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Purpose: Glioblastoma is one of the most aggressive nervous system neoplasms.
Immunotherapy represents a hot spot and has not been included in standard
treatments of glioblastoma. So in this study, we aim to filtrate an immune-related gene
pairs (IRGPs) signature for predicting survival and immune heterogeneity.

Methods: We used gene expression profiles and clinical information of glioblastoma
patients in the TCGA and CGGA datasets, dividing into discovery and validation cohorts.
IRGPs significantly correlative with prognosis were selected to conduct an IRGPs
signature. Low and high risk groups were separated by this IRGPs signature. Univariate
and multivariate cox analysis were adopted to check whether risk can be a independent
prognostic factor. Immune heterogeneity between different risk groups was analyzed via
immune infiltration and gene set enrichment analysis (GSEA). Some different expressed
genes between groups were selected to determine their relationship with immune cells
and immune checkpoints.

Results: We found an IRGPs signature consisting of 5 IRGPs. Different risk based on
IRGPs signature is a independent prognostic factor both in the discovery and validation
cohorts. High risk group has some immune positive cells and more immune repressive
cells than low risk group by means of immune infiltration. We discovered some pathways
are more active in the high risk group, leading to immune suppression, drug resistance
and tumor evasion. In two specific signaling, some genes are over expressed in high risk
group and positive related to immune repressive cells and immune checkpoints, which
indicate aggression and immunotherapy resistance.

Conclusion: We identified a robust IRGPs signature to predict prognosis and immune
heterogeneity in glioblastoma patients. Some potential targets and pathways need to be
further researched to make different patients benefit from personalized immunotherapy.
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most aggressive and
malignant tumor in the central nervous system. The current
standard therapy involving tumor resection, radiotherapy and
chemotherapy implemented in 2005 and have yet to be modified
(1). Despite this conventional treatments, the median survival
time for GBM is despondingly 12-18 months (2). The
evolvement in genomics and proteomics has made researchers
acquire prominent molecular biomarkers, while few lead to a
robust and innovative signature on GBM therapy (3). Immune
system serves as a defensive mechanism against the formation
and progression of tumors. Cancer immunotherapy has attracted
attention worldwide owing to remarkable success treating
advanced cancers (4). GBM immunotherapy is a research hot
spot in recent years. However, majority of patients response to
immunotherapy ineffectively (5). So there is an urgent need to
develop new biomarkers for guiding individual immunotherapy
in the treatment of GBM.

Recently, several studies have developed prognostic
signatures to dividing GBM patients into different risk groups
according to gene expression profiles (6–8). However, gene
expression values measured by different platforms might
generate sampling bias (9). Effective analysis of large-scale gene
expression inflicts a great computational challenge that requires
the use of appropriate methods. In order to eliminate the defects
of data normalization and scale in gene expression data
processing, some researches have invented a new method,
which based on relative sequences of gene expression level, and
obtained reliable results (10, 11). To date there are no studies
using the new method to differentiate prognosis and immune
heterogeneity of GBM patients on account of immune-related
genes. So in this study, we aimed to explore prognositic immune-
related gene pairs (IRGPs) in GBMs and find potential targets
could be used to develop new immunotherapeutic agents.

MATERIALS AND METHODS

Data Resources and Processing
This study was a retrospective study using public data. We
obtained gene expression profiles and corresponding intact
clinical information on 149 GBM samples in the open-source
database named TCGA (https://portal.gdc.cancer.gov/) (12). Via
another independent database, the Chinese Glioma Genome
Atlas (CGGA) (http://www.cgga.org.cn/), we acquired
molecular and clinical information of 374 GBM patients from
different platforms (13, 14). For TCGA, the gene expression
profile on probe level was transformed into gene symbol level.
When multiple same gene symbols exist, the highest expression
was selected. All expression data in both datasets were not
further standardized during establishment of signature.

Identification and Verification of Immune-
Related Gene Pairs (IRGPs) Signature
In this study, we selected GBM patients in the TCGA dataset as
the training group, correspondingly the CGGA cohort as the
Frontiers in Oncology | www.frontiersin.org 2
validation group. Previous articles have involved how to
construct IRGPs (11). We obtained 2498 immune-related
genes (IRGs) in the ImmPort database (https://immport.niaid.
nih.gov) (15). These immune-related genes include 17 immune
classifications according to different molecular function, such as
antimicrobials, antigen processing and presentation, cytokines,
interleukins, natural killer cell cytotoxicity, TNF family
receptors. The IRGs owning relatively high variable quantity
(measured by median absolute deviation >0.5) were selected
across all different platforms (16). Pairwise comparison was
undertaken to obtain IRGPs using the gene expression level in
one particular sample. In simple terms, a score of IRGP was 1 if
IRG 1 was higher than IRG 2; conversely the IRGP score was
0. We abandoned IRGPs with low variations and the rest of
IRGPs were optimized to conduct prognostic IRGPs by means of
cox regression, log-rank test and multiple lasso regression.
Immune-related gene pairs index (IRGPI) was produced in the
training cohort by means of lasso penalized cox regression with
10-fold internal cross-validation in the glmnet package (version
3.0-2). A time-dependent receiver operating characteristic
(ROC) curve (survivalROC, version 1.0.3) was generated to
ensure the optimal cut-off value of IRGPI using overall survival
in the TCGA dataset for distinguishing high risk from low risk
patients. Between different risk groups, we used log-rank test to
evaluate the established model in both the two datasets. Then we
assessed whether risk based on this IRGPs signature could be an
independent prognostic factor compared with other clinical
factors using the univariate and multivariate cox proportional-
hazards analysis.

Estimation and Comparison of the Immune
Infiltration Pattern Between Different
Risk Groups
We used the RNA-seq data, which include 149 GBM patients
from the TCGA database and 139 patients from the same
platform in the CGGA cohort, via a sample-level enrichment
method named single sample gene set enrichment analysis
(ssGSEA) in the GSVA package (version 1.34.0) to calculate
the relative abundance of 30 immune cells of each patients in two
distinct risk groups (17). From previous publications (18, 19),
distinct genes which are highly expressed in each cell type were
selected to represent immune populations. We used heatmap in
the package ComplexHeatmap (20) to present the overall
immune infiltration associated with some important mutations
and clinical information in two groups. Then we detailedly
compared whether average normalized enrichment scores
(NES) of immune cells are significantly different between high
risk and low risk groups.

Gene Set Enrichment Analysis (GSEA)
In order to determine the different expression of the same gene
between high and low risk groups, we used log2 fold change of
average gene expression from two groups. We conducted gene
set enrichment analysis with 1000 permutations from
clusterProfiler package (version 3.14.3) (21). Hallmark gene
sets concerned with this study were downloaded from the
April 2021 | Volume 11 | Article 592211
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Molecular Signature Database (version 7.1) (http://www.
broadinstitute.org/gsea/msigdb/collections.jsp) (22). The
particular gene sets whose adjusted p-value less than 0.05 were
kept as statistically significant pathways.
Initial Estimate Potential Target Genes
Some genes expressed differently between two groups were
extracted in specific pathways which are significant in both
cohorts. To determine whether these genes could be potential
targets for immunotherapy, we analyzed the relationship
between these genes and immune infiltration. Immune
checkpoints including PD-L1/CD274 and CTLA4 have been
targets of immunotherapy in some solid cancers (23). So
correlation among differential expression genes, PD-L1 and
CTLA4 were also evaluated.
Statistical Analysis
All the statistical analysis were conducted using R (version 3.6.3,
www.r-project.org). The log-rank test from survival package
(version: 3.1-11) was adopted to analysis the survival
differences in the TCGA and CGGA datasets. We perform
univariate and multivariate analyses to construct the Cox
proportional hazards regression model. We compared the
differences of immune infiltration between groups using the
Mann-Whitney test. Spearman method was adopted to
assess correlations.
RESULTS

Establishment of Prognostic Immune-
Related Gene Pairs Signature
The gene expression profiles of GBM patients in the TCGA
dataset (n= 149) were used as the discovery cohort. According
to the evaluation criterion that median absolute deviation
(MAD)>0.5, the high variation genes were retained as
candidate genes. The filtered data used immune-related genes
(IRGs) downloaded from the ImmPort database to establish
immune-related gene pairs (IRGPs). 56554 IRGPs were
conducted from 724 immune-related genes. Screening IRGPs
by means of the log-rank test, cox regression and multiple lasso
regression, we finally selected 5 IRGPs and calculated immune-
related gene pairs index (IRGPI). These 5 IRGPs are composed of
9 unique IRGs, most of which relate to antigen processing and
presentation, antimicrobials and cytokines (Table 1). Then each
GBM patient’s risk score in the training group was operated.
Frontiers in Oncology | www.frontiersin.org 3
Through one year time-dependent ROC curve analysis, the best
cut-off value of the IRGPI was 0.197 for criterion to distinguish
different risk groups (Figure 1). High risk group have a worse
prognosis than low risk groups (Figure 2A), indicating IRGPI
dividing patients significantly. Risk and other clinical factors
including age, gender, radiotherapy and chemotherapy were
analyzed in the univariate and multivariate Cox analysis
(Table 2). Risk based on IRGPI signature showed statistical
significant in both Cox analysis. Supplementary Table 1 showed
detailed information of each patient including survival time,
status, riskscore and risk group in the TCGA dataset.
Validation of Prognostic Prognostic Gene
Pairs Signature
The gene expression data of GBM patients in the CGGA dataset
(n= 374) were used to verify whether IRGPI signature has the
same role as that in the TCGA dataset. Different risk groups
according to the IRGP signature have distinct prognosis, as
similar with the result of training group (Figure 2B). Through
the univariate and multivariate Cox analysis, risk groups also
show significantly independent factor for survival (Table 2).
Similar items of each patient in the CGGA database were
displayed (Supplementary Table 2).
TABLE 1 | Immune-related gene pairs information and coefficients.

IRG1 Category IRG2 Category Coef

HSPA6 Antigen Processing and Presentation BMP2 TGFb Family Member 0.464
PSMC3 Antigen Processing and Presentation MDK Cytokines -0.358
FGF2 Antimicrobials OSMR Cytokine Receptors -0.460
PPP4C Antimicrobials MDK Cytokines -0.293
LEFTY2 Cytokines MSTN Cytokines 0.555
April 2021 | Volume 11 | Article 5
FIGURE 1 | One year time-dependent ROC curve for IRGPI in the TCGA
dataset. The optimal cutoff value to differentiate high and low risk groups
is 0.197.
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Immune Infiltration Pattern Between
Different Risk Groups
Previous publication has elaborated immune infiltration is
related to cancer prognosis (24). And single sample gene set
enrichment analysis (ssGSEA) has been adopted to assess
immune cell infiltration (25). For each patients from different
risk groups in the TCGA dataset and a subset from the same
platform in the CGGA database, we made use of ssGSEA to
calculate the relative abundance of 30 immune cells from 16
immune populations. Based on overall immune infiltration
(Figure 3), we found that majority of patients in high risk
group had higher immune infiltration and belonged to
mesenchymal subtype based on Verhaak subtype (26). While
in the low risk group, more patients harbored MGMT promoter
methylation and IDH mutation and proneural subtype
increased, which indicated better prognosis (26–29).
Comparison and significant differences of specific immune
cells between high and low risk groups have been exhibited
(Figure 4). Although some immune positive cells including
activated CD4 T cell (30), activated dendritic cell, effector
Frontiers in Oncology | www.frontiersin.org 4
memory CD8 T cell, natural killer cell and type 1 T helper cell
are higher in the high risk group, more immune repressive cells
involving gamma delta T cell (31), macrophage M2 (32), MDSC
(myeloid derived suppressor cells) (33), neutrophil (34),
regulatory T cell (35) contribute to worse prognosis, similar
results from the TCGA and CGGA datasets.

Functional Pathways Assessment of
Different Groups
In order to find out which pathways change more in high risk
group than low risk group, we adopted gene set enrichment
analysis (GSEA). The bubble plot showed top twelve pathways
enriched in the high risk group from two cohorts (Figure 5).
Statistic value of these pathways were presented (Supplementary
Tables 3 and 4). Epithelial-Mesenchymal Transition (EMT),
interferon gamma response, IL2/STAT5 signaling and some
other pathways are activated in the high risk group, which
manifest immune suppression (36), drug resistance (37), tumor
evasion (38). Particularly in the epithelial-mesenchymal
transition pathway (Figures 6A, C), we can see some genes
A B

FIGURE 2 | Log-rank test identifies different prognosis between different risk groups both in the TCGA cohort (A) and the CGGA cohort (B).
TABLE 2 | Univariate and multivariate analysis of prognostic factors in the TCGA and CGGA dataset.

Datasets Factor Univariate cox analysis Multivariate cox analysis

HR(95%CI) P-value HR(95%CI) P-value

TCGA Age 1.02(1.00-1.04) 0.01 1.01(0.99-1.02) 0.44
Gender 0.92(0.62-1.35) 0.65 0.77(0.49-1.21) 0.25
Radiotherapy 0.16(0.09-0.27) 3.22E-12 0.14(0.07-0.29) 1.45E-07
Chemotherapy 0.45(0.30-0.67) 8.72E-05 0.71(0.42-1.22) 0.22
Risk 2.79(1.87-4.16) 5.27E-07 3.09(2.01-4.74) 2.40E-07

CGGA Age 1.01(1.00-1.02) 0.03 1.01(1.00-1.02) 0.04
Gender 0.92(0.74-1.16) 0.49 0.91(0.71-1.15) 0.42
Radiotherapy 0.69(0.52-0.92) 0.01 0.66(0.49-0.90) 0.01
Chemotherapy 0.46(0.34-0.61) 9.04E-08 0.49(0.37-0.66) 3.01E-06
Risk 1.72(1.37-2.16) 2.84E-06 1.70(1.33-2.16) 1.66E-05
April 2021 | Volume 11 | Artic
le 592211

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Glioblastoma’s Prognosis And Immune Heterogeneity
A

B

FIGURE 3 | The overall immune cells infiltration associated with Verhaak subtype, some mutations and clinical information in the TCGA dataset (A) and the CGGA
dataset (B).
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including COL6A3, COL1A1, COL1A2 and LRRC15 express
higher in the high risk group (Figure 6B), which also can be seen
in high risk group from the CGGA dataset (Figure 6D). From
the response to IFNg pathway (Figures 7A, C), IDO1, IL6 and
PTGS2 expressed higher in the high risk group between two
cohorts (Figures 7B, D).

Relationship Between Selected Genes and
Immune Reaction
Immune checkpoints such as PD-L1/CD274 and CTLA4 are
often overexpressed in tumor cells to devitalize effector T cells
and suppress immune responses, which could be targets for
immunotherapy (39–41). To determine whether these selected
genes have an impact on immune inhibition, they were estimated
Frontiers in Oncology | www.frontiersin.org 6
through their correlation with immune cells and two immune
checkpoints. The selected genes were mostly correlated to
gamma delta T cell, regulatory T cell, central memory T cell
(42), which are immune negative or noneffective cells (Figure 8
and Supplementary Figures 1 and 2). Moreover, all seven genes
had positive correlation with PD-L1/CD274 and CTLA4 (Figure
9 and Supplementary Tables 5 and 6).
DISCUSSION

Glioblastoma multiforme (GBM) is one of the lethal tumor in the
central nervous system. The standard treatment includes surgery,
radiotherapy, chemotherapy. However, no novel regimen has
A

B

FIGURE 4 | Thirty types of specific immune cells infiltration in the TCGA dataset (A) and the CGGA dataset (B). NS, p > 0.05, *p <= 0.05, **p <= 0.01,
***p <= 0.001, ****p <= 0.0001.
April 2021 | Volume 11 | Article 592211
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been introduced into clinical practice to obviously improve
survival of GBM patients in recent years. Immune system is
one of defensive lines against tumor and immunotherapy has
become a research focus among different types of cancer to
prolong patients’ survival. The current immunotherapy
Frontiers in Oncology | www.frontiersin.org 7
comprises cell therapy, peptide vaccine, and immune
checkpoint inhibitors (33). As for GBM, only less than 10%
patients respond to checkpoint inhibition (43). This
phenomenon implies advanced malignancies have complex
interactions with the immune system. It is urgent to find out
A B

C D

FIGURE 6 | GSEA proves epithelial−mesenchymal transition is activated in high risk group from the dataset (A) and the CGGA dataset (C). Some specific genes
including COL6A3, COL1A1, COL1A2 and LRRC15 are overexpressed (B, D).
A B

FIGURE 5 | Bubble plot showed some pathway which are more enriched in high risk group than low risk group between the TCGA dataset (A) the CGGA dataset (B).
April 2021 | Volume 11 | Article 592211
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new immune related biomarkers to predict prognosis and give
each patient personalized treatment.

As for exploring prognostic signatures, it’s difficult to analyze
the gene expression profiles of every tumor specimen. Data need to
be standardized properly due to different sequencing platforms
and tumor samples. In order to avoid technical bias from different
platforms, we adopted an new method not require scaling and
normalization (44). In this study, we found out an immune-related
gene pairs (IRGPs) signature independently predict prognosis.
Proneual subtype, IDH mutant and MGMT promoter
methylation are well known prognostic factors for longer
survival of GBM patients (27, 28, 45, 46). A substantial
proportion of the high risk group patients belong to
mesenchymal subtype, while proneural subtype increases in the
low risk group. Compare with high risk group, more patients in
the low risk group have IDH mutation and MGMT promoter
methylation. Other factors including EGFR amplification, TERT
promoter mutation, TP53mutation don’t show difference between
two groups because limited mutation information of GBM
patients in CGGA dataset. Meanwhile, different risk group based
on this signature has distinct immune cells infiltration. High risk
group has some immune positive cells and more immune
suppressive cells, indicating battle between immune cells and
tumor cells is a continuous process of elimination, equilibrium,
and escape (47). Previous study has shown that macrophage
Frontiers in Oncology | www.frontiersin.org 8
dominated and high M2 macrophage polarization consistent
with an immunosuppressed tumor microenvironment, which
foreboded a poor outcome (48). In our study, high risk group
patients have more M2 macrophage than low risk group patients.
It manifests there is a discrepancy of immunosuppressed
microenvironment between different groups. Furthermore, we
discover epithelial-mesenchymal transition signaling (49),
TNFasignaling via NF-kB (50), IL-2/STAT5 signaling (36),
interferong response signaling and some other pathways are
activated in high risk group, most of which trigger tumor cells
malignant progression, immune evasion, metastasis and poor
prognosis. In two specific pathways (epithelial-mesenchymal
transition and interferong response), we obtain some genes
express higher in high risk group than that in low risk group.
Previous article has verified silence of COL6A3 and COL1A2 can
inhibit tumor cell proliferation, migration, and invasion in the
gastric cancer (51). COL6A3 also has similar role in the colorectal
cancer (52). Another studies have reported that COL1A1 is related
to facilitate cell invasion in glioma (53). LRRC15 has been
confirmed as a immunotherapy resistant target in the single-cell
RNA sequencing experiment (54). Experiments showed the
combination of IL-6 and PD-1/PD-L1 inhibitors promotes
antitumor immunity (55) and PTGS2 deletion sensitized tumors
to immunotherapy (56). One research has demonstrated increased
levels of IDO1 in the glioblastoma cell had positive correlation
A B

C D

FIGURE 7 | Response to IFNg pathway result is vibrant in high risk group from the TCGA dataset (A), and the CGGA dataset (C). Overexpressed genes in two
datasets contain IDO1, IL6 and PTGS2 (B, D).
April 2021 | Volume 11 | Article 592211
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with human-infiltrating T cells leading to poor prognosis (57). In
murine GBM model, IDO1 inhibition combine with radiotherapy
and PD-1 blockade increased survival (58). Most important of all,
IDO1 inhibitor could benefit a subset of patients with recurrent
malignant glioma in a phase 1 study (59). In our study, we found
that these selected genes were most correlated to immune
repressive cells and noneffective memory T cells. They also had
a positive relationship with CD274 and CTLA4. All these
findings indicated that high risk group might be more aggressive
and immunosuppressive than low risk group. Immune
heterogeneity existed between different risk groups. The
mechanism of tumor invasion and immune resistance involving
COL6A3, COL1A1, COL1A2, LRRC15, IDO1, IL-6 and PTGS2
need to be further researched aiming to improve prognosis of
aggressive glioblastoma.

Our study also have some limitations. First, this signature is
based on gene expression profiles, which are not widespread
applied owing to expenditure and high requirement of
bioinformatics knowledge. In addition, the mechanism of
seven genes in different groups has not been explored, though
they were potential targets for immunotherapy.
CONCLUSION

In conclusion, we identified an immune related gene pairs
signature. Different groups based on this signature have
distinct prognosis and immune heterogeneity. Some biological
processes and genes have indicated the poor prognosis is related
to tumor immune evasion, malignant progression, metastasis.
The detailed function of these targets need to be explored to
correct immune dysfunction and make all patients benefit from
personalized immunotherapy.
Frontiers in Oncology | www.frontiersin.org 11
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