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Colorectal cancer (CRC) is one of the major causes of cancer deaths across the world.
Patients’ survival at time of diagnosis depends mainly on stage of the tumor. Therefore,
understanding the molecular mechanisms from low-grade to high-grade stages of cancer
that lead to cellular migration from one tissue/organ to another tissue/organ is essential for
implementing therapeutic approaches. To this end, we performed a unique meta-analysis
flowchart by identifying differentially expressed genes (DEGs) between normal, primary
(primary sites), and metastatic samples (Colorectal metastatic lesions in liver and lung) in
some Test datasets. DEGs were employed to construct a protein-protein interaction (PPI)
network. A smaller network containing 39 DEGs was then extracted from the PPl network
whose nodes expression induction or suppression alone or in combination with each
other would inhibit tumor progression or metastasis. These DEGs were then verified by
gene expression profiling, survival analysis, and multiple Validation datasets. We
suggested for the first time that downregulation of mitochondrial genes, including
ETHE1, SQOR, TST, and GPX3, would help colorectal cancer cells to produce more
energy under hypoxic conditions through mechanisms that are different from “Warburg
Effect”. Augmentation of given antioxidants and repression of P4AHA1 and COL1A2 genes
could be a choice of CRC treatment. Moreover, promoting active GSK-3p together with
expression control of EIF2B would prevent EMT. We also proposed that OAS1 expression
enhancement can induce the anti-cancer effects of interferon-gamma, while suppression
of CTSH hinders formation of focal adhesions. ATF5 expression suppression sensitizes
cancer cells to anchorage-dependent death signals, while LGALS4 induction recovers
cell-cell junctions. These inhibitions and inductions would be another combinatory
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mechanism that inhibits EMT and cell migration. Furthermore, expression inhibition of
TMPO, TOP2A, RFC3, GINS1, and CKS2 genes could prevent tumor growth. Besides,
TRIB3 suppression would be a promising target for anti—angiogenic therapy. SORD is a
poorly studied enzyme in cancer, found to be upregulated in CRC. Finally, TMEM131 and
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DARS genes were identified in this study whose roles have never been interrogated in
any kind of cancer, neither as a biomarker nor curative target. All the mentioned
mechanisms must be further validated by experimental wet-lab techniques.

Keywords: colorectal cancer, cancer progression, EMT, metastasis, therapeutic/curative targets,

diagnostic biomarkers

INTRODUCTION

Colorectal cancer (CRC) is a major global medical burden
worldwide (1). Approximately more than one million people are
diagnosed with CRC each year, and about half of them die of CRC
annually (2). Complex genetic interactions are combined with
environmental factors to trigger a cell to become cancerous.
Among them, aberrant growth factor signals contribute to
uncontrolled cells’ proliferation, which ultimately leads to
metastasis. Contrary to early-stage tumor cells, malignant cells
have the ability to detach from the stroma as well as acquire
motility (3). This event happens during a process called
Epithelial-Mesenchymal Transition (EMT), in which cells lose
their epithelial characteristic, including adhesion, and
subsequently dedifferentiate into mesenchymal mobile cells (4).
Therefore, Investigating DEGs between primary and metastatic
sites of tumors would aim to recognize key factors playing roles in
cell migration. We performed the statistical analysis between
primary sites and metastatic sites in one part of the analyses.
While primary sites were non-malignant colon biopsies in Test
datasets, CRC metastatic sites were located on the other organs.

Many molecular and pathway targets have been identified for
treatment of CRC during the past decades. Besides, growing
progresses have been made in development of chemotherapy and
antibody drugs (5). Tyrosine kinase (TK) targeting monoclonal
antibodies and small-molecule tyrosine kinase inhibitors are
effective strategies (6). Targeting cancer-related inflammation
biomarkers like IL-6/JAK/STAT3 pathway, which inhibits
progression of solid tumors, is another beneficial therapeutic
strategy (7). In addition, restraint of cytosolic B-catenin via
disturbing hyperactive Wnt/B-catenin signaling pathway could be
another treatment approach for colorectal and many other types of
cancer (8-10). Inhibition of matrix metalloproteinases (MMPs) and
TGFp signaling pathways is a therapeutic approach to prevent liver
metastasis (11-14). Furthermore, PI3K inhibition suppresses lung
metastasis in CRC patients (15, 16). Among the known anticancer
drugs, Cetuximab is one of the popular ones, which is a monoclonal
antibody against epidermal growth factor receptor (EGFR) (17).
Furthermore, vascular endothelial growth factor (VEGF) antibody,
bevacizumab, is the standard treatment for metastatic colorectal
cancer (18).

The aim of this study was to suggest multiple combinations
of genetic targets that can prevent cancer progression.
Therefore, We looked for the unknown key factors that partially
control one or more steps of cancer progression, including cell
proliferation, transformation, angiogenesis, and metastasis to
the distant secondary sites. One way to identify molecular
mechanism of pathogenesis in a biological context is to analyze

transcriptomic data. Systematic investigation of gene expression
data and cellular and molecular information in the literature for
identified DEGs in normal and cancer tissues helped us to propose a
number of these DEGs as therapeutic genetic targets. Once these
targets were identified, we would see which ones can be targeted
together in order to hinder cancer progression because each of the
proposed genetic targets could control to some extent different steps
of tumor formation towards malignancy. We conducted a unique
meta-analysis flowchart where we separated datasets into two sets of
Testand Validation datasets in order to not only recognize DE genes
but also introduce them as the curative CRC targets. Furthermore,
the shortest pathway scoring system for neighborhood finding
around the core genes was first introduced by Seth I. Berger and
his colleagues (Systems Pharmacology of Arrhythmias) on Long-
QT syndrome (LQTS) PPI Network (19). They realized that the
neighborhood ranking around the twelve core genes (Drivers of the
LQTS Syndrome) discovered the genes that are targeted with FDA-
approved drugs. Since our goal was to find therapeutic genetic
targets to inhibit metastasis, we applied the algorithm on colorectal
cancer PPI network for the first time. First of all, three Test datasets
were constructed from three microarray studies, and DE genes were
excavated for any pairwise comparison between four groups of
samples. Common DEGs between similar analyses in Test datasets
were regarded as final DEGs employed for PPI network assembly.
Test datasets provided us with a sufficient number of common
DEGs with desired log-fold change and p-value thresholds for
network construction. Twelve common genes called Core genes
were recognized that their expression were different between
primary and metastatic sites. A smaller network called Core
network was then extracted from the PPI based on a shortest-
path-based scoring formula on these Core genes. To compensate for
the small number of datasets in Test set, seven Validation datasets
were employed from different genomic repositories to validate
selected DEGs in the Core network (Figure 1). Besides,
expression profiling and survival analysis provided more evidence
about the accuracy of our results. We obtained some DEGs involved
in cancer progression whose expression could be targeted
(suppressed or induced) individually or in combination with one
another for CRC treatment. Moreover, some of those gene
expressions were proposed to be CRC biomarkers.

MATERIALS AND METHODS

Database Searching and Recognizing
Pertinent Experiments

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo/) and ArrayExpress (https://www.ebi.ac.uk/arrayexpress/)
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FIGURE 1 | The meta-analysis flowchart to attain therapeutic genetic targets. Gene expression datasets were extracted from different databases. Data were
analyzed and visualized using R programming language. DEGs were obtained from analyzing Test datasets, then verified by Validation datasets. STRING database
was utilized to construct the PPI network from DEGs. R software was used to analyze the network. Cytoscape was employed to visualize the networks, and
enrichment results were obtained from ClueGO Cytoscape plugin and Enrichr online tools. Next, survival analysis and expression profiing were used for more
validation of expression results. Finally, our results were compared to other studies, and molecular mechanism of validated DEGs was interrogated to propose a

combination of target therapies.

repositories were searched to detect experiments containing high-
quality transcriptomic samples concordance to the study design.
Colorectal/colon cancer, primary, EMT, and metastasis were the
keywords utilized in the search, but search was filtered for Homo
sapiens. Microarray raw data (.CEL files) for GSE41258, GSE9348,
and GSE10961 studies were downloaded from GEO and
ArrayExpress to create Test datasets (20-22). Datasetl and
Dataset2 were constructed from samples in GSE41258 study.
Datasetl encompassed CRC liver metastasis samples, primary

samples and normal samples, while Dataset2 contained CRC lung
metastasis samples, primary samples and normal samples. To
construct Dataset3, normal samples and primary samples were
extracted from GSE9348 study, but colorectal liver metastasis
samples were obtained from GSE10961 study. In all datasets,
normal samples were healthy colon tissues adjacent to the
primary tumors and primary samples were non-metastatic
colorectal biopsies. To make Validation datasets, two new
datasets were constructed from GSE41258 study whose samples
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were not present in Test datasets. One dataset contained CRC liver
metastasis samples, and another one contained CRC lung
metastasis samples. In addition, a dataset was constructed from
count RN Aseq files in The Cancer Genome Atlas (TCGA) database
(TCGA dataset). Three RNAseq datasets were constructed from
GSE50760, GSE144259, and GSE89393 studies encompassing CRC
liver metastasis samples (23-25). The last dataset was built from
GSE40367 microarray study containing CRC liver metastasis
samples (26). Except for TCGA dataset, all Test and Validation
datasets contained three groups of metastatic, primary and
normal samples.

Identifying Differential Expressed Genes

in Microarray Datasets

R programming language (v3.6.2) was used to import and analyze
data for each dataset separately. Preprocessing step involving
background correction and probe summarization was done using
RMA method in “affy” package (27). Absent probesets were
identified using “mas5calls” function in this package. If a probeset
contained more than two absent values in each group of samples,
that probeset was regarded as absent and removed from the
expression matrix. Besides, outlier samples were identified and
removed using PCA and hierarchical clustering methods. Next,
data were normalized using Quantile normalization approach (28).
Then, standard deviation (SD) for each gene was computed, and
median of all SDs was utilized as a cutoff to remove low-variant
probesets. Therefore, low-variant probesets no longer influenced
the significance of the high-variant genes. “Many to Many” problem
(29), which is mapping multiple probesets to the same gene symbol,
was solved using “nsFilter” function in “genefilter” package (30).
This function selects the probeset with the highest Interquartile
range (IQR) to map to the gene symbol. “limma” R package, which
applies linear models on the expression matrix, was utilized to
discover DE genes between all groups of samples (31). Genes with
absolute log fold change larger than 0.5 and Benjamini-Hochberg
adjusted p-value (32) less than 0.05 were selected as the DEGs.

Identifying Differential Expressed Genes

in RNAseq Datasets

Count files for five primary samples containing more than 90
percent tumor cells as well as five normal samples involving 100
percent normal cells were downloaded from TCGA database. Each
sample was imported into R, and they were merged together to
construct the TCGA expression matrix encompassing a five-sample
primary group and a five-sample normal group. Genes with zero
expressions in the two groups were omitted. Then, data were
normalized with “DESeq2” R package (33), and DEGs were
identified between the two groups. For RNAseq datasets in GEO,
FPKM normalized data were downloaded and imported into R. data
were log2 transformed, and using “limma” R package, DEGs were
identified between the groups.

Network Construction

Final DEGs were imported into STGRING web server database and
different sources of evidence were chosen to generate interactions
and the Protein-Protein Interaction (PPI) network. Afterward,
Interactions were downloaded and imported into R programming

language in form of an annotated edgelist. Next, extra information
were removed, and an undirected edgelist was obtained using
“igraph” R package (34). Interaction scores were considered as
weights, so a weighted PPI network was created. The giant
component of the weighted PPI network was then extracted for
further analyses. The weighted adjacency matrix of the giant
component was created and transformed into a symmetric
matrix. It was then modified into a new adjacency matrix using
topological overlapping measure (TOM) function in “WGCNA” R
package (35). Finally, this modified adjacency matrix was
subtracted from one to create a distance adjacency matrix.

Neighborhood Ranking to the Core Genes
Using Dijkstra algorithm in R, a matrix of all shortest paths,
called SP, between all pairs of nodes was constructed from the
distance adjacency matrix (36). By utilizing this matrix, a
distance score, DJ, for each node in the PPI network was
computed. Moreover, we considered DEGs between metastatic
versus primary analysis as the Core nodes in the PPI network. Dj
is a scoring formula that is the average of the shortest paths from
all the non-core nodes to reach the node j subtracted from the
average of the shortest paths from the Core nodes to reach the
node j divided by the average of the all shortest paths to reach the
node j from the whole network. This scoring system implies how
much close each node is to the Core nodes (19, 37).

D] = Zl&cSPIJ/NC - ZIECSPIJ/C/lePU /NC + C

C is the number of Core nodes, and NC is the number of non-
core nodes. ¥; & c SPj; is the sum of all distances in SP matrix
between node j and all the non-core nodes. ¥; € ¢ SPy; is the sum
of the distances between node j and all the Core nodes. ¥; SPj; is
the sum of the distances between node j and all the nodes. A
positive score implies that node j is closer to the Core nodes than
the rest of the nodes. Nodes with positive scores were kept, but
the others were removed from the network. It should be noted
that D scores were calculated without imposing any threshold on
edge weights. The R source codes for the network analysis are
available at https://github.com/mehranpiran/Meta-Analysis.

Enrichment Analysis

Enrichment analysis was performed using ClueGO Cytoscape
plugin (38). Enriched terms for biological processes were
obtained from GO repository. For pathway enrichment
analysis, information in KEGG (39), Reactome (40) and
WikiPathways (41) databases were used. P-value were adjusted
using Benjamini-Hochberg method and cut off was set on 0.05.
In addition to Cytoscape, Enrichment analysis was performed
using Enrichr online tool (42) as well. Enriched terms for
biological processes were obtained from GO repository. For
pathway enrichment analysis, WikiPathways signaling
repository version 2019 for humans was used. Enriched terms
with a top score and a p-value less than 0.05 were selected.

Analyzing Gene Expression Profiles

Genes were given to GEPIA2 webserver to validate identified
DEGs based on datasets in TCGA genomic database (43, 44). To
draw boxplots, expression profiles were compared between tumor
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and normal samples in multiple colorectal adenocarcinoma
(COAD) datasets. LogFC cutoff was set at 0.5 and p-value was
set at 0.01. TPM normalized data were log2 transformed. To draw
survival plots, “Overall Survival” option was selected and median
was chosen to define the border of High and Low groups. 95%
confidence interval was set for analysis. All COAD datasets with
monthly expression values were selected in order to obtain
survival results.

RESULTS

Data Preprocessing in Test Datasets

Each dataset was imported into R separately. Outlier sample
detection was conducted using PCA and hierarchical clustering
approaches. Figure 2A illustrates the PCA plot for samples in
Datasetl. The same plot was created for the second and third
datasets. Some samples in the PCA plane lay at a distance from
their group, particularly along the PC1 axis, so they were
considered as the outliers. To be more specific, a hierarchical
clustering method introduced by Oldham MC, et al. (45) was used.

To compute the distances between samples, Pearson correlation
analysis was performed between them, and coefficients were
subtracted from one. Figure 2B depicts the dendrogram for
normal samples. In Figure 2C normal samples were plotted
based on their Number-SD scores. To get this number for each
sample, the average of whole distances was subtracted from the
distance average of each sample. Then, results of these subtractions
were normalized by standard deviation of sample distance
averages (45). Samples with Number-SD less than negative two
usually fall apart from their cluster set in the PCA plane. Thus,
they were regarded as the outliers in our analyses. Sixteen outlier
samples in GSE41258 Test dataset and three outliers in Dataset3
were recognized. Supplementary File 1 contains information
about the groups of samples.

Supplementary File 2 illustrates the average expression
values for some housekeeping genes and DEGs between
Primary and Metastatic samples. Common DEGs between
lung-primary analysis and liver-primary analysis with absolute
LogFC larger than one in GSE41258 datasets were illustrated in
A. The same plot was made for the common DEGs in liver-
primary analysis in the third dataset in B. Housekeeping genes
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FIGURE 2 | lllustration of outlier samples in the first dataset. (A) is the PCA plot, (B) is the dendrogram for the primary samples and (C) is the Number-SD plot for
primary samples. GSM1012445 is an outlier sample in primary group as it has located in a distance from its group in the PCA plane. In addition, it has formed a
unique cluster in the dendrogram and its Number-SD score is less than negative two.
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were situated on the diagonal of the plots whilst DEGs were
located above or under the diagonal. Hence, the preprocessed
data were of sufficient quality for downstream analyses.

Meta-Analysis and Identifying Differentially
Expressed Genes

10891 unique DEGs with adjusted p-value < 0.05 and absolute log
fold change > 0.5 were achieved from eight groups of DEGs yielded
from eight independent analyses on three Test datasets. They
included two analyses of liver metastasis versus normal, two
analyses of liver metastasis versus primary, one analysis of lung
metastasis versus normal, one analysis of lung metastasis versus
primary, and two analyses of primary versus normal (Table 1).
Liver metastasis contained metastatic colorectal samples taken out
from liver; however, lung metastasis contained metastatic colorectal
samples obtained from lung. In fact, this kind of dataset selection
provided us with some DE genes that could significantly contribute
to tumor progression within the primary site and towards liver and
lung organs. Common DEGs between all metastasis vs normal
analyses (Test datasets) were 155 genes. Common DEGs between all
metastasis vs primary analyses (Test datasets) were 72 genes.
Common DEGs between all primary vs normal analyses (Test
datasets) were 239 genes. There were 334 unique DEGs between
these three sets of analyses. Finally, from these 334 DEGs, 242 of
them were identified to be in all Test and Validation analyses
considered as the final DEGs. There were 12 final DEGs in primary
versus normal analyses considered as the Core genes. All DE gene
sets and their LogFC are presented in Supplementary File 3.

Undirected Protein-Protein

Interaction Network

242 final DEGs were utilized to construct the Protein-Protein-
Interaction (PPI) network. STRING database was employed to
generate the Interactions based on seven sources of evidence,
namely Neighborhood, Text mining, Experiments, Databases,
Co-expression, Gene fusion, and Co-occurrence. STRING
combined scores were used as the edge weights. The giant
component of the weighted network with 205 nodes and 554
edges is depicted in Figure 3.

Determination of Core Genes
Neighborhood Through Shortest
Path-Based Scoring System
In this step, interactions combined score computed from all
sources of evidence in STRING database were converted into
weights between nodes. These weights were used as the estimation
of distances in the weighted adjacency matrix. Nodes with shorter
distances from the Core genes were selected, and a smaller
network was extracted from the main network. Computing the
shortest path score for the non-core genes led to a network of 39
nodes comprising 12 Core nodes and 27 neighbors. This multi-
component graph called Core network is illustrated in Figure 4.
Majority of the nodes in Core network were selected for
investigation based on the similarity of expression patterns in all
datasets. Expression status of selected genes between any pairwise
comparisons was depicted in Table 1. For the three Metastatic-

TABLE 1 | The practical information for the Core network DE genes in Test dataset.

MvsN BvsN
DEGs GSE41258 GSE9348_GSE10961 DEGs GSE41258 GSE9348_GSE10961
liver-normal (D1) lung-normal (D2) liver-normal (D3) primary-normal (D1/2) primary-normal (D3)

ETHEA1 Down Down Down SGK1 Down Down
DARS Up Up Up EIF2S2 Up Up
TMEM131 Down Down Down TRIB3 Up Up
TST Down Down Down DARS Up Up
LGALS4 Down Down Down RFC3 Up Up
TRIB3 Up Up Up ETHE1 Down Down
COL5BA2 Up Up Up TOP2A Up Up
COL4A1 Up Up Up CKS2 Up Up
PTP4A1 Down Down Down SORD Up Up
COL1A2 Up Up Up PSMA7 Up Up
SORD Up Up Up GPX3 Down Down
SQOR Down Down Down MAD2L1 Up Up
OAS1 Down Down Down SQOR Down Down
TRIM31 Down Down Down TST Down Down
TWF1 Down Down Down GINS1 Up Up
MvsP LGALS4 Down Down
DEGs GSE41258 GSE9348_GSE10961 PTP4A1 Down Down

liver-primary (D1) lung-primary (D2) liver-primary (D3) PLAGL2 Up Up
ETHEA Down Down Down COL1A2 Up Up
ATF5 Up Up Up CTSH Up Up
CDC6 Down Down Down MT2A Down Down
TMPO Down Down Down COL5A2 Up Up
P4HA1 Up Up Up

“Up” means gene was upregulated, and “Down” means gene was downregulated. MvsN contains all the metastatic versus normal analyses, PvsN contains all the primary versus normal
analyses and MvsP contains all the metastatic versus primary analyses. D stands for Dataset, so D1 means Dataset1. Some genes are present in more than one analysis.
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Normal comparisons (MvsN), most of the nodes exhibited a
similar expression pattern. The same was true for all Primary-
Normal analyses (PvsN) and Metastatic-Primary comparisons
(MvsP). Heatmaps were illustrated in Figure 5 for all members
of the Core network in three datasets. Clustering was performed
by applying “Euclidean” distance and “Complete” method on gene
expression values. Genes present in the top right corner of the
three plots possessed high expression values in colon tissues.
Moving from border to the center of plots, we go from Normal
to primary and from primary to metastatic samples. Some genes

exhibited a descending expression trend such as mitochondrial
genes ETHEL, TST and SQOR. Few genes witnessed an ascending
trend, such as collagen genes and SORD and P4HA1L.

Network Descriptive

The giant component diameter was eight containing TRIM31,
HLA-F, CD74, PLAGL2, TMPO, MAD2L1 PSMA7, AIMP1, and
TWEFI. Transitivity was around 60%, edge density was about 18%,
and the mean distance was 3.48. Two important centralities,
Degree and Betweenness, along with other centralities and the
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TST

non-core genes are in blue.

average distances for giant component nodes, are provided in
Supplementary File 4. MAD2LI had the highest Degree and a
relatively high betweenness. TMPO had the highest Betweenness
and a pretty high degree. Similar to TMPO, its direct neighbor,
PLAGI2 had a relatively high Betweenness. This gene has linked
the upper and lower parts of the PPI giant component together.

Processing Validation Datasets

Core network nodes were identified in the seven Validation
datasets. They were presented in Table 2. Most of the DEGs
illustrated similar results in both Tables 1, 2, which proves the
accuracy of obtained DEGs from Test datasets. Expression of
genes that were totally homogeneous in each of MvsN or MvsP
or PvsN analyses are presented in green, and the ones that
differed only in one analysis are shown in yellow. Expression of
Genes that were different in more than one dataset are in white.
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FIGURE 4 | The Core network. The network contains seven components numbered from 1 to 7. Component 1 is the giant component. Core genes are in red and

Absolute LogFCs less than 0.2 were not reported in Table 2.
Expression analysis of all Validation datasets are presented in
Supplementary File 3.

Over-Representation Analysis

Figure 6 illustrates the enrichment results for the Core network
genes using ClueGO software. Three signaling databases called
KEGG, Reactome, and WikiPathways were used for the pathway
enrichment. Biological Function terms were enriched from GO
database. Genes and terms associated with a specific cellular
mechanism formed distinct components. Different pathway terms
related to polymerization and degradation of collagens in extra
cellular matrix (ECM) have emerged in blue, which formed a
distinct component (component 3) in the Core network. In a
tumor environment, different concentrations of collagen fibers
are regularly secreted, degraded, and aligned together to make
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and lung metastatic samples start with M. Outer samples are normal, middle samples are primary and inner samples are metastatic. Genes were clustered together
based on hierarchical clustering.
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ECM stiffness suitable for cellular migration (47, 48). Genes that
were enriched for sulfide oxidation terms formed a distinct
component in the Core network as well. Genes in green are
engaged in interferon-gamma signaling that has dual roles in
cancer. On the one hand, INF-y has anti-proliferative functions
by employing different mechanisms such as induction of p21 (49),
induction of autophagy (50), regulation of EGFR/Erk1/2 and Wnt/
[3-catenin signalings (51), and so on. On the other hand, it enhances
the outgrowth of tumor cells with invasive properties depending on
cellular and microenvironmental context (52, 53).

In the enrichment analysis with “Enrichr” online tool, Gastric
Cancer Network2 was of the lowest p-value containing TOP2A
and RFC3 genes involved in DNA replication process.
Involvement of the same genes in retinoblastoma cancer
(WP2446) proposes the potential importance of these genes in
different cancers. Top2A was involved in Gastric Cancer
Networkl as well. All the enrichment results yielded from
“Enrichr” are presented in Supplementary File 5.

Expression Profiling and Survival Analysis
of TCGA Gene Expression Profiles

Expression of DEGs in Tables 1, 2 were further supported by
boxplots and survival plots using GEPIA2 web server.

Expression profiles were attained from 275 colorectal
adenocarcinoma and 41 normal colon RNA-seq samples in
TCGA database to create boxplots for each gene in Figure 7.
Except for TWF1, all plots were in agreement with our results.
In other words, if a gene was upregulated in our analysis
between cancer and normal groups, the expression median for
that gene in tumor samples was larger than normal samples in
boxplots and vice versa. Even boxplots for expression of some
genes that were later shown to be contradictory to other studies,
were in favor of our findings. They were MT2A, TRIM31,
CDC6, SGK1, and PTP4A1 genes.

Survival plots were also created for DEGs in Tables 1, 2 in
different months using TCGA database. Only three genes had a
significant p-value larger than 0.05 illustrated in Figure 8, and
rest of survival plots were presented in Supplementary File 6.
Low expression of LGALS4 is associated with poor survival rate,
while high expression of COL1A2 and the new reported gene
DARS is linked to poor survival rate in colorectal cancer patients.
In our study, LGALS4 were downregulated in MvsN and PvsN
analyses of all Test and Validation datasets while DARS and
COL1A2 were upregulated in majority of MvsN and PvsN
analyses. Although other survival tests were non-significant,
majority of them were in agreement with our expression results.

TABLE 2 | lllustration of Core network DEGs in Validation datasets.

MvsN PvsN

DEGs GSE40367 GSE50760 GSE41258 GSE144259 GSE89393 DEGs TCGA GSE50760 GSE41258 GSE144259 GSES89393

liver- liver- liver- lung- liver- liver- .
primary-normal

normal normal normal normal normal normal

ETHE1 SGK1

DARS EIF2S2

TMEM131 RIB3

TST DARS

LGALS4 RFC3

TRIB3 ETHE1

COL5A2  Down Up Up Up Up Down TOP2A

COL4A1  Down Up Down CKS2

PTP4A1

COL1A2

SORD

SQOR

OAS1

TRIM31
TWF1

GSE40367 GSE50760 GSE41258
liver- lung-
primary primary

liver- liver-
primary primary

liver-primary

ETHE1
ATF5

CDC6 Down Up Down Down Down
TMPO
P4HA1

GSE144259 GSE89393 PTP4A1
liver- PLAGL2

Down MT2A
COL5A2 Down Up Up Up Up

Down Down Down

Up Down

Up means gene was upregulated and Down means gene was Downregulated. MvsN contains all the metastatic versus normal analyses, PvsN contains all the primary versus normal
analyses and MvsP contains all the metastatic versus primary analyses. Some genes are present in more than one analysis. The expression status for the genes in green rows are similar in
all datasets regardless of empty cells. In the yellow rows only one dataset is different from the others and in the white rows genes exhibited a heterogeneous expression status in different
datasets. Green rows illustrate a similar expression in all datasets.
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DISCUSSION

The Core network giant component is composed of an up and a
down part attached via PLAGL2 transcription factor (TF). The
lower part is engaged mainly in cell cycle and DNA replication.
Components 2 and 3 contain genes involved in ECM
remodeling, component 4 is composed of genes involved in
transcription inhibition, and Component 5 is composed of
mitochondrial genes playing essential roles in controlling
cellular redox homeostasis. Here we discussed most of the
genes in the Core network exhibiting more similar expression
patterns which were present in Tables 1, 2.

PLAGL2 is considered an oncogene in different cancers. It
binds to and prevents Pirh2 proteasomal degradation, which in
turn Pirh2 promotes proteasomal degradation of P53 protein
(54). In glioblastoma, PLAGL2 suppresses neural stem cell
differentiation by regulating Wnt/B-catenin signaling (55).
Besides, PLAGL2 regulates actin cytoskeleton and cell
migration through promoting actin stress fibers and focal
adhesion (56). Results of PvsN analysis manifests that this gene
is induced in primary tumors in colon cancer. In addition, this

ETHE1

ollagen
nthesis and

COL5A2

COL4A1

TRIM31

HLAF

MT2A

FIGURE 6 | The enrichment results for the Core network genes. Terms in the shape of octagons are from KEGG, Triangular terms are from WikiPathways, rectangular
expressions are from Reactome and circular terms are from GO database. Size of the terms present their significance.

gene had a high betweenness centrality in the giant component
(S4). Since this gene connected the two parts of the giant
component, it would be a pertinent target for disturbing colon
cancer network. Its induction in CRC was supported by the
majority of Validation datasets in Table 2.

TRIM31 (a ubiquitin ligase) was downregulated in MvsN in
all Test and Validation datasets. However, there are
contradictory results in different studies where it was shown to
be reduced in lung cancer cells (57) and stepped up in gastric (58)
and colorectal cancer (59). Therefore, its downregulation in nine
analyses in Tables 1, 2 needs to be further explored. MT2A gene
is an antioxidant that protects cells against hydroxyl radicals and
plays an important role in detoxifying heavy metals (60, 61).
Expression inhibition of this gene results in proliferation
inhibition of CRC cells (62), and its silencing promotes the
effects of chemotherapy drugs on primary osteosarcoma tumors
(63). However, MT2A gene expression was downregulated in
PvsN analyses supported by the results in Table 2. Likewise, it is
downregulated in pancreatic cancer as well (64). Therefore, this
downregulation in primary CRC tumors has to go under more
investigation. OAS1 is a protein induced by interferons that
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COL1A2 and DARS genes had higher survival rate.
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FIGURE 8 | Survival plots. Plots present the monthly survival rate of patients having high expression, red line, or low expression, blue line, of a specific gene. Patients
having high expression of LGALS4 had higher survival rates compared to patients having low expression of LGALS4. Contrary, patients having low expression of

synthesizes the oligomers of adenosine from ATP. These oligomers
bind to RNase L to regulate cell growth, differentiation, and
apoptosis (65). Its expression is downregulated in breast ductal
carcinoma and prostate cancer (PCa) at both mRNA and protein
levels. In addition, OAS1 expression is negatively correlated with the
progression of these cancers (65). The given information supports
the downregulation of this gene in our analysis supported by
Validation datasets. Consequently, expression induction of this
gene might help prevent both tumor growth and cell
differentiation. The mentioned three genes, TRIM31, MT2A and
OASI1, were enriched for IFN-y and all were downregulated.
Although there are contradictory results in different papers, these
downregulations at mRNA level would help tumor cells to defeat
the anti-cancer properties of interferon gamma signaling.

CTSH gene is a lysosomal cysteine protease upregulated in
PvsN. This protease plays an important role in cytoskeletal
protein Talin maturation. Talin promotes integrin activation and
focal adhesion formation leading to cell migration (66). Validation
datasets more verified upregulation of this gene in CRC. As a result,
suppression of CTSH expression could be a choice of metastasis
inhibition. Glutathione peroxidase 3 (GPX3) is an important
antioxidant enzyme that protects cells against Reactive Oxygen
Species (ROS), downregulated in many cancers. For instance, its
expression is suppressed in human colon carcinoma Caco2 cell
lines, resulting in augmented ROS production (67). It reduces H,0O,
and lipid peroxides to water and lipid alcohols, respectively, and in
turn, oxidizes glutathione to glutathione disulfide (68).
Downregulation of GPX3 happened in PvsN analyses, leading to
ascending of H,O, level, which is positively correlated with tumor
progression (69). Its downregulation was further supported by all
datasets in Table 2. As a result, induction of GPX gene families
would be a therapeutic approach.

TMPO gene had the greatest Betweenness centrality illustrating
a reduced expression trend in MvsP analyses supported by
Validation datasets. This gene produces different protein isoforms
via alternative splicing (70, 71). The proteins are located in the

nucleus of the cells, which help form nuclear lamina and maintain
nucleus membrane structure (72). TMPO prevents the
depolymerization of nuclear laminas and excessive activation of
the mitosis pathway. Therefore, its downregulation would prevent
an excessive mitotic cycle.

TMEMI131 is a transmembrane protein that was
downregulated in MvsN analyses in all datasets in Tables 1, 2.
No documentation was found to connect this gene to a specific
cancer. Therefore, this gene might be biomarker of CRC.
Furthermore, Enrichment analysis using “Enrichr” online tool
showed that this gene was also involved in interferon-gamma
signaling (S5). A recent study has discovered that amino termini
of human TMEM131 recruit monomers of collagens for
assembly. Carboxy termini of this gene guide collagen cargo
machinery from Endoplasmic Reticulum towards Golgi
apparatus, contributing to collagen maturation and secretion.
Moreover, TMEM131 deficiency diminishes collagen
production, maturation, and secretion in Caenorhabditis
Elegans (73). This gene is also important for ER processing of
cuticle collagen cargos and apical ECM (aECM) formation in
Drosophila melanogaster. These findings highlight the conserved
role of this gene in collogen biosynthesis (74). The methylation
rate of this gene is reduced in T-Cells and peripheral blood cells
in Down syndrome patients (Trisomy 21). This gene also marks
lymphocyte precursor cells for lineage specification (75).

TOP2A gene was upregulated in PvsN analyses entirely
endorsed by the validation results. In breast cancer (BC) HER-
2 and TOP2A are the molecular targets for several anticancer
medicines that are bolstered together (76). Moreover, Copy
Number Variations (CNVs) in TOP2A gene have been
identified as biomarkers of colorectal cancer (77). This enzyme
controls DNA topological structure, and its upregulation is
a hallmark of aberrant cell growth in tumors (78). TOP2A
mRNA expression is an independent prognostic factor in
patients with (Estrogen Receptor) ER-positive breast cancer
and could be useful in the assessment of breast cancer risk (79).
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Therefore, in addition to being a possible target for CRC therapy,
this gene could be either a possible prognostic or diagnostic
marker of CRC.

Replication Factor C subunit 3 (RFC3) plays a role in DNA
replication, DNA damage repair, and cell cycle checkpoint
control. Hepatocellular carcinoma (HCC) and cell proliferation
of ovarian tumors are suppressed by shRNA-mediated silencing
of RFC3 gene (80, 81). This gene was upregulated in PvsN
analyses and is upregulated in Triple-negative breast cancer
(TNBC) as well (82). Validation datasets more supported its
upregulation. Since expression inhibition of this gene at both
mRNA and protein levels suppresses the migratory and invasive
ability of MCF-7 cell lines (83), this gene would be a therapeutic
target for colorectal cancer treatment. Moreover, TOP2A and
RFC3 were shown to be engaged in the Gastric Cancer Network2
pathway in the enrichment analysis by “Enrichr” (S5), indicating
the importance of these two genes in cancer progression.

Mitotic Arrest Deficient 2 Likel (MAD2L1) is a mitotic
spindle assembly checkpoint molecule upregulated in PvsN in
both Test and Validation analyses. It is responsible for
preventing anaphase initiation until precise and complete
metaphase alignment of all chromosomes takes place. An
increase in the level of MAD2LI transcripts is detected in a
large number of samples with ductal breast carcinoma (84). Its
upregulation in our analysis would provide evidence that
cancerous cells were dealing with mitotic deficiencies. The
GINS complex is a DNA replication machinery component in
the eukaryotes and is an essential tool for initiating and
progressing DNA replication forks (85). GINSI (PSF1) mRNA
level is positively correlated with tumor size in CRC patients and
is a prognostic marker of CRC (86). This gene has been recently
introduced as a targeted oncogenic agent for inhibition of
synovial sarcoma (87). It was totally upregulated in PvsN
analyses in Tables 1, 2. Therefore, its expression inhibition
would be a potential target for inhibition of tumor growth by
disturbing DNA replication machinery.

CDC6, one of the Core genes, plays a critical role in regulation
of the eukaryotic DNA replication onset, and its downregulation
has been demonstrated in prostate cancer (88). It is a regulator of
cell cycle in S phase, and its expression is regulated by E2F
Transcription factor and androgen receptors (AR) in PCa cells
(89). Transfection of CDC6 siRNA leads to not only decreased
level of ovarian cancer cell proliferation but also increased apoptosis
rates (90). Cdc6 and Cdtl are highly expressed in aggressive BC and
therefore is considered a potent therapeutic target in BC patients
(91). Results for this gene in MvsP analyses were contradictory to
the BC results, but it is similar to prostate cancer. The majority of
Validation datasets depicted downregulation of this gene in CRC.
No study directly measured the expression level of this gene in CRC
samples; therefore, it is worth investigating to see whether it could
be a CRC biomarker or a curative target.

CKS2 protein interacts with the catalytic subunit of the
cyclin-dependent kinases, and its downregulation contributes
to suppression of p-Akt and p-mTOR. Therefore, one of CSK2
oncogenic roles is played by Akt/mTOR oncogenic pathway (92).
CKS2 is expressed at a high level in CRC tissues, and it has

revealed that increased CKS2 expression is highly correlated with
enhanced metastatic stage (93). Importantly, CKS2 is considered
a potential biomarker and therapeutic target for the BC
treatment due to the fact that its inhibition suppresses cell
proliferation and invasion in vitro and in vivo (94). In the PyN
analyses, this gene was upregulated, which would be a
therapeutic target for CRC treatment because validation results
completely supported this upregulation.

PSMA?7 gene encodes a protein that is one of the essential
subunits of 20S proteasome complex (95). Overexpression of
PSMA?7 both at the mRNA and protein levels has been reported
in gastric cancer (96). Depletion of PSMA7 by shRNA-
transfected RKO CRC cell lines mediates inhibition of cell
growth and migration. Consequently, inhibition of PSMA7
could be a beneficial therapeutic strategy for colorectal cancer
patients (97). This gene was upregulated in PvsN analyses in test
and Validation datasets.

DARS encodes the cytosolic aspartyl-tRNA synthetase found
to be upregulated in MvsN and PvsN analyses in all Test and
Validation datasets (a total of 16 analyses). This gene encodes a
member of a multi-enzyme complex that its role has been proved
in mediating attachment of amino acids to their cognate tRNAs.
Some studies have reported that DARS-ASI gene (encoding a
long noncoding RNA) act as an oncogene (98) and is positively
associated with the pathological stages in thyroid and ovarian
cancer by targeting mir-129 and mir-532-3p, respectively (99,
100). Moreover, this gene is directly upregulated by HIF1 gene,
which stabilizes RBM39 protein in Myeloma (101). Mutations in
this gene have been previously reported in neuroinflammatory
diseases and Leukodystrophies (102, 103). However, there is not
enough evidence in the literature that associates DARS1 (DARS)
gene to different cancers. Moreover, patients having a lower
expression of this gene have a higher survival rate in Figure 8.

EIF-2 consists of alpha, beta, and gamma subunits. EIF2B or
EIF2S2 acts in the early steps of protein synthesis. GTP-bound
EIF-2 transfers Met-tRNAi to the 40S ribosomal subunit to start
protein synthesis. The hydrolysis of GTP to GDP takes place at
the end of the initiation process that leads to release of the
inactive eIF2-GDP from ribosome. Exchange of GDP for GTP is
performed by beta subunit so that active EIF-2 is ready for
another round of initiation (104). In one study, EIF2B was
proposed as a potential therapeutic target in lung cancer (76).
Moreover, elimination of natural killer cell cytotoxicity via
promoted expression of natural killer (NK) cell ligands is done
by pSer535-elF2B following the expression of pSer9-GSK-3f
(inactive GSK3[) and generation of ROS, which promotes breast
cancer growth and metastasis (105). Since Tyr216-GSK-33
(Active GSK3P) has inhibitory effects on the EMT process by
interfering with TNF-alpha signaling (106), induction of active
GSK-3P together with suppression of EIF2B would be a
therapeutic approach to prevent EMT (107). EIF2B stepped up
in PvsN analyses which was supported by validation results.

TWFI1 gene encodes Twinfilin, an actin monomer-binding
protein that promotes EMT in pancreatic cancer tissues (108).
TWEF1 siRNA dramatically inhibits F-actin organization and focal
adhesions formation, promoting the mesenchymal-to-epithelial
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transition (MET) in MDA-MB-231 cell lines. Besides, The
responsiveness of these cell lines to anti-cancer drugs such as
doxorubicin and paclitaxel is augmented by siRNA inhibition of
TWF1 expression (109). Furthermore, expression levels of EMT
markers, VIM and SNAI2, are reduced due to miR-30c action on
TWF1 mRNA (109). However, in MvsN analyses, this gene
witnessed a decreased expression in both Test and Validation
datasets. As a result, Its upregulation in CRC has to be
further explored.

SGK1, a member of component 2, and AKT are two families of
AGC protein superfamily. SGK1 is a serine/threonine kinase that
activates particular potassium, sodium, and chloride channels
(110). SGK1 is a downstream effector of PI3K, which runs
pathways independent of pathways shared with AKT. The two
kinases are phosphorylated and activated by PDK1 and mTORC2
complex (111, 112). In general, PI3K-dependent survival signals can
be mediated by either Akt or SGK1 that inactivates the pro-
apoptotic proteins Bad and FKHRL1 (113). A study on A498
kidney cancer cells found that survival signals promoted by IL-2
are mediated by SGK1 activation (114). Moreover, the promoter of
SGK1 is under tight control of the p53 protein (115). SGK1 has been
shown to mediate cell survival and drug resistance to platinoid and
taxane compounds in breast cancer patients (116). On the contrary,
this gene was totally downregulated in PvsN analyses in all
Validation and Test datasets. These overall downregulations
might be specific to CRC, so it could be a diagnostic hallmark of
CRC and should go under more interrogation.

Component 3 contains collagen (COL1A2, COL5A2,
and COL4A1l) and P4HA1 (a collagen hydroxylase) genes
interconnected in the process of ECM remodeling based on the
enrichment results. All members witnessed an ascending trend in
expression from normal samples to metastatic samples in Figure 5
panels. In Test datasets, collagen genes presented an upregulation
trend in MvsN and PvsN analyses, while their expression followed a
mixed trend in Validation datasets. PAHA1 one of the Core genes
upregulated in MvsP in all Test and Validation datasets. Expression
of COL1A2 followed a homogeneous upregulating trend in both
Test and Validation datasets which is a marker of EMT (117).
P4HA1 is engaged in breast and pancreatic metastasis (118, 119).
Under hypoxic tumor conditions, HIF-1 induces expression of
genes that encodes collagen prolyl (P4HA1 and P4HA?2) and lysyl
(PLOD2) hydroxylases. PAHA1 and P4HA2 are required for
collagen deposition, whereas PLOD2 is required for ECM
stiffening and collagen fiber alignment (120). These changes in
ECM triggered by HIF-1 are necessary for motility and invasion
because, in focal adhesion junctions, actin cytoskeleton is connected
to ECM through attachment of integrins to collagens (121). Besides,
there is a positive feedback between P4HA1 and HIF-1 in
modulation of ECM. As a result, targeting PAHA1 and P4HA2
expressions would inhibit the progression of cell migration via
HIF1-Collagen pathway.

PTP4A1 a member of component 4, is a protein phosphatase
engaged in p2l-activated kinase (PAK) signaling pathway.
Inhibition of PTP4Al gene in MDA-MB-231 breast cancer cell
lines by an increase in miR-944 expression impairs cell invasion
(122). However, this gene was downregulated in MvsN and

PvsN in all Test datasets and most Validation datasets. This
downregulation would be a biomarker for CRC, and its molecular
role in CRC needs to be interrogated. BCL-2 is a target of ATF5, one
of the Core genes (123). ATF5 was upregulated in MvsP analyses in
Test and Validation datasets. There are pieces of evidence that link
the role of ATF5 in mitochondrial dysfunction in cancer
progression (124). In malignant glioma, metastatic cells take
advantage of survival signals triggered by ATF5 gene, which is
essential to ignore anchorage-dependent and niche-dependent cell
death signals (125). Thus, expression inhibition of ATF5 would
hinder the survival signals in CRC cells. TRIB3 is a prognosis
hallmark of colorectal cancer, activated under hypoxic conditions
(126). TRIB3 silencing suppresses VEGF—A expression in gastric
cancer cells inhibiting endothelial cell migration and vessel
formation. This gene was upregulated in MvsN analyses in all
Test and Validation datasets. Therefore, it would be a promising
target for anti—angiogenic therapy (127).

Genes in component 5 are mitochondrial which their role in
cancer progression has not been sufficiently investigated so far.
All three genes were downregulated in our analysis in both
Validation and Test datasets. They also exhibited a reducing
trend from normal to primary and from primary to metastatic in
Figure 5 panels. These genes are highly expressed in normal
colon tissue compared to other tissues due to the presence of
anaerobic bacteria in the digestive tract (128). These findings are
supported by the RNA-seq expression information in the Gene
database of NCBI (129). ETHE1 (persulfide dioxygenase) and
SQOR are antioxidants that convert hydrogen sulfide (H2S) to
persulfide, then to sulfite. Hence, they protect cells against toxic
concentrations of sulfide. ETHE1 gene was downregulated in the
three analyses while SQOR was downregulated in MvsN and PvsN
analyses. All these expressions were totally verified by the
Validation datasets. Their downregulation is essential for cancer
cells proliferation and survival. Under the hypoxic environment of
CRC tumor, sulfide is a supplementary tool that provides electron
for mitochondrial electron transport chain (ETC) to generate ATP
(130). These mechanisms, along with Warburg effect help tumor
cells to survive from the hypoxic environment. As a result, helping
expression induction or activation of ETHE1 and SQOR proteins
will increase sulfide scavenging and this would hinder CRC tumor
growth. TST thiosulfate sulfurtransferase encodes a protein that is
localized to the mitochondria and catalyzes the conversion of
thiosulfate and cyanide to thiocyanate and sulfite respectively.
Therefore, like the previous two mitochondrial enzymes, it acts in
Hydrogen sulfide metabolism (131).

SORD (Sorbitol dehydrogenase) is another element of
component 6 upregulated in MvsN, and PvsN analyses. Little is
known about the connection between SORD and cancer. This
enzyme hydrogenates Fructose to Sorbitol in Fructose catabolism
pathway. Subsequently, sorbitol is dehydrogenated to glucose
via AKR1B1 enzyme providing fuel for cells (132). In addition,
excess glucose promotes EMT through autocrine TGFR
stimulation (133). Expression suppression of either enzyme
reduces EMT in human lung cancer cells and EMT-driven colon
cancer mouse model (133). Two studies demonstrated that SORD is
an androgen-regulated gene in prostate cancer (134, 135).
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siRNA inhibition of this gene leads to proliferation and migration
inhibition of A549 lung cancer cells (136). Since SORD exhibited
an ascending trend in all Validation and Test datasets in Figure 5,
it might be a potential target and biomarker to prevent EMT and
cell growth in CRC. LGALS4 is implicated in regulating cell-cell
and cell-matrix interactions, so its induction might have positive
curative impacts on CRC cells. This gene is primarily expressed
in small intestine, colon, and rectum, which is suppressed
in CRC (137). It was downregulated in MvsN and PvsN analyses
in Validation and Test datasets. It is also a blood marker of
CRC (138).

In summary, we illustrated some therapeutic targets and
biomarkers for CRC. A combination of these targets would
beneficially disturb progression of colorectal cancer. Generally,
the discovered antioxidants were downregulated in different
stages of CRC, namely ETHEI, SQOR, TST, and GPX3. We
proposed that these downregulations under hypoxic conditions
would help cancer cells to produce more energy for cell
proliferation. In addition, the hypoxic environment alters ECM
suitable for cell migration by induction of PAHA1 gene through
HIF-1 signaling pathway and induction of COL1A2. Boxplots
(expression profiling) in Figure 7 supported our results for all
these genes. In addition, survival plot in Figure 8 demonstrated
that there is a higher death probability for CRC patients
expressing a high level of COL1A2 than patients having a low
level of this gene. Consequently, colorectal cancer cells would
take advantages of explained mechanisms along with Warburg
effect to not only survive from the hypoxic environment of
tumors but also proliferate faster and migrate better. Therefore,
induction of mentioned antioxidants and suppression of P4AHA1
and COL1A2 genes would be a choice of CRC treatment.

Induction of active GSK-3P together with suppression of EIF2B
would prevent EMT in CRC. Induction of OASI to increase the
anti-cancer effects of interferon gamma, suppression of CTSH to
hinder formation offocal adhesions, expression inhibition of ATF5
gene to make cancer cells sensitive to anchorage-dependent death
signals, and induction of LGALS4 gene (supported by survival
analysis) to recover cell-cell junctions would be the combination of
genetic targets that prevent EMT and cell migration. In addition,
expression inhibition of TMPO, TOP2A, RFC3, GINS1, and CKS2
genes could prevent tumor growth and TRIB3 expression
suppression would be a favorable target for anti—angiogenic
therapy. PSMA7 gene was a previously reported target for CRC
treatment that was also found in our study. Results for expression of
all these genes were supported by expression profiling.

MT2A and TRIM31 which were engaged in IFN-y signaling,
CDC6, SGKI1 and PTP4A1l genes, presented a homogeneous
expression pattern in both test and Validation datasets, although
our results were contradictory to other studies in different cancers.
Nevertheless, we used 10 different datasets from different
technologies to ensure the accuracy of the results. Besides,
expression profiling supported expression of these genes. However,
they have to be further interrogated in colorectal cancer progression.

TMEM131 and DARS genes had specific uniform expression
trends as analyses went from normal to metastatic. DARS
expression inhibition would increase the survival rate in CRC

patients based on Figure 8. Therefore, this gene might be a CRC
prognostic marker or a curative target. Downregulation of
TMEM131 might be associated with the amount of collagen
secretion in ECM to make the environment suitable for
migration (Stiffness of ECM). SORD is a poorly studied gene
in cancer that its expression reduction might prevent cell
proliferation and EMT in CRC. The relation of these three
genes to colorectal cancer progression has been reported for
the first time in this study. More investigation is required to find
their molecular mechanism causing colorectal cancer promotion.
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