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The chemokine receptor 4 (CXCR4) and 7 (CXCR7) are G-protein-coupled receptors
(GPCRs) activated through their shared ligand CXCL12 in multiple human cancers. They
play a key role in the tumor/tumor microenvironment (TME) promoting tumor progression,
targeting cell proliferation and migration, while orchestrating the recruitment of immune
and stromal cells within the TME. CXCL12 excludes T cells from TME through a
concentration gradient that inhibits immunoactive cells access and promotes tumor
vascularization. Thus, dual CXCR4/CXCR7 inhibition will target different cancer
components. CXCR4/CXCR7 antagonism should prevent the development of
metastases by interfering with tumor cell growth, migration and chemotaxis and
favoring the frequency of T cells in TME. Herein, we discuss the current understanding
on the role of CXCL12/CXCR4/CXCR7 cross-talk in tumor progression and immune cells
recruitment providing support for a combined CXCR4/CXCR7 targeting therapy. In
addition, we consider emerging approaches that coordinately target both immune
checkpoints and CXCL12/CXCR4/CXCR7 axis.

Keywords: CXCR4, CXCR7, tumor microenvironment, immune cells, cancer
INTRODUCTION

Chemokines are small chemoattractant molecules that control cell migration, proliferation and
survival in physiological and pathological processes including cancer (1). They are divided into CC,
CXC, XC and CX3C subfamilies based on their cysteine motif (2) and are functionally categorized as
inflammatory (CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, and
CXCL14) and homeostatic chemokines (CCL14, CCL19, CCL20, CCL21, CCL25, CCL27, CXCL12
and CXCL13) (3). Chemokines act on chemokine receptors, G-protein coupled-7 transmembrane
receptors (GPCRs) grouped according to chemokines nomenclature (CCR, CXCR, XCR and CX3CR)
(2). About 50 chemokines and 23 human chemokine receptors have been identified (4) including the
atypical chemokine receptors (ACKRs), unable to trigger the canonical G protein-signaling and thus
called decoys, scavengers or interceptors. Four molecules are included in the ACKR subfamily:
ACKR1, or duffy antigen receptor for chemokines (DARC); ACKR2, or D6 or CCBP2; ACKR3, also
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called CXC-chemokine receptor 7 (CXCR7) or RDC1; and
ACKR4, or CC chemokine receptor-like 1 (CCRL1) (5). In
TME, both immune cells and stromal cells, express chemokines
that regulate tumor vascularization and invasion (6). Herein, the
focus is on the CXCL12 that activates CXCR4 and CXCR7.
CXCL12, initially known as stromal-derived factor 1 (SDF-1),
encoded on chromosome 10q11, is a homeostatic chemokine
secreted in lymph nodes, kidney, brain, colon, lung and liver by
stromal cells, fibroblasts and epithelial cells in six different
isoforms. CXCL12 regulates adhesion of tumor cells with
laminin, fibrinogen, stromal cells and endothelial cells (ECs) by
activating cell surface adhesion molecules (7, 8). CXCR4 is a co-
receptor for Human Immunodeficiency Virus (HIV)-1 entry (9)
and binds solely CXCL12, while CXCR7 binds with high affinity
CXCL12 and with lower affinity CXCL11 that is also involved in
CXCR3 binding (10). CXCL12/CXCR4 axis controls bonemarrow
(BM) hematopoietic stem cells (HSCs) trafficking (11). CXCL12
transcript and protein levels change periodically in BM with light/
dark cycles regulating the retention/mobilization in and from BM
of CXCR4-positive HSCs; these cells leave BM during sleep when
CXCL12 levels are low and return to BM when CXCL12 increases
(12). CXCR7 contributes to the circadian oscillations of CXCL12
within BM and to the neutrophils cycles (13). CXCL12/CXCR4/
CXCR7 axis plays a role in cancer regulating cell migration and
proliferation, as well as angiogenesis (14). Although molecules
targeting CXCR4/CXCR7 have been developed for preclinical and
clinical studies in cancer (15), efforts are needed to develop specific
and efficient drugs that target both tumor and TME. In this review,
we focus on the contribution of the CXCL12/CXCR4/CXCR7 axis
in signaling in tumor/TME cells and we evaluate the possible
combined targeting of CXCR4 and CXCR7.
CXCL12/CXCR4/CXCR7 AXIS

CXCR4 is a seven-span transmembrane domains (352 amino
acids, 48 kDa) GPCRs encoded on chromosome 2.1 (16, 17).
CXCR4 is considered a key molecule for normal development as
the CXCR4−/− knock-out mice die before birth (18). CXCR4 −/−

knock-out mice show a very low number of mature B and T cells
in lymphoid organs and a compromised vascularization in the
intestines, stomach, heart and ventricular septal defect that occurs
during embryogenesis (19). CXCL12 binding to CXCR4 triggers
multiple signal transduction pathways that regulate intracellular
calcium flux, chemotaxis, transcription and cell survival (20).
CXCL12-CXCR4 forms a complex with the Gai subunit G
protein, inhibiting the adenylyl cyclase–mediated cyclic
adenosine monophosphate production and promoting
mobilization of intracellular calcium. Gai subunit dissociates
from Gbg activating Akt, JNK, MEK and ERK1/2 effectors (21).
In addition, Ga subunit activates Ras and Rac/Rho pathways,
leading to the phosphorylation of ERK and P38 proteins,
respectively. CXCR4 homodimerization results in G protein
independent activation of the JAK/STAT pathway promoting
polarization and chemotactic responses (22). When CXCL12
binds CXCR4, the receptor is modified by ubiquitination before
Frontiers in Oncology | www.frontiersin.org 2
the endocytosis and lysosomal degradation. CXCR4 is desensitized
by G proteins uncoupling via GPCR kinase (GRK)-dependent
phosphorylation and interaction with b –arrestin (23). CXCR7
plays a role in the central nervous system (24), angiogenesis (25),
neurogenesis (26) and cardiogenesis (27). Although CXCR7 −/−
knock-out mice show a normal hematopoiesis, they die perinatal
due to heart malformation, disturbed lymphangiogenesis and
cardiomyocyte hyperplasia (28). Initial studies in zebrafish
embryos convincingly show a key role of CXCR7 in progenitor
cell migration during embryo- and organo-genesis. CXCR7
sequesters CXCL12 from non-target area permitting the correct
CXCR4 positive cell migration (29).Without CXCR7, the required
CXCL12 gradient for a directional migration is missing thus the
migrating cells still respond to CXCL12 but end in undesirable
areas (30). CXCR7, as well as CXCR4, is necessary for the correct
migration of interneurons and neuronal development and their
subcellular location is different: CXCR4 in the plasma membrane
and CXCR7 in intracellular recycling endosomes (31). CXCR7
controls CXCL12 signaling in cortical astrocytes and Schwann
cells that also express CXCR4. CXCL12-mediated stimulation of
astrocytes activates ERK1/2, Akt but not p38, while in Schwann
cells CXCL12 activates p38, ERK1/2 and Akt (32). Studies suggest
that CXCR7 internalizes CXCL12 and/or CXCL11 inducing
intracellular pathways, such as Akt, MAPkinase (MAPK) and
JAK/STAT3, through b-arrestin (10) or in heterodimers with
CXCR4 (33). CXCR4/CXCR7 complex recruits b-arrestin and
activates downstream cell signaling (ERK1/2, p38, SAPK/JNK),
inducing cell migration in response to CXCL12 (10). Overall, the
CXCR7 signaling relies on cellular context and on relative
expression as compared to CXCR4.
ROLE OF CXCL12-CXCR4/CXCR7
IN CANCER

An active CXCL12/CXCR4 pathway is considered a feature of
aggressive tumors (34) as it positively correlates with tumor size
(17), grading (16), tumor recurrence (35, 36), poor prognosis and
patient survival (17, 37, 38). CXCL12/CXCR4 overexpression has
been reported in a wide range of tumors such as prostate, brain,
breast, lung, liver, colon, ovary and pancreas (39–42). In breast
cancer, CXCR4 overexpression promotes tumor cell dissemination
to the lungs and lymph nodes (43) while in melanoma, CXCR4
induces lung metastases but not lymph nodes dissemination (44).
In non-small cell lung cancer, high CXCR4 expression enhances
cellular motility and invasion via Epidermal Growth Factor
Receptors (EGFRs) and Matrix Metallopeptidase 9 (MMP-9)
(45). Also CXCR7 is overexpressed in numerous tumors such as
liver, cervical, colon, breast, and pancreatic cancer (46). CXCR7
acts on tumor progression and metastases at different levels upon
interaction with endogenous ligands, including CXCL12, CXCL11
and the Macrophage Inhibitory Factor (MIF) (13). The pro-
tumorigenic activity of CXCR7 is presumably linked to the
interplay with membrane receptors such as estrogen receptor
(ER) and EGFR (47, 48). CXCR4 signaling activates mTOR
pathway in pancreatic, gastric and renal cancer (49–51). In
April 2021 | Volume 11 | Article 591386
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ovarian cancer, estrogen induces CXCR7 expression that
promotes tumor cell migration, invasion and epithelial-
mesenchymal transition (EMT) through CXCL11 (52) while
CXCL12-stimulated EMT depends on CXCR4, suggesting a
context-independent contribution of CXCR7 to EMT-signaling
(36). CXCR7 mRNA and protein are overexpressed in colorectal
cancer patients and correlate to disease stage and distant
metastasis (53). In cervical cancer, high CXCR7 independently
correlates to shorter disease-specific survival and it is positively
associated with larger tumor size and lymph nodes metastasis (54).
In lung adenocarcinoma, CXCR7 expression is considered a poor
prognostic marker promoting tumor growth and transforming
growth factor-b (TGF-b) mediated EMT (55). Accordingly,
CXCR7 together with CXCR4 predicts worse prognosis in renal
cell carcinoma patients (56). Conversely, in rhabdomyosarcoma,
CXCR7 expression correlates with a less-metastatic phenotype
(57). CXCL12 potentiates CXCR7+/CXCR4+ cancer cell trans-
endothelial migration toward CCL19 and CXCL13, chemokines
expressed by ECs in the lymph nodes (58). In addition, CXCR7
inhibition sensitizes cells to chemotherapy or radiation in murine
brain tumors (6). In neuroblastoma, CXCR4 and CXCR7
expression are different or even opposed, as CXCR7 is observed
in neural-associated compartment of differentiated and matured
tumors while CXCR4 in highly aggressive and undifferentiated
tumors. CXCR4 favors neuroblastoma diffusion to liver and lungs,
whereas CXCR7 promotes liver and adrenal gland dissemination,
both CXCR4 and CXCR7 increase BM invasion (59). In breast
cancer, CXCR7 overexpression decreases intravasation thus
reducing metastasis while enhancing primary tumor growth via
angiogenesis (60). Hence, the role of CXCR7 in cancer progression
is controversial as some reports suggest pro-metastatic responses
and others indicate inhibition of metastasis. The CXCR7-mediated
pro-metastatic responses may depend on CXCL11 or on higher
receptors availability such as ER (47), EGFR (48) or CXCR4 that
significantly contribute to tumor growth and metastasis. CXCR7
regulates CXCR4 surface expression by scavenging CXCL12 (61)
or by heterodimerize with CXCR4, reducing CXCR4
internalization and degradation (62), or promoting CXCR4
interactions with intracellular effectors (63). On the other hand,
in breast cancer CXCR7 promotes cancer proliferation and
angiogenesis but reduces tumor cells intravasation (60). Thus,
CXCR7, in the context of high CXCR4, improves chemotaxis to
CXCL12 but decreases invasion suppressing CXCL12-induced
matrix degradation.
CXCL12-CXCR4/CXCR7 IN THE TUMOR
MICROENVIRONMENT

Tumor-derived chemokines are responsible for recruitment of
immunosuppressive cells (T regulatory cells (Tregs), myeloid
derived suppressor cells (MDSCs), and dendritic cells (DCs) to
the tumor niche (64). CXCL12 has an anti-inflammatory role by
mediating T cell polarization towards Tregs (65, 66), generating
poor functional DCs, and macrophages expressing proangiogenic
factors (31). In prostate cancer, high stromal TGF-b induces
Frontiers in Oncology | www.frontiersin.org 3
CXCR4 and activates Akt through stromal CXCL12, thus
abrogating the growth-inhibitory responses to TGF-b (67).
CXCL12/CXCR4 axis promotes migration and survival of MDSCs
in osteosarcoma inhibiting cytotoxic T cell (CTL) expansion and
thus controlling tumor growth (68). CXCR7 is highly expressed by
tumor associated blood vessels of melanoma, breast and lung
cancers, but not by normal vasculature (69). In tumor vascular
endothelium, CXCR7 promotes breast, prostate and lung cancer
invasive andmigratory capability (70). CXCR7 protein is detected in
human secondary lymphoid organ-derived B cells, natural killer
(NK), basophil and DCs (71, 72). CXCR7 has been reported on
CD4+ T cells but not on CD8+ T cells (71). CXCR7 is expressed by
lymphocytes and granulocytes in BM and by monocytes,
granulocytes, and platelets in peripheral blood. Interestingly, these
cells fail to express CXCR7 when isolated from umbilical cord blood
(73). In breast cancer, CXCR7 modulates TME-recruiting M2
macrophages through macrophage colony-stimulating factor (M-
CSF)/macrophage colony-stimulating factor receptor (MCSF-R)
pathway, enhancing tumor growth and metastasis (74). CXCR7/
CXCR4 heterodimers promoteMonocytic-MDSC (M-MDSCs) and
M2-like macrophages in colon cancer turning the TME toward
immunosuppression (75). CXCL12/CXCR4/CXCR7 crosstalk in
TME is illustrated in Figure 1.
CXCR4 AND CXCR7 IN ENDOTHELIAL
CELLS

In hepatocellular carcinoma (HCC), CXCR4 is expressed in tumor
endothelium sprouting tumor vessels (76) and CXCR4-positive ECs
predict sorafenib susceptibility. Monocytes/macrophages-TNF-a
induces CXCR4 expression on ECs via Raf-ERK pathway (77).
CXCR7 expression, low in the endothelium, is upregulated during
inflammation by pro-inflammatory cytokines such as IL-8 (78) or
IL-1b (79), by lipopolysaccharide (80) or during infection by
oncoviruses (46). CXCR7 is expressed by ECs and tumor
endothelial cells (TECs) promoting their migration (81) and
survival (82). It is specifically up-regulated by TNF-a treated/
inflamed ECs (83, 84) and is strongly induced by hypoxia-
inducible factor-1 alpha (HIF-1a) (85). CXCL12 secreted by
TECs, compared to normal endothelial cells (NECs), promotes
CXCR7-mediated angiogenesis via ERK1/2 suggesting an
autocrine/paracrine loop between tumor and TECs (83). Thus,
CXCR7 is a promising target for vascular targeted therapies due
to its restricted expression and the concomitant effects on leukocytes
(e.g., inhibition of immune suppressive Tregs). In contrast,
knockout mice with selective depletion of CXCR7 in vascular ECs
present more spontaneous lungmetastases in “in vivo” breast cancer
model, indicating that CXCR7 by sequestration of CXCL12 could
limit cancer metastases development (86).
CXCR4 AND CXCR7 IN DENDRITIC CELLS

DCs are the most potent antigen presenting cells (APCs) in the
immune system (87). Immature DCs (iDCs) express CXCR4 to
April 2021 | Volume 11 | Article 591386
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reach inflamed peripheral tissues (88). CXCR4 retains pre-DCs
in the BM, CCR2 and CX3CR1 direct migration of pre-DCs to
the lung at steady state while CCR2 controls inflammation-
directed pre-DCs migration (89). CXCR4 is important for DCs
survival, as CXCR4 antagonism reduces mature murine bone
marrow-derived DCs (BMDCs) and Langerhans cells (LCs) (90).
Plasmacytoid dendritic cells (pDC) secrete type I interferon in
response to pathogens while RNA viral natural monoamines/
synthetic amines inhibits pDC activation engaging CXCR4 (91).
Although CXCR7 mRNA is upregulated in pDCs, it does not
correlate with surface protein (71).
CXCR4 AND CXCR7 IN T-REGULATORY
CELLS

Tregs (CD4+CD25high FoxP3+) are CD4+ T cells with
predominantly suppressive activity (5–10% of circulating CD4+

T cells in humans). Tregs impair immune effector cells function
via cytokines, direct lysis, inhibitory receptors, metabolic
disruption, IL-2 depletion or inducing an immunosuppressive
microenvironment (92, 93). Tregs overexpress CXCR4 in
advanced cervical cancer (94), malignant pleural mesothelioma
(95), ovarian cancer (92) and renal cell carcinoma (96, 97).
Frontiers in Oncology | www.frontiersin.org 4
CXCR4 expression on Tregs correlates with prognosis in
ovarian (98), pancreatic (99) and liver cancer (100), or it may
not correlate with patient outcome (93, 101). CXCL12 secreted by
mesotheliomas attracts CXCR4-positive Foxp3+CD25+ T cell and
is associated with the inflammatory response to these tumors
(95). HIF pathway promotes Tregs immunosuppressive function
through the expression of their lineage transcriptional regulator
FOXP3. In the CXCR4-positive Tregs, tumoral CXCL12 enhances
recruitment and suppresses the anti-tumor immune response in
basal-like breast cancer (102). CXCR7 is minimally detected but
functional on the surface of T cells (69).
CXCR4 AND CXCR7 IN CD8 T CELLS

CD8+ T cells positively correlate with good prognosis in breast,
colorectal, glioblastoma and cervical cancers. In TME, naïve
CD8+ T cells are differentiated into effector CD8+ T cells and
further differentiated into cytotoxic and memory CD8+ T cells
(103). CXCR4 is highly expressed in BM on both naive and
memory CD8+ T cells where regulates homing to the BM in mice
(104). CXCR4 in CD8+ T cells (TCXCR4) potentiates migration
toward vascular-associated CXCL12-positive cells in the BM. In
lymphoma-bearing mice, TCXCR4 potentiates the effector
FIGURE 1 | CXCL12/CXCR4/CXCR7 axis in TME. CXCL12 is responsible for TME suppressive cell populations recruitment. CXCL12 induces vascular permeability
and allows tumor cell extravasation, thus promoting the metastatic process. ECs CXCR7-positive promote primary tumor growth through secretion of angiogenic
factors, such as VEGF. CXCR4 promotes migration and survival of MDSCs and CXCR7 enhances the infiltration of M-MDSCs. The expression of CXCR4 on Tregs
promotes intratumoral migration.. CD8+ T cells express CXCR4. Regulatory B cells are recruited to the tumor by CXCL12/CXCR4 and CXCR7 overexpression is
involved in the regulation of B cells development and differentiation. Intratumoral CXCR4+ DCs stimulate cytotoxic T cells. Plasmacytoid DCs express CXCR7.
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function increasing tumor protection (105). In fresh human
pancreatic ductal adenocarcinoma (PDAC) slices treated with
programmed cell death protein 1 (PD-1) and CXCR4 blockers,
CD8+ T cells expansion and apoptosis is detected (106). CD8+ T
cells do not express CXCR7 receptor (71).
CXCR4 AND CXCR7 IN B CELLS

Relatively few B cells are usually found in tumor infiltrates (107).
Recent data show that tumor B and plasma cells may exert both
pro-tumor and anti-tumor effects depending on the TME,
phenotypes of B cells and the relative antibodies production.
CXCR4 is expressed at all stages of B cell development in BM
from HSCs to mature B cells and plays a major role in the homing
of B cell precursors (108). CXCR4 is necessary for developing B cells
in the BM but not for mature B cells (109). CXCR4-positive mature
B cells home to the BM niche, completing their maturation and
staying in contact with CXCL12-expressing BM stromal cells (110).
CXCL12/CXCR4 mediates the B regulatory cells recruitment to the
tumor inhibiting T cell activity (111). In a spontaneous lymph node
metastasis murine breast cancer model, primary tumors induce B
cell accumulation in draining lymph nodes. B cells selectively
promote lymph node metastasis through pathogenic IgG
production that activates the HSPA4-binding protein ITGB5 and
the Src/NF-kB pathway in tumor cells for CXCR4/SDF1a-axis-
mediated metastasis (112). CXCR7 is expressed in mature B cells
and is involved in the regulation of their development and
differentiation (69), specifically it is highly restricted to marginal
zone B cells and its deletion or CXCR7 specific inhibition, reduces
marginal zone B cell numbers and disrupts splenic marginal zone
architecture (113). CpG-activated pDCs downregulate CXCR7
expression on primary B cells. CXCR7 expression is required for
mature B cells and for the survival and differentiation of the switch
memory components, being expressed only in cells that produce
antibodies (71). CXCR7 overexpression in Mesenchymal Stem Cells
(MSCs) could stimulate regulatory B cells. B cells may negatively
regulate tumor immunity and promote tumor progression via IL-10
and TGF-b expression (114).
TARGETING THE CXCL12/CXCR4/CXCR7
AXIS IN COMBINATION THERAPY

The only approved drug CXCR4 inhibitor is AMD3100 (known as
Plerixafor or Mozobil) (115) while multiple antagonists are in
different stages of development. CXCR4 antagonists on the field
are: (i) modified peptides (BL8040, Balixafortide, FC131); (ii) small-
molecules CXCR4 antagonists (AMD3100, AMD11070, MSX-122,
GSK812397); (iii) CXCL12 peptide analogs (CTCE-9908, NOX-
A12); or (iv) antibodies (MDX-1338/BMS 93656, ALX-0651). BL-
8040 promotes infiltration of effector T cells and decreases the
number of immune suppressor cells (116). BL-8040 plus the anti
PD-1, pembrolizumab, in the COMBAT trial demonstrates that
effector T cells potentiate the benefit of chemotherapy in pancreatic
Frontiers in Oncology | www.frontiersin.org 5
ductal adenocarcinoma (PDAC) patients (117). In ovarian cancer, a
novel oncolytic vaccinia virus expressing a CXCR4 antagonist
(OVV-CXCR4-A-Fc), in combination with DCs pulsed with
tumor l y s a t e s , c an modu l a t e TME by r educ ing
immunosuppressive elements with higher spontaneous antitumor
immunity (118). Balixafortide (POL6326) is a cyclic peptide CXCR4
antagonist that effectively mobilizes HSCs. Balixafortide treatment
versus eribulin is currently being evaluated in a phase 3 trial after the
objective response of balixafortide plus eribulin in the treatment of
metastatic Her-negative breast cancers (119). Table 1 lists CXCR4
inhibitors in clinical development. In contrast to CXCR4
antagonists, there are only few studies describing CXCR7
inhibitors. CCX771 (ChemoCentryx) induces b-arrestin
recruitment to the receptor (120), inhibits tumor growth, lung
metastasis and tumor angiogenesis in vivo (83). In prostate cancer
models, CCX771 plus the androgen blocker enzalutamide
significantly suppresses tumor growth probably due to low pro-
angiogenic signaling (121). Other analogues have been developed
with various pharmacological profiles, including the partial agonist
CCX777 (122) or CCX733 (ChemoCentryx) which has been
reported to act as CXCR7 antagonist (123). The antibody 89Zr-
labeled 11G8 is able to detect CXCR7 in mice xenografted with
human breast, lung and oesophageal cancers, suggesting that
CXCR7 is a viable diagnostic marker (124). Recently, an anti-
CXCR7 single chain antibody (X7Ab) with a human
immunoglobulin G1 (IgG1) Fc sequence has been described (84).
It binds to the same site on the receptor as CXCL12 and inhibits
CXCL12-mediated receptor activation. It engages anti-tumor
immune response through Fc-driven antibody dependent cell
cytotoxicity (ADCC) and antibody-dependent cellular
phagocytosis (ADCP) in glioblastoma U343, U251X7, and GL261
cells and, in combination with the temozolomide, significantly
reduces glioblastoma progression. Interestingly, commonly
prescribed medications atorvastatin and pioglitazone have been
shown to decrease CXCR7 expression via cholesterol synthesis
and peroxisome proliferator-activated receptor (PPAR)-g
respectively, particularly in macrophages (125). Some antagonists
could bind both receptors, others bind exclusively CXCR4 or
CXCR7 acting as antagonists and/or partial agonist. AMD3100, a
CXCR4 antagonist, acts as partial agonist for CXCR7 (126). The
cyclic peptidomimetic TC14012 provides therapeutic advantage
targeting the CXCR4-CXCL12 axis in chronic lymphocytic
leukemia (CLL) while it behaves as CXCR7 agonist in glioma cells
(127). A CXCR4 ECL2-based peptide also inhibits CXCR7
internalization (128). Peptide ECL2-X4 displays anti-HIV
properties towards CXCR4-using viruses blocking CXCL12
interactions with both CXCR4 and CXCR7.
TARGETING CXCL12/CXCR4/CXCR7 AXIS
IN COMBINATION WITH IMMUNE
CHECKPOINTS INHIBITORS (ICIs)

Recently, CXCR4 antagonists have been coupled to ICIs with the
intent to remodel TME improving ICIs efficacy (129). Since the
initiation of immune checkpoint cascades, such as PD-1
April 2021 | Volume 11 | Article 591386
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signaling cascade, leads to immune evasion, treatment with ICIs
can activate T cells response and enable the immune cells to
target tumor cells (130). The lack of immune effector cells, the
presence of immune suppressive cells and the polarization of
immune cells in the TME play a fundamental role in shifting the
balance from an immune active ‘hot’ or ‘T-cell-inflamed TME’ to
‘cold’ TME or ‘non-T-cell-inflamed TME’, such as those from the
prostate and pancreas (131, 132). ‘Hot tumors’ are identified by
infiltration of T cells and molecular immune activation (133,
134). Chemokines and chemokine receptors represent valuable
targets for optimizing antitumor immune responses. In the
Frontiers in Oncology | www.frontiersin.org 6
leukemic hematopoietic microenvironment (LHME) in MLL-
AF9-induced mouse acute myeloid leukemia (AML) model,
CCL3-CCR1/CCR5 and CXCL12-CXCR4 inhibition block
leukemia progression by impairing Tregs migration (135).
Combinatorial blockade of CXCR4 and PD-1 reduces Tregs
and MDSCs recruitment within the immunosuppressive TME
promoting tumor-specific cell-mediated immune responses in
ovarian cancer (136). Moreover, CXCR4 blocking inhibits PD-1
expression on CD8+ T cells and promotes the conversion of
Tregs into CD4+CD25–Foxp3+IL2+CD40L+ helper-like cells
(137). Inhibition of CXCR4 with AMD3100 decreases
TABLE 1 | CXCR4 antagonists in clinical development.

Drug Name Phase Active Indication Combination Therapy Trial number

Small Molecules
Plerixafor (AMD3100) Phase 3 Myelokathexis NCT02231879

Phase 1 Pancreas, Ovarian, Colon Cancer NCT3277209
Phase 2 Metastasis Pancreatic Cancer Cemiplimab NCT4177810
Phase 2 Wiskott-Aldrich Syndrome, Hematopoietic Stem Cell

Transplantation
NCT3019809

Phase 2 Acute Myeloid Leukemia, Acute Lymphoid Leukemia Busulfan, Cyclophosphamide NCT2065460
Mavorixafor (AMD11070; X4P-
001)

Phase 2/3 WHIM Syndrome NCT03005327
Phase 1 Waldenestrom’s Macroglobulinemia Ibrutinib NCT04274738
Phase 1 Melanoma Pembrolizumab NCT02823405
Phase 1/2 Renal Cancer axitinib NCT02667886

USL311 Phase 1/2 Solid Tumors (Phase 1), Relapsed/Recurrent GBM (Phase 2) Lomustine NCT02765165
NOX-A12 Phase 1/2 Metastatic Colorectal Cancer

Metastatic Pancreatic Cancer
Pernbrolizurnab NCT03168139

CX-01 Phase 1 Myelodysplastic Syndromes,
Acute Myeloid Leukemia

Azacitidine NCT02995655

Phase 2 Acute Myeloid Leukemia ldarubicin, Cytarabine NCT02873338
Peptide CXCR4 antagonists
Balixafortide Phase 3 Metastatic Breast Cancer Eribulin NCT03786094
LY2510924 Phase 1 Leukemia Idracibin, Cytarabine NCT02652871
[68Ga]Pentixafor Phase 1 Neuroendocrine Tumors NCT03335670

Early
Phase

Multiple MyelomaLymphoma NCT03436342

BL-8040 Phase 2 Metastatic Pancreatic
Adenocarcinorm

Pernbrolizurnab NCT02826486

Phase 2 Malignant Neoplasms of Digestive OrgansMetastatic Pancreatic
Cancer

Pernbrolizurnab NCT02907099

Phase 3 Multiple Myeloma NCT03246529
Phase 1/2 Pancreatic Adenocarcinorm PEGPH20, Cobimetinib,

Atezolizumab, Gemcitabine, Nab-
Paclitaxet Oxaliplatin, Leucovorin,
Fluorouracil

NCT03193190

Phase 1/2 Gastric Adenocarcinorm or Gastroesophageal Junction
Adenocarcinorm

PEGPH20, Linagliptin, Paclitaxet,
Ramucirumab, 5-Fluorouracil (5-
FU)
Leucovorin, Oxaliplatin,
Atezolizurmab, Cobimetinib

NCT03281369

Phase 1/2 CarcinomaNon-Srmll-Cell Lung AtezolizurmhCobimetinih Gemicitabine, Carboplatin,
Pemetrexed, CPI-444,
Tazemetostat,
Atezolizumab, Cobimetinib,
RO6958688, DOcetaxel

NCT03337698

Anti-CXCR4 antibodies
Uloccuplumab (MDX-
1338)

Phase 1/2 Waldenstrom's
Macroglobulinemia

lbtutinib NCT03225716

Phase 1/2 Leukemia Cytarabine NCT02305563
ALX-0651 Phase 1 Healthy Volunteers NCT01374503
PF-06747143 Phase 1 Acute Myeloid Leukemia Cytarabine, Daunorubicin,

Azacitidine,
Decitabine

NCT02954653
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desmoplasia, reduces immunosuppression, and improves T cell
infiltration and response to ICIs in breast cancer (138) while
targeting PD-1 and CXCR4 potentiates anti PD-1 efficacy in
murine immune sensitive and immune resistant tumors (139). A
nanocomplex of CXCR4 antagonist-paclitaxel-loaded has been
developed for pulmonary delivery of anti– programmed death-
ligand 1 (PD-L1) small interfering RNA (siPD-L1). The
nanocomplex promotes T cell infiltration, decreases alpha-
smooth muscle actin (a-SMA) and collagen, reduces MDSCs
and Tregs recruitment (140). Thus, considering CXCR4 and
CXCR7 crosstalk in immune cells within the tumor
microenvironment, some mechanisms underlying tumor
resistance to immunotherapy may be impaired targeting the
CXCR4/CXCR7–CXCL12 axis.
DISCUSSION AND CONCLUSIONS

Immuno-resistance and vascularization are acquired tumor
features that contribute to cancer growth and metastasis.
Among the different signaling pathways, directly or indirectly
involved in cancer immune-resistance and angiogenesis,
CXCR4/CXCR7/CXCL12 is crucial for participating in cancer
migration, angiogenesis and immunosuppressive cell
recruitment. Thus, the inhibition of the CXCR4/CXCL12 or
CXCR7/CXCL12 axis is attractive in cancers overexpressing
both receptors such as colorectal cancer (15), renal cancer (51)
or glioblastoma (30). Since several CXCR4 antagonists, including
Frontiers in Oncology | www.frontiersin.org 7
peptides, small molecules and antibodies, have been developed
and considered for clinical development, the identification of
agents able to efficiently block the CXCL12/CXCR7 pathway is
still ongoing. However, the observation that CXCR4 inhibition
could only partially block the responsiveness of tumor/TME cells
to CXCL12 gradients, has questioned the effective role of the
exclusive CXCR4/CXCL12 or CXCR7/CXCL12 interaction
during cancer progression. CXCL12 inhibitors, such as NOX-
012 (141), neutralizing CXCL12 nanobodies (142), or chalcone 4
derivate LIT-927 (143), may affect both CXCR4 and CXCR7
signaling. Unfortunately, the blockage of CXCL12 cannot
interfere with CXCR7 signaling mediated by ligands different
from CXCL12, such as CXCL11, or cannot provide CXCR4/
CXCR7 co-expression, crosstalk and heterodimerization. Thus,
despite possible opposite effects should be considered during the
design of combination therapies, the administration of
antagonists of CXCR4/CXCR7 could offer a valid therapeutic
option as a stand-alone therapy or in combination with
current immunotherapies.
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