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Although many approaches have been used to treat hepatocellular carcinoma (HCC), the
clinical benefits remain limited, particularly for late stage HCC. In recent years, studies
have focused on immunotherapy for HCC. Immunotherapies have shown promising
clinical outcomes in several types of cancers and potential therapeutic effects for
advanced HCC. In this review, we summarize the immune tolerance and
immunotherapeutic strategies for HCC as well as the main challenges of current
therapeutic approaches. We also present alternative strategies for overcoming
these limitations.
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INTRODUCTION

Liver cancer is the seventh most commonly diagnosed cancer and third leading cause of cancer-
related death worldwide. Hepatocellular carcinoma (HCC), the most common form of liver cancer,
shows high morbidity and mortality (1). The major clinical risk factor for developing HCC is liver
cirrhosis. Chronic infections with hepatitis B virus and hepatitis C virus as well as long-term heavy
alcohol consumption are the main causes of cirrhosis development (2).

Surgical resection, liver transplantation, and radiofrequency ablation (RFA) are widely applied in
the clinical treatment of early stage HCC (Barcelona Clinic Liver Cancer [BCLC] stage A). For
patients with intermediate HCC (BCLC stage B), transarterial chemoembolization is considered as
the first-line treatment with a median survival of approximately 40 months (3–5). However, most
patients with HCC are first diagnosed in an advanced stage (BCLC stage C). The multi-tyrosine
kinase inhibitors sorafenib and regorafenib have been approved by the Food and Drug
Administration as first- and second-line treatments for advanced HCC but only increase survival
by less than three months (5). Although many treatment approaches have improved the clinical
efficacy, patients with HCC suffer from tumor recurrence and show poor survival rates. Thus, novel
therapeutic strategies are urgently needed.

Cancer immunotherapy (CIT) has rapidly developed in the past few years and has improved the
survival of patients with different tumors. However, only a few patients with specific cancers, such as
melanoma or Hodgkin’s lymphoma, exhibit life-altering improvements with CIT. Most patients
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with solid tumors still respond negatively to immune therapies.
In this review, we summarize the immune tolerance and
immunotherapeutic strategies for HCC, analyze the limits of
current therapeutic approaches, and present alternative strategies
which might overcome these limitations.
IMMUNE TOLERANCE OF HCC

The liver is constantly exposed to non-self proteins derived from
nutrients or microbiota, which can trigger immune responses.
Many mechanisms protect these harmless antigens from being
attacked by the hepatic immune system to maintain homeostasis
in the hepatic microenvironment (6). In chronic liver disease,
continuous inflammation makes the liver an immunosuppressive
microenvironment. Chronic hepatitis B virus and hepatitis C
virus infection are the most important risk factors for HCC and
are associated with 80% of HCC cases globally (7, 8), providing
an immunosuppressive milieu for the initiation and progression
of HCC (9). Tumor cells and the specific immune system of HCC
constitute an immune-resistant microenvironment, allowing
tumor tissue to evade the surveillance of the immune system
and protecting the tumor tissue from immune system attack.

Tumor Cells Promote Immune
Tolerance of HCC
Hepatocytes under chronic pressure gain ‘driver’mutations (10),
leading to growth advantages and gradually transforming them
into low-grade dysplastic nodules, high-grade dysplastic nodules,
early HCC, and finally advanced HCC (11). The progression of
tumor cells under the selective pressure of immune system
resulting in the emergence of immune-resistant tumor cells
with fewer immunogenic or immunosuppressive factors is
named as ‘immunoediting’ (12).

Tumor cells show weakened antigenicity. Tumor-associated
antigens (TAAs) are antigens that are either only produced by
tumor cells or overexpressed in tumors compared to in normal
cells. The most studied TAAs are oncofetal antigens and cancer/
testis antigens, including alpha fetoprotein (AFP), glypican-3
(GPC-3), New York esophageal squamous cell carcinoma-1,
synovial sarcoma X-2, melanoma antigen gene-A, and human
telomerase-reverse transcriptase, which can elicit a defensive
immune response in the host. In the progression of a
chronically inflamed liver and HCC, genetic and epigenetic
alterations under pressure from the microenvironment
transform tumor cells and deregulate the expression of TAAs.
In addition to decreasing TAAs, HCC cells escape immune
attack by releasing immunosuppressive cytokines, such as
transforming growth factor-b and indoleamine 2, 3-
dioxygenase (13, 14).

Immunosuppressive Cells in HCC
The liver prevents harmless antigens from being attacked by the
hepatic immune system and thus maintains homeostasis in the
hepatic microenvironment (6). However, long-lasting
inflammatory and antigenic stimulation switches the immune
Frontiers in Oncology | www.frontiersin.org 2
system in the liver to an immunosuppressive status, which is
exacerbated during the initiation and progression of HCC (15).

Repressive T Cells in HCC
The mechanisms of immunological tolerance for T cells in HCC
including inactivation or deletion of effector T cells, mainly refers
to CD8+ T cells as well as priming and expansion of regulatory T
cells (Treg cells). The presence of tumor-infiltrating lymphocytes
(TILs) is associated with a good prognosis and improved overall
survival in HCC (16). Cytotoxic infiltrating CD8+ T cells are the
major cell type functioning to kill tumor cells. However,
persistent exposure to antigens stimulates effector CD8+ T cells
to differentiate into exhausted CD8+ T cells (17). Exhausted
CD8+ T cells were originally characterized by down-regulated
expression of interferon gamma (IFN-g) during chronic
inflammation. Poor expression of tumor necrosis factor-b and
interleukin-2 (IL-2) in exhausted CD8+ T cells is also observed,
resulting in impaired cytotoxic function (18). In addition to the
loss of effector function, exhausted CD8+ T cells express
inhibitory receptors (IRs), such as programmed cell death 1
(PD-1), lymphocyte-activation gene 3, T cell immunoglobulin
domain and mucin domain-containing protein 3, and cytotoxic
T lymphocyte-associated antigen (CTLA)-4 (19–21). IRs are
negative regulatory pathways that prevent the immune system
from attacking cells indiscriminately. However, in the tumor
immune system, IRs protect tumor cells from immune system
attack. Persistent and elevated expression of these IRs has been
observed in HCC (22, 23).

Treg cells are a subpopulation of T cells that modulate the
immune system and play an immune suppressive role in
immune tolerance in cancer. Depletion of Treg cells results in
severe autoimmunity and allergies (24–26). In HCC,
accumulation of intra-tumoral Treg cells correlates with tumor
progression and poor prognosis (27, 28). Treg cell depletion can
also activate an effective immune response in tumor models in
animals (29, 30). Treg cells express the CD4, CD25, and Foxp3
biomarkers. Foxp3 is a key regulatory gene in the development of
Treg cells (31). The transcription factor Foxp3 has been proposed
to regulate the expression levels of immune-suppressive
molecules in Treg cells. Ectopic expression of Foxp3 confers
Treg-like suppressive function to CD4+CD25- T cells (32), and
various molecules encoded by Foxp3-controlled genes are
associated with immune suppression (33).

Myeloid Cells in HCC
There are two types of myeloid cells; marrow-derived suppressor
cells (MDSCs) and tumor associated-macrophages (TAMs),
which play important roles in the tumor microenvironment.
MDSCs are a population of immature myeloid cells with strong
immunosuppressive functions and can promote tumoral
angiogenesis. MDSCs can differentiate into macrophages,
granulocytes, and dendritic cells (DCs) (34). However, in the
hypoxic microenvironment of HCC, tumor cells express
ectonucleoside triphosphate diphosphohydrolase 2, which can
convert extracellular ATP to 5′-AMP and thus prevent the
differentiation of MDSCs (35). Arginine is an essential amino
acid for the proliferation of CD4+ and CD8+ T cells. MDSCs
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suppress T-cell proliferation via increased arginase activity,
leading to arginine depletion (36). MDSCs also exert an
immunosuppressive effect by inducing the differentiation of
CD4+ T cells into Treg cells (36).

TAMs are also immunosuppressive myeloid cells.
Macrophages can differentiate via two routes, known as
macrophage polarization. Classically activated macrophages
(M1) produce high levels of IL-12 and low levels of IL-10 and
promote tumor initiation, whereas alternatively activated
macrophages (M2) are characterized by low IL-12 and high IL-
10 production and promote tumor progression. The
microenvironment of HCC stimulates macrophages towards
M2 polarization, which are named as TAMs (37). A previous
study reported that macrophages in the early stage of HCC
express high levels of major histocompatibility complex (MHC)-
class II and cytokines, such as IL-1b, IL-6, IL-12, and inducible
nitric oxide synthase, which suppress tumor progression.
However, in advanced HCC, macrophages express M2-like
molecules, including macrophage mannose receptor c1,
arginase, IL-10, and transforming growth factor-b and low
levels of MHC-class II, which promote tumor progression (38).

TAMs promote tumor progression through angiogenesis,
tumor cell invasion, and metastasis (39). Infiltrating TAMs
contribute to poor prognosis in HCC, and in vivo and in vitro
experiments have shown that TAMs in HCC enhance tumor
invasion by producing C-C motif chemokine 22 (40). Another
study showed that TREM-1+ TAMs in HCC induce
immunosuppression by recruiting C-C chemokine receptor
type 6-positive Treg cells, releasing CCL20 and producing the
immune checkpoint molecule PD-L1 which may endow HCC
with anti-PD-L1 therapy resistance (41). Transforming growth
factor-b in the HCC environment can promote TAMs to
produce T-cell immunoglobulin- and mucin-domain-
containing molecule-3, which can promote bone marrow-
derived macrophages and peripheral monocytes to differentiate
into TAMs (42). After co-culture with tumor cells, TAMs
promoted the expansion of CD44+ HCC stem cells by
producing IL-6 and signaling via STAT3 (43). The CCR2+

macrophage subset has pro-angiogenic properties in HCC, and
inhibition of CCR2+ TAMs in the fibrosis-HCC model
significantly suppress angiogenic activities (44).

Hepatic Stellate Cells in HCC
Hepatic stellate cells (HSCs) are the main producers of
extracellular matrix in the liver. In liver fibrosis, HSCs are
activated towards a myofibroblast-like phenotype and play a
key role in fibrogenesis (45). Activated HSCs produce
extracellular matrix, cytokines, and growth factors to create a
tumor-favoring environment in HCC (46). Activated HSCs in
HCC suppress the antitumor immune response by depleting
effector T cells and promoting the accumulation of
immunosuppressive cells. HSCs can induce apoptosis of
activated T cells through PD-L1 signaling (47, 48). Activated
HSCs can convert mature peripheral blood monocytes into
MDSCs (49). In murine models, HSCs can present antigens to
naïve CD4+ T cells and transform activated naïve CD4+ T cells
into Foxp3+ Treg cells by producing retinoic acid (50).
Frontiers in Oncology | www.frontiersin.org 3
Liver Sinusoidal Endothelial Cells in HCC
Liver sinusoidal endothelial cells (LSECs) form a bed in the liver
and receive blood from both the hepatic artery and portal veins
in the hepatic parenchyma. In addition to functioning as vascular
channels, LSECs play a role in the immune system. LSECs
function in both pathogen recognition and antigen
presentation. LSECs can cross-present antigens to CD8+ T cells
by taking up, processing, and transferring antigens to MHC class
I. The presentation of antigens produces a tolerogenic response
in naïve CD8+ T cells by upregulating PD-L1 on the surface of
LSECs, which bind to the PD-1 receptor expressed on naïve
CD8+ T cells (51). LSECs also present antigens to the MHC class
II complex to activate CD4+ T cells. However, because of the lack
of co-stimulatory molecules, LSECs drive naïve CD4+ T cells to
develop into Treg cells rather than into T helper cells (52). LSECs
express various receptors for angiogenic factors including
vascular endothelial growth factor receptors 1 and 2, Tie‑2
(angiopoietin‑1 receptor), and platelet-derived growth factor
receptor. The interaction between these receptors and their
ligands promotes the proliferation of LSECs and angiogenesis
(53, 54).
IMMUNOTHERAPY FOR HCC

Immunotherapy for cancer mainly involves three approaches:
vaccines, adoptive cell transfer (ACT), and immune checkpoint
inhibitors (ICIs) (Table 1). Vaccines or ACT with genetically
modified T cells target specific antigens. ICI inhibits the
suppressive regulators of T cells and stimulates already present
antitumor immune responses to kill tumor cells.
Vaccines
Vaccines have been widely used to prevent various diseases by
providing active acquired immunity. Clinical studies using
neoantigen peptide, mRNA, or DC vaccines in patients with
melanoma have achieved promising results (55, 58, 67, 68). This
antigen-based immunotherapy has also been tested for other
tumors, such as ovarian cancer, breast cancer (56), and small-cell
lung cancer (57). TAAs released from tumor lysates are
considered to be optimal vaccines to activate immune
response, but the low representation of the TAAs with high
immunogenicity limits the clinical effect (69, 70).

Some vaccines are being evaluated for treating HCC. In a
phase I trial, administration of AFP-derived peptides as an anti-
tumor vaccine was explored in 15 patients with advanced HCC.
The results demonstrated that the vaccine was safe and effective.
The peptides stimulated the immune system to produce peptide-
specific T-cell receptors (TCRs), with one patient showing a
complete response and eight patients exhibiting slowing of
tumor progression (71). In a phase I trial, a carcinoembryonic
antigen glypican-3 (GPC3) peptide vaccine was explored for
treating advanced HCC, with 30 of 31 patients (91%) showing a
peptide-specific CTL response. For the clinical response among
33 patients, one patient showed a partial response and 19 had
stable disease for 2 months (72). A telomerase peptide was also
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TABLE 1 | Clinical trials of immunotherapy for HCC.

Relevant finding Reference

No AE; CR, 1; PR, 8. (55)

No AE; PR, 1; SD, 19; GPC3-specific CTL response in 30 patients; MST in patients
with CTL frequencies ≥ 50 (N=15), 12.2 months; MST in patients with CTL
frequencies < 50 (N = 18), 8.5 months

(56)

ne

SD: 17; TTP: 57 days; TTSP: 358 days; GV1001 treatment result in a decrease of
regulatory T cells.

(57)

AE, no grade 3 or 4 AE; TTP, 38.4 months; the 1-, 2-, and 5-year RFS, 75%, 69%
and 41.7% respectively.

(58)

c
The median time of RFS (44 months vs 30 months); AEs, (62% vs 41%), no
difference in serious AEs, (7.8% vs 3.5%).

(59)

Alive 15, Tumour recurrence: 3. (60)
ility
se

Grade 3/4 treatment-related adverse events, 12 (25%); treatment-related serious
adverse events, 6%; RR, 20% in the dose-expansion phase; RR, 15% in the dose-
escalation phase.

(61)

S
CR, 1; PR, 8; SD,4; the median PFS, 4.5 months; the median OS, 13 months; (62)

PFS (5.6 months vs 3.4 months); serious AE (12% vs 3%) (63)

OS at 12 months (67.2% vs 54.6%); PFS (6.8 months vs 4.3 months); Grade 3 or 4
AEs (56.5% vs 55.1%)

(64)

PR, 26.3%; PFS at 6 months and 12 months, 57.1% and 33.1% (65)

No AEs; PFS, 3.8 months; OS: 11.3 months; PR, 27%. (66)

, complete response; PR, partial response; GPC-3, carcinoembryonic antigen glypican-3; SD, stable disease;
free survival; TTP, time to progression; TTSP, time to symptomatic progression; RR, response rate; CIK, cytokine-
, CC chemokine receptor 4.
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Therapy
approaches

Phase Agents or approaches Population Endpoints

Vaccine I AFP-derived peptides Vaccines 15 patients with advanced
HCC

P: safety
S: immune response

Vaccine I GPC3 peptide vaccine 33 patients with advanced
HCC

P: safety
S: immune response

Vaccine II cyclophosphamide and a
telomerase peptide (GV1001)
vaccine

40 patients with advanced
HCC

P: tumor response
S: TTP, TTSP, PFS,
OS, safety and imm
responses.

Vaccine I/IIa DC vaccine 12 patients AE, TTP and RFS

CIKs III CIKs therapy after curative treatment
(control, curative treatment without
CIKs therapy)

230 patients with HCC P: RFS
S: OS, cancer-speci
survival, and safety

TILs I TILs therapy after tumor section 15 patients with HCC P: safety
ICB I/II Nivolumab 48 patients with advanced

HCC
P: safety and tolerab
for the escalation ph
and RR

ICB II Pembrolizumab 28 patients with advanced
HCC

Safety, immune
response, PFS and

ICB and
Antiangiogenic
therapy

Ib Atezolizumab and bevacizumab vs.
Atezolizumab

223 patients with
unresectable
hepatocellular carcinoma

Safety and PFS

ICB and
Antiangiogenic
therapy

III Atezolizumab and bevacizumab vs.
Sorafenib

501 patients with
unresectable
hepatocellular carcinoma

OS, PFS and AE

ICB and
Ablation

I/II Tremelimumab with RFA or
chemoablation

32 patients with HCC PR, PFS and OS

ICB and
Cytokines

I mogamulizumab (anti-CCR4
antibody) and nivolumab

15 patients with HCC Safety, PFS, OS and
PR

HCC, hepatocellular carcinoma; AFP, alpha fetoprotein; P, primary endpoint; S, secondary endpoint; AE, adverse effect; CR
CTL, cytotoxic T lymphocyte; OS, overall survival; MST, median survival time; PFS, progression-free survival; RFS, recurrence
induced killer cell; TIL, tumor-infiltrating lymphocyte; ICB, immune checkpoint blockade; RFA, radiofrequency ablation; CCR
u

fi

a

O
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explored as a vaccine target for the treatment of advanced HCC
in a phase II trial. No patients showed a complete or partial
response, and 17 patients (45.9%) had stable disease for six
months (73). Currently, a multi-epitope multi-HLA peptide
vaccine is being evaluated in a phase I/II clinical trial for 40
patients with early and intermediate stages of HCC (HepaVac-
101-NCT03203005). The results are extremely expected. In
addition, lack of high immunogenic vaccines restricts the
development of vaccine. A new prediction algorithm is needed
for the identification of neoantigens with high immunogenicity,
which may have unique homology compared with any human
self-antigen and induce vigorous immune response (74–76).

Adoptive Cell Transfer
Patients receiving ACT therapy are directly treated with
autologous natural or engineered anti-tumor T cells (77). The
transferred cells can divide into three types, including cytokine-
induced killer (CIK) cells, TILs, and genetically modified T cells.
CIK cells and TILs can enhance the overall immune response by
increasing the number of immune cells, whereas the genetically
modified T cells target specific antigens.

Cytokine-Induced Killer Cells
CIK cells are a mixture of cytotoxic T cells and natural killer
(NK) cells separated from peripheral blood mononuclear cells
and are cultured in vitro under treatment with cytokines such as
IFN-g, anti-CD3 antibody and IL-2 to promote their
proliferation and anti-tumor activities (78). Reinfusion of
expanded and activated CIK cells either alone or as a
combined therapeutic strategy has been widely studied to
suppress tumor progression, with some impressive results
observed in metastatic colorectal cancer, myeloid leukemia,
and renal cell carcinoma (79–81). Some studies investigated
the efficiency of ACT with CIK cells for HCC treatment. In a
Korean phase III clinical trial, CIK cells, including CD3+/CD56+

cells, CD3-/CD56+ NK cells, and CD3+/CD56- cytotoxic T cells
(82, 83), were used as an adjuvant treatment for 230 patients with
HCC who had been pre-treated with other curative therapies
(surgical resection, RFA, or percutaneous ethanol injection). The
results showed that the adjuvant immunotherapy group with
activated CIK cells had increased overall and recurrence-free
survival compared with the control group without adjuvant
therapy (median time of recurrence-free survival: 44 vs 30
months) (59).

Tumor-Infiltrating Lymphocytes
The presence of TILs in tumors is associated with good prognosis
(60, 84). TILs are obtained from surgical tumor specimens and
then cultured in vitro with sequential treatment with IL-2 for
expansion and anti-CD3 antibody for activation. These
proliferative and activated TILs are then transferred back into
patients. ACT with TILs has been studied for the treatment of
metastatic human papillomavirus-associated carcinomas, with
clinical responses occurring in 5 of 18 (28%) patients in the
cervical cancer group and 2 of 11 (18%) patients in the non-
cervical cancer group (85). A phase I clinical trial confirmed the
safety of ACT using TILs in patients with HCC: The toxicity and
Frontiers in Oncology | www.frontiersin.org 5
immune response of therapy with autologous TIL is being tested
in an ongoing phase I clinical trial of patients with advanced
HCC (ClinicalTrials.gov number: NCT01462903) (86).

Genetically Modified T Cells
Heterodimeric antibody receptors expressed on the surface of T
cells are known to be tumor antigen-specific TCRs that
recognize the antigenic peptide-MHC complex. The gene
sequence of TCRs that recognize specific TAAs can be
analyzed and introduced into autologous T cells by retroviral
or lentiviral vectors (87). These proliferative and activated
autologous modified TCR-expressing T cells are reinfused
into patients. In response to tumor cells, the cells express the
target antigen, leading to effective antitumor activity by
releasing cytokines such as IFN-g, granulocyte macrophage
colony-stimulating factor, and tumor necrosis factor alpha-a
and directly killing tumor cells (88). An AFP TCR with optimal
affinity, function, and safety is being evaluated for its clinical
efficacy in an early phase clinical trial (ClinicalTrials.gov
number: NCT03971747) (89).

Despite the powerful anti-tumor function of immunotherapies
based on the interaction between peptide-MHC molecules and
TCRs, tumor cells can escape immune surveillance by down-
regulating peptide-MHC complex expression (90). ACT with T
cells engineered to express a chimeric antigen receptor (CAR) are
not limited by the presentation of MHC molecules on the tumor
cell surface. CAR can recognize a defined TAA on the surface of
tumor cells via the single chain variable fragment region, which
is constructed from the variable heavy and variable light
sequences of a monoclonal antibody specific for TAAs.
Activation signals are transferred into cells by activating the
transmembrane adaptor signaling protein CD3z and one or
more co-stimulatory molecules (CD28, CD137, or OX40). The
mechanism of CAR therapy causes tumor variants, which can
escape the immune surveillance through deficiencies in antigen
presentation, to remain susceptible to CAR therapy (87). Other
biomarkers have also been considered as targets for CAR T cell
therapy. AFP is a well-known biomarker for HCC, and CAR T-
cell therapy targeting the AFP-MHC complex showed robust
antitumor activity in AFP-CAR T cells in a mouse xenograft
model of liver cancer (91). Another attractive liver cancer-
specific target is GPC3 because of its high expression in HCC
but low expression in normal tissues (92). GPC3-CAR T cells
efficiently eradicated GPC3+ HCC cells rather than GPC3- HCC
cells. This approach showed high treatment efficiency in an HCC
xenograft model with high levels of GPC3 expression and low
treatment efficiency in HCC xenografts with low GPC3
expression (93). Another ACT study of GPC3-CAR T cell
transfer into patient-derived HCC xenografts also revealed
suppression of tumor cell growth (94).

Immune Checkpoint Inhibitors
The human immune system is in an equilibrium state. Immune
checkpoints regulate immune function by suppressing immune
activity, interrupting the immune response to avoid
overactivation of T cells, and protecting tissues from damage
caused by an excessive immune response. Immune checkpoints
March 2021 | Volume 11 | Article 589680
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in tumor tissues promote immune evasion. Most studies of
immune checkpoints focused on cytotoxic T-lymphocyte
antigen-4 and PD-1 with corresponding PD-L1 ligands. The
ICI approach results in nonspecific immune stimulation by
targeting negative regulators of T cell signaling pathways.

CTLA-4 Inhibitors
The hepatic microenvironment contains a large number of DCs,
which are the major antigen-presenting cells in the liver (95). In a
normal hepatic microenvironment, DCs take up foreign peptides
and present them to T cells via the TCR (signal 1). In addition to
signal 1, activation of T cells requires co-stimulatory molecules
from DCs. After stimulation by the peptide-MHC complex, DCs
present CD80 and CD86 to T cells and bind to the CD28 receptor
on the surface of T cells (signal 2) and further promote
maturation, proliferation, activation, and survival of naïve T
cells. Signal 2 prevents the recognition of self-antigens, whereas
the absence of such a signal leads to T cell anergy. Upon
activation, T cells induce CTLA-4 to competitively bind to
CD80 and CD86 with higher affinity than CD28, to prevent an
excessive immune reaction (96). CTLA-4 inhibitors prevent
CTLA-4 from binding to CD80 and CD86, thereby initiating
signal 2, which can activate specific T cells in lymphoid organs
and promote their migration into the tumor (97).

Two anti-CTLA-4 monoclonal antibodies, ipilimumab and
tremelimumab, are being evaluated in clinical trials for the
treatment of other tumors. Studies have shown that CTLA-4
inhibitors deplete Treg cells in the tumor, leading to enhanced
effector function of antigen-specific T cells in the tumor. Patients
with melanoma and administered ipilimumab exhibit Treg cells
depletion (98, 99). However, the clinical data associated with
application of CTLA-4 inhibitors alone for advanced HCC are
limited. A clinical trial of tremelimumab in patients with HCC
and chronic hepatitis C revealed a partial response rate of 17.6%
and disease control rate of 76.4% (ClinicalTrials.gov number:
NCT01008358) (100).

PD-1/PD-L1 Inhibitors
The cell surface receptor PD-1 is expressed on activated T, B, and
NK cells and binds PD-L1 and PD-L2 ligands to convey co-
inhibitory signals to the TCR. The PD-1 signal terminates
immune responses appropriately and maintains self-tolerance
by causing apoptosis of antigen‐specific T cells, attenuation of
TCR‐mediated activation, and proliferation of T cells (101). The
PD-1 signal mediates the function of Treg cells by promoting
their differentiation and proliferation (102). These ligands are
expressed on leukocytes and tumor cells (103). PD-L1 binding
results in phosphorylation of PD-1, inhibiting T cell proliferation
and cytokine releasing through SHP2. SHP2 dephosphorylation
results in dephosphorylation of key TCR signaling components,
most notably CD28 and the ZAP70/CD3zeta signalosome (104,
105). When chronically exposed to antigens, overexpression of
PD-1 in T cell induces their exhaustion.

Anti-PD-1 monoclonal antibodies, such as nivolumab and
pembrolizumab, and anti-PD-L1 monoclonal antibodies, such as
durvalumab and atezolizumab, have been approved for several
hematologic and solid malignancies. Many clinical trials for
Frontiers in Oncology | www.frontiersin.org 6
HCC are underway. In a phase I/II of escalation trial, safety
was evaluated in 48 patients treated with nivolumab, with grade
≥3 adverse events observed in 31% of patients (15 of 48), which
was considered to be a manageable safety profile (61). A phase II
study of the efficacy of pembrolizumab in 28 patients showed
that one patient achieved a complete response and eight patients
achieved partial responses (62).
LIMITS OF CURRENT
IMMUNOTHERAPIES

Although immunotherapy has shown promising clinical
outcomes in some tumors, including melanoma, non‐small cell
lung carcinoma, and urothelial carcinoma, the application in
HCC faces some limitations (Figure 1) (106–108).

Tumor Mutational Burden
Immunotherapies are ineffective for HCC because of the low
tumor mutational burden of HCC compared to that of
melanoma or non‐small cell lung carcinoma (109).
Neoantigens are tumor-specific peptides that result from
somatic mutations in cancer cells. A larger number of somatic
mutations is associated with higher levels of neoantigens, and the
tumor mutational burden is used to evaluate somatic mutations
in cancer to give a useful estimation of the tumor neoantigen load
(110, 111). Neoantigens are newly expressed antigens on the
surface of tumor cells and can be recognized and presented to T
cells to result in adaptive immune response activation. However,
even in tumors with a high tumor mutational burden, such as
those with deficiencies in DNA damage repair pathways
resulting in the accumulation of DNA mutations, a high
mutational load is not related to high levels of neoantigens. In
fact, only a minority of mutations generates peptides that bind to
MHC molecules and present on the surface of tumor cells, and
fewer can be recognized by T cells (67, 112). The antigen
presentation pathway in tumor cells can be inhibited by
mutations in antigen presentation genes. For example, in
metastatic melanomas, the loss of b2-microglobulin may result
in defects in antigen presentation and escape from immune
recognition (113). Not all neoantigens presented on the surface
of tumor cells can drive effective antitumor immunity. A study
reported that neoantigens could be expressed on either all tumor
cells (clonal) or a subpopulation of tumor cells (subclonal).
Tumors with a high load of clonal neoantigens show an
excellent response to ICI therapy, whereas tumors with a high
load of subclonal neoantigens evade immunotherapy (114)
(Figure 2).

Tumor Microenvironment
The tumor microenvironment (TME) contains many
components, including bone marrow inflammatory cells,
lymphocytes, blood vessels, fibroblastic cells, and the
extracellular-derived matrix composed of collagen and
proteoglycans. The clinical efficacy of ICI depends on three
tumor immune status characteristics. First, antigen-specific
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CD8+ T cells must be present within the TME. Second, the
resident immune cell populations in the TME must be polarized
towards an immune permissive state. Third, tumor cells must
have MHC class I-mediated antigen presentation and PD-1
signaling as the dominant mechanism of immune tolerance. A
tumor with these characteristics is vulnerable to ICIs and named
as an immune “hot” tumor. Immune “cold” tumors lack these
characteristics and are associated with poor clinical response to
ICI therapy (115). The absence of CD8+ T cells in the TME in
several tumor types has been associated with poor clinical
outcomes of ICI therapy (116–118). A study of the stroma of
human lung tumors showed that the stromal extracellular matrix
influences the migration and positioning of T cells (119)
(Figure 2).
EFFORTS TO ENHANCE
IMMUNOTHERAPY FOR HCC

Although the immunotherapy approaches discussed previously
have achieved impressive clinical efficacy in other tumors, they
have failed to benefit patients with advanced HCC. The
limitations of these approaches are discussed above. Here, we
summarize some potential combinatorial strategies for
enhancing the effects of immunotherapy for HCC.
Epigenetic Modulation
Epigenetic modification plays an important role in tumor
progression, causing transcriptional aberrations in gene
Frontiers in Oncology | www.frontiersin.org 7
expression and immune function changes, which may result in
a favorable TME (120). In contrast, epigenetic therapy has the
potential to enhance immunotherapy for HCC by converting an
immune “cold” tumor into an immune “hot” tumor (121).
Epigenetic therapy can promote the expression of
immunogenic antigens on the tumor surface such as cancer
testis antigens (122–125). Cancer testis antigens are a group of
proteins expressed on male germ cells but not in healthy adult
somatic tissues and can serve as target antigens for antitumor
immunotherapy (126, 127).

Epigenetic modification can regulate the composition of
immune cell populations. Methylation of DNA represses genes
related to effector function, proliferation, metabolic activity, and
tissue homing of exhausted T cells. Chronic antigen stimulation
drives CD8+ effector T cells towards the exhausted phenotype,
which is characterized by a series of changes in gene expression
associated with alterations in methylation, leading to increased
PD-1 expression and decreased CXCR3 expression (128). De
novo DNA methylation is essential for establishing exhaustion in
T cells, whereas treatment with ICI contributes to rejuvenation of
exhausted T cells (128) (Figure 3). Azacitidine and histone
deacetylase inhibitors have been shown to suppress MYC
signaling, activate interferon responsiveness, and potentiate the
recruitment of T cells in mouse models of non‐small cell lung
carcinoma (129). An EZH2 inhibitor (DZNep) and DNMT1 c
(5-azacytidine) can augment anti-PD-L1 immunotherapy for
HCC by increasing the release of the chemokines CXCL9 and
CXCL10, which stimulate T cell trafficking into the TME. This
combination therapy strategy can also upregulate the expression
of cancer testis antigens New York esophageal squamous cell
FIGURE 1 | The potential mechanisms of resistance to immunotherapies. HCC with low tumor mutational burden releases few neoantigens. The mutation in antigen
presentation pathways also inhibits tumor-specific peptide presentation. Most of these neoantigens cannot drive effective anti-tumor immunity because of low
immunogenicity. The immune system in the tumor microenvironment is under immunosuppressive status, with few effector CD8+ T cells, many regulatory CD4+ T
cells, and other immunosuppressive cells, which is associated with poor clinical response to immunotherapy. The dense fibrous stroma around tumor islets inhibits
immune cells’ access to the tumor.
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carcinoma-1 and L antigen family member, which are normally
expressed at low levels, as neoantigens to stimulate the adaptive
immune response (130). The potential therapeutic strategy
combined with epigenetic modulation has emerged in recent
years and is promising for treating HCC.

Antiangiogenic Therapy
The hypoxia microenvironment stimulates tumor angiogenesis
and promotes HCC development. Drugs target angiogenic
pathways, including vascular endothelial growth factor (VEGF),
are approved for the treatment of advanced HCC (131). Anti-
VEGF therapy are widely used in HCC treatment (132). Sorafenib,
a tyrosine kinase inhibitor (TKI), can disturb VEGF signaling
pathway and approved for HCC treatment (133, 134). Despite
survival benefits observed, the high rate of acquired resistance to
sorafenib limits its use for advanced HCC treatment.

Despite of high rate of resistance to anti-VEGF drugs for HCC
patients, some studies have reported that these drugs can enhance
immune response. Drugs targeting VEGF-A/VEGFR-2 axis
inhibited Treg cells accumulation in colorectal cancer (135). A
Frontiers in Oncology | www.frontiersin.org 8
VEGFR-2 inhibitor (DC101) promoted tumor-specific CD8+ T
cells infiltration (136). These findings promote the combined
strategies of anti-VEGF drugs and ICBs for HCC treatment.
Bevacizumab is an anti-VEGF agent approved to treat metastatic
colorectal cancer, glioblastoma, renal cell cancer and cervical
cancer (137–139). However, the clinical efficacy of Bevacizumab
for HCC treatment was less, with 13% response rates in a phase II
study (140). Recent studies focus on the combination of anti-VEGF
therapy and immunotherapy. In an open-label, multicenter,
multiarm, phase Ib study, atezolizumab plus bevacizumab shows
optional results, with longer progression-free survival compare
with atezolizumab alone for patients with unresectable HCC (63).
A similar result is showed in another clinical trial, the combination
strategy of atezolizumab and bevacizumab for HCC treatment
showed better overall and progression-free survival outcomes than
sorafenib in 501 patients with unresectable HCC in a global,
multicenter, open-label, phase III trial (ClinicalTrials.gov
number: NCT03434379) (64). Other anti-VEGF drugs are also
being evaluated in the combined therapy with immunotherapy for
HCC treatment (ClinicalTrials.gov number: NCT03170960
FIGURE 2 | The immune response in tumor microenvironment and the function of immune checkpoints. Some sub-clonal tumor cells release neoantigens while others
do not, contributing to the immune response to only part of tumor cells and thus leading to the failure of tumor immunotherapy. Upon antigen recognition, DCs present
the antigen-MHC molecules, bind to the TCR on T cell membrane and stimulate the proliferation and activation of CD4+ T cells and CD8+ T cells in lymph node. Then the
antigen-specific cytotoxic T cells migrate to tumor microenvironment via blood system. The stromal extracellular matrix in tumor may prevents T cell infiltration. CTLA-4,
which is the membrane receptor of activated T cells, outcompetes CD28 for binding to the CD80/86 expressed on the DC membrane, further inhibiting the signal 2,
which is essential for the maturation, proliferation, activation and survival of T cells. The interaction of PD-1 and PD-L1 promotes the differentiation and proliferation of Treg
cells and induces the cytotoxic CD8+ T cells into an exhausted state. DCs under the influence of CLTA-4 signal and PD-1 signal release some immunosuppressive
molecules, such as IL-10 and IDO, which suppress T cells activation. IDO, indoleamine 2,3-dioxygenase; PD-1, programmed cell death protein 1; PD-L1, programmed
cell death 1 ligand 1; CTLA-4, cytotoxic T-lymphocyte protein 4; DC, dendritic cell; Treg cell, regulatory T cell.
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(Cabozantinib and Atezolizumab) and NCT03006926 (Lenvatinib
and Pembrolizumab)).

Inducing the Formation of Tertiary
Lymphoid Structures
Although intra-tumoral infiltration by immune cells is a
predictor of sensitivity to ICI treatment and many studies have
focused on the role of T cell in antitumor responses, other
immune cells have not been widely examined. Recently, studies
revealed that the presence of intra-tumoral tertiary lymphoid
structures (TLSs) improves ICI treatment of melanoma (141).
TLSs are ectopic lymphoid aggregates that reflect lymphoid
neogenesis occurring in non-lymphoid tissues in response to
chronic inflammation, characterized by mature DCs in a T-cell
zone adjacent to B-cell follicles including a germinal center (142,
143). TLSs are found in most types of cancer, with high TLS
densities associated with improved clinical outcomes (144). In
HCC, intra-tumoral TLSs are correlated with a decreased risk of
early HCC recurrence after surgical resection, which may reflect
ongoing, effective antitumor immunity (145). Therapeutic
strategies to induce the formation of TLSs may enhance the
antitumor immunotherapy of HCC (145). A reagent targeting
LIGHT, a member of tumor necrosis factor superfamily of
cytokines, can induce the formation of TLSs and can be
combined with ICI to increase the number of TILs, conferring
a survival benefit in mice with insulinomas (146). Other
strategies aimed at stromal cells, which participate in the
Frontiers in Oncology | www.frontiersin.org 9
establishment of TLSs (147). Stromal cells derived from lymph
nodes and induce TLSs cause infiltration of host immune cell
subsets to suppress tumor growth in vivo (148).

Locoregional Therapy
Locoregional therapies such as RFA can be as efficient as surgical
resection of HCC nodules (149) but patients treated with this
therapy frequently experience cancer recurrence. Although it is
not effective as monotherapy, locoregional therapy causes tumor
cell death via the release of tumor antigens and stimulation
antitumor immunity (150), named as immunogenic cell death
(ICD). ICD may enhance the anti-tumor immune reaction
through the antigens and adjuvants released during this
process. ICD of tumor cells results in the release of
neoantigens which may be recognized by DCs followed by
activation of the adaptive immune response (151). Moreover,
heat shock proteins induced by RFA have been shown to
enhance the immune response by activating the natural
immune response and augmenting the antigen-specific
cytotoxic T-cell response (152–154). Although the effect of
immune activation by locoregional therapy alone is not
sufficient for treating HCC, it may be an effective adjuvant for
immunotherapy (150).

Tremelimumab combined with RFA or chemoablation for
advanced HCC resulted a partial response in 26.3% of patients (5
of 19), with a clear increase in CD8+ T cells. Progression-free
survival rates at 6 and 12 months were 57.1% and 33.1%,
FIGURE 3 | Tumor cells under the treatment of epigenetic drugs upregulate the expression of CTAs, such as NY-ESO-1 and LAGE. Epigenetic modification
contributes to the depletion of MYC signalling, activates type I interferon signalling and potentiates the recruitment of T cells. Epigenetic agents can modulate the
state of CD8+ T cells by transforming exhausted CD8+ T cells, which are characterized by a series of changes in effector genes associated with alterations in
methylation, into effector or memory CD8+ T cells. CTA, cancer testis antigens; NY-ESO-1, New York Esophageal Squamous Cell Carcinoma-1; LAGE, L antigen
family member.
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respectively, and the median overall survival was 12.3
months (65).

Chemotherapy
Chemotherapeutic drugs alone for treating HCC, such as
oxaliplatin, have shown limited effects on the overall survival
of patients with advanced HCC. These cytotoxic drugs induce
tumor cell death, which may also stimulate anti-tumor immunity
by induced ICD. The cytotoxic effect also induces a decrease in
the immunosuppressive cell population, such as MDSCs and Treg

cells (155, 156). High-dose chemotherapy, which is the proper
strategy for the treatment of HCC, leads to the death of both
tumor and immune cells. The suppressed immune system then
loses its function and no longer targets therapy-resistant
tumor cells.

Low dose metronomically administered chemotherapy can
increase the ablation of immunosuppressive Treg cells (156, 157),
promote the maturation and activation of DCs (158, 159), and
improve the activation and functionality of cytotoxic NK and
CD8+ T ce l l s (160) . Treatment wi th metronomic
cyclophosphamide affected gliomas by activating anti-tumor
CD8+ T cell responses and immune memory in an immune-
competent mouse model with implanted GL261 glioma (160).
Pre-treatment with metronomic chemotherapy for HCC may
enhance the effect of ICI and avoid unacceptable toxicity (161).

Cytokines
Although cytokines havemultiple functions in the formation of the
immune system, cytokine treatment alone as an immunotherapy
for HCC is limited. IFN-a was the first immunotherapy tested in
many clinical trials. Although IFN-a has anti-proliferative,
immunostimulatory, and anti-angiogenesis properties (162), most
trials failed to show clinical benefits (163, 164).

Overexpression of cytokine CCL5 in CTNNB1-mutant HCC
cells led to the recruitment of CD103+ DCs and antigen-specific
CD8+Tcells,whichmayenhance the clinical outcomeof ICI therapy
(165). CCR4 expressed by Treg cells can suppress anti-tumor
immune response. In a phase I study, the safety and efficacy of
combinedmogamulizumab (anti-CCR4 antibody) and nivolumab
Frontiers in Oncology | www.frontiersin.org 10
are evaluated for patients with HCC, with four (27%) tumor
responses among 15 patients. During treatment, the immune
system activated with population of Treg cells decreased and
effector CD8+ cells increased (66). Although immunotherapy
using cytokines alone is limited for treating HCC, the potential
advantage of cytokines as adjuvants to enhance the clinical efficacy
of immunotherapy is promising.
CONCLUSION

Immunotherapy as monotherapy or combined with other
therapeutic strategies has demonstrated clinical efficacy.
Although some patients benefit from these therapeutic
approaches, most patients suffering from advanced HCC do
not. Novel immunotherapy strategies are currently
being evaluated.
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