. All patients underwent complete resection, and no distant
metastases were observed. All patients underwent follow-up of
survival once a year. Paraffin-embedded lung adenocarcinoma
specimens were obtained from all participants, and clinical, as
well as pathological, data were collected. The present study was
approved by the Institutional Review Board for Clinical Research
of the Shanghai Chest Hospital.

Data Curation
The GSE117570 and GSE118370 datasets were
downloaded from the Gene Expression Omnibus database

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi). The
expression profiles of LC samples were downloaded from
TCGA-LUAD database (https://portal.gdc.cancer.gov/).

Quality Control
The DropletUtils function of the R package was used to
characterize the gene expression profiles of individual cells and to
filter out any gene with counts of zero for all barcodes (8). Then,
further screening was conducted of each cell with <100 unique
molecular identifiers. The calculateQCMetrics scater package (9)
was used to filter cells with ≤5% of mitochondrial genes and
≥10% of ribosomal genes. The expression matrix of each sample
was normalized with the NormalizeData function included with
the Seurat package (10).

Principle Component Analysis (PCA) and
t-Distributed Stochastic Neighbor
Embedding (t-SNE)
The FindVariableFeatures function of the Seurat package was
used to screen the top 2,000 genes with the highest standard
deviations and defined as high variants. Focusing on high variant
genes by downstream analysis helps to highlight biological signals
in single-cell data sets. Then, the ScaleData function of the
Seurat package was used to linearly scale the expression data.
Finally, the RunPCA function of the Seurat package was used
for linear dimensionality reduction analysis. After the selection
of the principal components with large SDs, the FindNeighbors
and FindClusters functions of the Seurat package were used for
cell clustering analysis. Later, the RunTSNE function of the Seurat
package was used for the non-linear dimensionality reduction
analysis via t-SNE.

Marker Gene Identification
The FindAllMarkers function of the Seurat package was used to
identify DEGs between each cluster and other cell types [logFC≥

0.25 (expression ratio of the cell population ≥0.25); p ≤ 0.05] as
marker genes. Cell clusters were labeled and visualized according
to existing annotations in the CellMarker database (11).

Screening of DEGs
Genes in TCGA-LUAD and the GSE118370 databases with
a significant difference in mean values among all samples
(ANOVA; p ≤ 0.05) were selected for PCA. Samples with
appropriate phenotypes were selected for differential expression
analysis with the use of GSE118370 chip data with the Limma
package and of TCGA sequencing data with the edgeR package
after log2 conversion of each sample (|log2FC| ≥ 0.5849625).
Then, DEGs were collected.

Ligand Receptor Network Analysis
Based on the ligand-receptor pairing data, related ligand-receptor
pairs of various cell types were analyzed, counted, and organized
by networks (12).

Gene Function Enrichment Analysis
Functional enrichment analysis of DEGs was conducted with the
use of the Gene Ontology (GO) and the Kyoto Encyclopedia
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FIGURE 1 | Cell cluster compositions of tumor tissues and normal tissues. (A) Top 10 genes with the most significant differences in SDs. (B) Gene contributions in

two principal components (PC), namely PC_1 and PC_2. (C) Distribution of cells in two dimensions based on the PC_1 and PC_2 components. (D,E). Cell clusters of

t-distributed stochastic neighbor embedding (t-SNE) and identified marker genes.
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FIGURE 2 | Filtering of differentially expression genes (DEGs). (A,B) Heat maps of DEGs of (A) GSE118370 and (B) The Cancer Genome Atlas (TCGA). (C,D) Volcano

plot of DEGs of (C) GSE118370 and (D) TCGA. (E,F) The intersection of (E) upregulated DEGs and (F) downregulated DEGs of GSE118370 and TCGA.
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of Genes and Genomes (KEGG) biochemical pathway databases
(13, 14). The Fisher’s exact test was used to determine the specific
functions of DEGs. The p-value and the false discovery rate were
calculated for each DEG. The smaller the p-value, the greater the
relationship between the functional item and the input gene, as
most DEGs in the same group had similar functions.

Gene Set Enrichment Analysis (GSEA)
Based on the genes included in the GSE118370 database, GSEA
was used to compensate for the deficiency of a single gene (15).

Immunohistochemistry (IHC)
Anti-PEACM1 antibody (1:50, ab28364, Abcam) was used for
IHC staining. After the staining was completed, two pathologists
independently scored the stained samples according to the
staining intensity and the percentage of positively stained cells.

The staining intensity was scored as follows: 0 (no staining),
1 (yellow or yellow-brown), and 2 (brown). The percentage of
positive cells was scored as follows: 0 (none), 1 (<10%), 2 (10–
50%), and 3 (<50%). Then, the relative expression index was
calculated by multiplying these two scores; the final score <

3 indicates low expression, and the final score ≥ 3 indicates
high expression.

Survival Analysis
According to the TCGA database, we defined the median
value of the expression of candidate DEGs in all patients as
the cut-off value and performed the Kaplan-Meier Survival
analysis and the COX regression analysis by using the survival
package. Correlations among the characteristics of patients in
different groups were analyzed with the Fisher’s exact test and

TABLE 1 | Statistic result of differentially expressed genes(DEGs).

Resources Platform Sample size of

Tumor

Sample size of

Normal

FC P_value Up Down

GSE118370 GPL570 6 6 1.5 0.05 1,798 2,143

TCGA HiSeq 526 59 1.5 0.05 631 482

FIGURE 3 | Functional enrichment analysis of DEGs. (A–C) Enrichment result of downregulated DEGs in (A) the biological process (BP), (B) the cellular component

(CC), and (C) the molecular function (MF) pathway of Gene Ontology (GO). (D) Enrichment result of downregulated DEGs of the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway. (E) Gene set enrichment analysis result of GO:0001525 (ANGIOGENESIS).
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performed using the SPSS software version 22 (IBMCorporation,
Chicago, IL).

RESULTS

Cell Cluster Compositions of Tumor
Tissues and Normal Tissues
Approximately, 11,233 cells from the GSE117570 database
passed quality control and were selected for further analysis
(Supplementary Figure 1A). The top 2,000 genes with the most
significant differences in SDs were screened, and the top 10
genes are revealed in Figure 1A. The distribution of these genes
between the tumor group and the normal group was detected
by PCA and t-SNE. The top 46 significantly correlated genes are
shown in Supplementary Figure 1B. We mapped the cells into
two dimensions based on the PC_1 and PC_2 components, and
other components were calculated with an estimated p-value, and
the significant components were selected for subsequent analysis
(Figures 1B,C). To further precisely cluster the populations of
cells, t-SNEwas adopted for the visualization of high dimensional
data (Figure 1D). In total, 15 distinct cell clusters were identified
by clustering analysis and classified based on the top 10 DEGs,
which included CD4+T cells, CD8+ T cells, cancer stem cells,
plasma cells, natural killer cells, M1 macrophages, macrophages,
M2 macrophages, regulatory B cells, T helper 17 (Th17) cells,
dendritic cells, effector T cells, cancer cells, endothelial cells, and
Th2 cells (Figure 1E).

Filtering and Functional Enrichment
Analysis of DEGs
Of the 3,941 DEGs identified in the GSE118370 dataset, 1,798
were up-regulated and 2,143 were downregulated (Figures 2A,C;
Table 1). Of the 1,113 DEGs identified in the TCGA dataset, 631
were upregulated and 482 were downregulated (Figures 2B,D;
Table 1). Of the 457 shared DEGs in the two databases, 199

were upregulated and 258 were downregulated (Figures 2E,F).
To further investigate cell functional states associated with
LC and potential molecular regulators, functional enrichment
analyses, including GO and KEGG analyses, of these DEGs were
conducted. Three main categories of the GO function analysis
[biological process (BP), cellular component (CC), andmolecular
function (MF)] revealed that the downregulated DEGs were
significantly enriched in the following functions: cell motility, cell
migration, and cell component movement (GO BP, Figure 3A);
vesicle (GO CC, Figure 3B); and cell adhesion molecule binding,
actin binding, and extracellular matrix structural constituent
(GO MF, Figure 3C). According to the results of the KEGG
analysis, the downregulated DEGs were mainly enriched in
tight junctions, complement and coagulation cascades, and
phagosomes (Figure 3D).

To identify the potential functions of the DEGs in the tumor
group and the normal group, GSEA was conducted to search GO
terms enriched in the GSE118370 dataset (Figure 3E). The results
showed that some of the genes expressed in the normal group
were significantly and negatively correlated with the angiogenesis
pathway (GO: 0001525).

Ligand Receptor Network Analysis
Previous analyses of the ligand-receptor relationships of all
marker genes in each cell type were presented as arrow diagrams
(Supplementry Figure 1D; Figure 4A) (11). Finally, screening of
nine ligand-receptor pairs with the most interactions identified a
distinct network in individual cells (Figure 4B).

Selection and Enrichment Analysis of
Candidate DEGs
The DEGs were compared with screened ligand-receptor
pairs and the following top 18 transcripts were selected as
candidate DEGs: AXL, C1QA, CAV1, CD36, CD93, CDH1,
COL1A1, DDR1, EFNB2, ERBB2, ERBB3, GNAI2, HBEGF,

FIGURE 4 | Ligand receptor network analysis. (A) Network diagram of the detailed relationship between ligand receptors in various cell types. (B) Based on the

network pairing relationship, the top none most ligand-receptor relationship pairs are selected, and the number of relationships between them with cell group is

counted, including SDC4-MDK (16 pairs); SDC4-TFPI (16 pairs); LRP1-MDK (12 pairs); CAV1-ICAM1 (16 pairs); CAV1-APP (20 pairs); CAV1-GNAI2 (16 pairs);

LRP1-TFPI (12 pairs); LRP1-APP (15 pairs); FPR1-GNAI2 (12 pairs). Diamond-shaped nodes represent ligands, and the arrows from ligands to cell types means

V-shaped nodes represent receptors.
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FIGURE 5 | Selection and enrichment analysis of candidate DEGs. (A–C) Gene function enrichment analysis of candidate DEGs in (A) GO BP, (B) GO CC, and (C)

GO MF. (D) Gene function enrichment analysis of candidate DEGs in the KEGG pathway.

LPL, MDK, PECAM-1, PROS1, and SDC1. Compared to
normal tissues, CDH1, COL1A1, DDR1, ERBB2, ERBB3,
MDK, and SDC1 were upregulated in LC, and AXL, C1QA,
CAV1, CD36, CD93, EFNB2, GNAI2, HBEGF, LPL, PECAM-
1, and PROS1 were downregulated. According to the GO
analysis, the candidate DEGs were significantly enriched in
wound healing, response to wounding, and cell migration
(BP, Figure 5A), extracellular space, cell surface, and vesicle
(CC, Figure 5B), and growth factor binding, transmembrane
receptor protein kinase activity, and protein tyrosine activity
(MF, Figure 5C). According to KEGG analysis, the candidate
DEGs were significantly enriched in proteoglycans in cancer,

bladder cancer, malaria, tyrosine kinase inhibitor resistance
in the EGFR, the ERBB signaling pathway, ECM-receptor
interactions, fluid shear stress and atherosclerosis, cell
adhesion molecules, and cholesterol metabolism in endometrial
cancer (Figure 5D).

Survival Analysis of Candidate DEGs
Further analysis of the expression and clinical information
of candidate DEGs in TCGA-LUAD database. We performed
survival analysis on half of the patients with high expression
levels and half of the patients with low expression levels of
candidate DEGs and found that the expression of PECAM-1 had
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FIGURE 6 | Survival analysis of PECAM-1. (A) Disease-free survival (DFS) of PECAM-1 expression. (B) Overall survival (OS) of PECAM-1 expression. (C) Univariate

cox analysis of PECAM-1. (D) Multivariate cox analysis of PECAM-1.

a significant impact on the survival of patients with LC at the
threshold expression value of 8,615 (Figures 6A–D).

High expression of PECAM-1 apparently lead to a longer
overall survival than its low expression [p= 0.00854, hazard ratio
(HR) = 0.675, Figure 6B]. Univariate Cox analysis showed that
PECAM-1 is a protective factor [HR = 0.998, 95% confidence
interval (95%CI) = 0.996–0.999, p = 0.0076, Figure 6C].
Multivariate analysis was used for factors found to be obviously
significant in univariate analysis, and the results of multivariate
Cox analysis showed that PECAM-1 tended to have a protective
effect (HR= 0.998, 95%CI= 0.996–1, p= 0.0024, Figure 6D).

Validation of the Prognostic Effect of
PECAM-1
First, we collected the paraffin tissue and clinical data of
30 patients with postoperative LUAC (Table 2). Then, we
performed immunohistochemical tests to validate the expression

of PECAM-1 in those paraffin specimens (Figures 7A,B). The
median follow-up time is 50 months (three patients were lost).
The Kaplan–Meier survival analysis of the overall survival
of two groups showed that the PECAM-1 high-expression
group showed a better survival trend than the PECAM-1 low-
expression group, similar to our previous analysis (p = 0.172,
Figure 7C).

DISCUSSION

In the present study, cell clusters in the tumor group and the
normal group were identified. Screening of the top 18 candidate
DEGs in two groups identified those expressed predominantly
in ligand-receptor pairs with many interactions. Functional
enrichment and survival analyses indicated that the candidate
DEGs were significantly associated with the prognosis of LC,
especially PECAM-1.
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TABLE 2 | Demographic, clinical, and pathological characteristics of patients with

lung adenocarcinoma in the PECAM-1 high-expression group (PECAM-1+) and

the PECAM-1 low-expression group (PECAM-1-).

Parameters PECAM-1 + PECAM-1 − p-value

Age 1.000

≥60 6 5

<60 11 8

Gender 0.700

Male 10 9

Female 7 4

Smoking history 1.000

Non-smoker 16 13

Smoker 1 0

Lymph node metastasis 1.000

Yes 8 7

No 9 6

TNM stage 0.783

I 6 3

II 5 3

III 5 6

IV 1 1

Overall, 18 candidate DEGs that participate in many ligand-
receptor activities were subjected to scRNA-seq. The GO BP
analysis results revealed that these DEGs were mainly enriched
in the following top five functions: wound healing, response to
wounding, cell migration, cell motility, and regulation of cell
motility. Previous studies have demonstrated that the stroma
of solid tumors contains a variety of cellular phenotypes and
signaling pathways associated with wound healing. For example,
tumor stroma is formed by abnormal activation of the wound
healing pathways (16, 17). Both wound healing and TME
are dependent on changes to deposition of the extracellular
matrix, which promotes epithelial–mesenchymal transition and
increases the motility of both fibroblasts and tumor cells (18).
The GO CC analysis indicated that candidate DEGs enriched in
extracellular space, cell surface, and vesicles may have important
impacts on exosome production and tumor metastasis (19). The
GO MF analysis demonstrated that some of the candidate DEGs
were enriched in transmembrane receptor protein kinase activity
and protein tyrosine activity, suggesting that the difference in
the cellular processes of tumor cells vs. normal cells, such
as cell signaling, cell-cell communication, transport, energy
transduction, and enzyme activation, may be induced by receptor
protein kinases. (20). These results suggest that these DEGs are
involved in the establishment of the TME and the migration of
LC cells.

The KEGG pathway analysis showed that the identified
DEGs were mainly enriched in the following top five pathways:
proteoglycans in cancer, bladder cancer, malaria, tyrosine kinase
inhibitor resistance in EGFR, and the ERBB signaling pathway.
Proteoglycans exert diverse functions in the occurrence of cancer

(21–23) and are thought to regulate the phenotype of tumor cells
and angiogenesis in tumor metabolism, in addition to promoting
the formation of a temporary matrix for tumor growth, thereby
affecting cell-cell interactions and cell-matrix interactions and
tumor cell signal transduction (21). EGFR and the ERBB pathway
are common targets for the treatment of LC (24, 25). The results
of the present study showedDEGs have impact on tyrosine kinase
inhibitor resistance in EGFR and the ERBB signaling pathway,
which provide interesting insights for future studies of tyrosine
kinase inhibitors in LC.

There were a lot of research about the 18 candidate
DEGs. Expression of CDH1 (E-Cadherin) is associated with
physiological signaling pathways, such as cell proliferation,
maintenance of cell adhesion, cell polarity, and epithelial–
mesenchymal transition. It is considered a risk factor for diffuse
gastric and lobular breast cancer (26). COL1A1 expressions are
found in most connective tissues and are abundant in bones,
corneas, the dermis, and tendons (27). DDR1 is predominantly
expressed in epithelial cells and is reported to be involved
in the progression of cancer (28). Amplification of ERBB2 is
well-described in many kinds of solid cancer and has been
established as an important actionable target in multiple cancer
types (29). ERBB3 plays an important role in cancer, and the
mutation of ERBB is a potential tumor driver (30). MDK is
a heparin-binding growth factor and acts as a mediator for
the acquisition of critical hallmarks of cancer, including cell
growth, survival, metastasis, migration, and angiogenesis (31).
The expression of SDC1 often produces malignant phenotypes,
which arise from increased cell proliferation and cell growth,
cell survival, cell invasion and metastasis, and angiogenesis (32).
AXL is a receptor tyrosine kinase expressed in many cancer
types and has been associated with therapy resistance and poor
clinical prognosis and outcomes (33). C1QA encodes the A-chain
polypeptide of serum complement subcomponent C1q, which
is associated with lupus erythematosus and glomerulonephritis
(34). CAV1 encodes the scaffolding protein, which is the main
component of the caveolae plasma membranes found in most
cell types (35). CD36 is a scavenger receptor expressed in
multiple cell types, and it mediates lipid uptake, immunological
recognition, inflammation, molecular adhesion, and apoptosis
(36). CD93 is a transmembrane receptor that is upregulated
in tumor vessels in many types of cancer, including high-
grade glioma (37). EFNB2 is expressed at abnormally high
levels in some neoplasms, such as squamous cell carcinoma of
the head and neck and colorectal cancer (38). The expression
of GNAI2 in CD11c+ cells and IL6 in CD4+/CD11b+
DCs appears to promote colon tumor development in mice
(39). HBEGF is a ligand for the EGFR, one of the most
commonly amplified receptor tyrosine kinases in glioblastoma,
which may be a clinically relevant target (40). LPL has
been extensively investigated as a potential risk factor for
coronary artery disease (41). PROS1 encodes a vitamin K-
dependent plasma protein that functions as a cofactor for the
anticoagulant protease, an activated protein C to inhibit blood
coagulation. It plays an essential role in the resolution of
inflammation (42).
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FIGURE 7 | The expression of protein PECAM-1 in patients with lung adenocarcinoma. A-B Representative positive (A) and negative (B) expression of PECAM-1

were examined by immunohistochemistry in lung adenocarcinoma tissues (n = 30). Original magnification, ×200 (upper panel), ×400 (lower panel), ×800 (lower

panel). (C) The association of protein expression of PECAM-1 with OS (n = 30).

PECAM-1 (also known as a cluster of differentiation 31,
CD31) was primarily identified as an adhesion molecule
that plays various roles in cell proliferation, apoptosis, and
migration, in addition to cellular immunity. PECAM-1
is expressed by some tumor cells and may contribute to
tumor invasion (43, 44). However, the role of PECAM-
1 in LC remains unclear (45–50). Giovanna et al. found
that PECAM-1 acts as a checkpoint molecule and can
negatively regulate FcγR-mediated phagocytosis by monocytes
and macrophages, and downregulation of PECAM-1
correlated with decreased survival of chronic lymphocytic
leukemia cells (51, 52). Virman et al. found that high
expression of PECAM-1 was significantly associated with
improved survival.

At present, the research on PECAM-1 is not sufficient, but
many studies have shown that PECAM-1 may affect immune
regulation. This molecule may play a crucial and complex role
in the regulation of T-cell-mediated immune responses, with a

large impact on immunity in health and disease (53). Previous
studies have found that although the loss of PECAM-1 leads
to excessively cytotoxic killing, PECAM-1 also can delay T-
cell apoptosis and prolong the action time of T cells (54,
55). Studies have also found that the PECAM-1 protein can
promote the endothelial migration of lymphocytes and natural
killer cell, which take pivotal roles in eliminating the abnormal
cells, such as tumor cells (54, 56, 57). Analysis by our group
revealed that a high PECAM-1 expression was associated with
better overall survival and is a significant prognostic factor in
LC. Although multivariate Cox analysis showed that PECAM-
1 was not statistically significant, a suitable cutoff value of
PECAM-1 expression may help to indicate better survival of
patients with LC. Our research also found that, although it
is statistically non-significant, patients with LC with a high
PECAM-1 expression had a longer overall survival period,
which may be related to the effect of PECAM-1 on the tumor
immunemicroenvironment, promoting the transport of immune
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cells and enhancing the role of immune cells. However, the
potential impact of PECAM-1-mediated interactions on the
development and function of the immune system need to be
fully studied.

The results of the present study identified key genes and
pathways in LC, which will improve our understanding
of the molecular mechanisms underlying the development
and progression of LC. Eighteen genes that potentially play
pivotal roles in the pathogenesis of LC and may be closely
associated with tumor progression, especially PECAM-
1, were identified in the present study. In addition, we
conducted immunohistochemical analysis on the protein
expression of PECAM-1 in lung cancer tissues and
analyzed the survival of patients with LC with different
PECAM-1 expressions. We found that the PECAM-1
high-expression group has a clear survival advantage,
which further shows that PECAM-1 may be a protective
prognostic factor.
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