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Purpose: Transforming growth factor-β1 (TGF-β1), a known immune suppressor, plays

an important role in tumor progression and overall survival (OS) in many types of cancers.

We hypothesized that genetic variations of single nucleotide polymorphisms (SNPs) in the

TGF-β1 pathway can predict survival in patients with non-small cell lung cancer (NSCLC)

after radiation therapy.

Materials and Methods: Fourteen functional SNPs in the TGF-β1 pathway were

measured in 166 patients with NSCLC enrolled in a multi-center clinical trial. Clinical

factors, including age, gender, ethnicity, smoking status, stage group, histology,

Karnofsky Performance Status, equivalent dose at 2Gy fractions (EQD2), and the use of

chemotherapy, were first tested under the univariate Cox’s proportional hazards model.

All significant clinical predictors were combined as a group of predictors named “Clinical.”

The significant SNPs under the Cox proportional hazards model were combined as a

group of predictors named “SNP.” The predictive powers of models using Clinical and

Clinical + SNP were compared with the cross-validation concordance index (C-index) of

random forest models.

Results: Age, gender, stage group, smoking, histology, and EQD2 were identified

as significant clinical predictors: Clinical. Among 14 SNPs, BMP2:rs235756

(HR = 0.63; 95% CI:0.42–0.93; p = 0.022), SMAD9:rs7333607 (HR = 2.79; 95%

CI 1.22–6.41; p = 0.015), SMAD3:rs12102171 (HR = 0.68; 95% CI: 0.46–1.00;

p = 0.050), and SMAD4: rs12456284 (HR = 0.63; 95% CI: 0.43–0.92; p = 0.016)

were identified as powerful predictors of SNP. After adding SNP, the C-index
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of the model increased from 84.1 to 87.6% at 24 months and from 79.4 to 84.4% at

36 months.

Conclusion: Genetic variations in the TGF-β1 pathway have the potential to improve

the prediction accuracy for OS in patients with NSCLC.

Keywords: machine learning, single nuclear polymorphism, overall survival, non-small cell lung cancer, TGF-β1

INTRODUCTION

Lung cancer is the leading cause of cancer death and the second
most commonly diagnosed type of cancer in the USA. It was
estimated that 235,760 new cases would be diagnosed in 2020,
accounting for about 12.5% of all cancers diagnosed, and only
23% of cases are diagnosed at an early stage (1, 2). The 5-
year survival rate is only about 22.6% in the USA, though there
is already a 13% improvement over the last 5 years for all
lung cancers (2, 3). Approximately, 83% of patients with lung
cancer are identified with non-small cell cancer (NSCLC) (4),
and radiation therapy (RT) is a mainstay local treatment used
for all stages of the disease (5). However, the survival benefit
of RT to an individual patient varies with the baseline clinical
and genetic factors of each patient. Some clinical factors, such as
age, stage group, and histology, have a strong correlation with
the overall survival (OS) of patients with NSCLC after RT (6).
There is a need for an integrated clinical and genetic model for
survival prediction.

Recent studies have shown a strong correlation between
transforming growth factor- β1 (TGF-β1) and OS in various
types of cancer (7). TGF-β1 is a prototype of a multifunctional
cytokine and plays an important role in tumor angiogenesis,
stroma formation, immune suppression, carcinogenesis, tumor
metastasis progression, and prognosis for patients with cancer.
Single nucleotide polymorphisms (SNPs) of TGF-β1 have
been significant factors for prognosis in colon and pancreatic
cancers (8, 9). We hypothesized that functional SNPs of the
TGF-β1 pathway genes can regulate the TGF-β1 expression
level and function of the downstream pathway genes for
tumor progression and the immune system of the host, thus
contributing to OS in patients with NSCLC.

MATERIALS AND METHODS

Study Population
This study included 166 patients with inoperable stages I–
III NSCLC, enrolled through prospective studies approved by
the institutional review board (IRB) of participating centers.
All patients signed written informed consent. Patients received
definitive thoracic radiotherapy (≥55Gy EQD2) with or without
chemotherapy. All patients were treated with three-dimensional
conformal RT techniques as described in previous studies
(10, 11). Clinical factors, including total equivalent dose at
2Gy fractions (EQD2), age, gender, ethnicity, smoking history,
histology, stage group, Karnofsky performance score (KPS), and
the use of chemotherapy, were collected prospectively.

Selection of SNPs
We selected 14 functional SNPs present in the 11 genes
responsible for the TGF-β1 pathways based on the following
criteria: (1) tag SNPs in the candidate genes; (2) a minor
allele frequency greater than 10%; and (3) previously reported
significant findings with correlation with the outcome of RT or
chemotherapy or cancer risk.

Sample Collection and Genotyping
The buffy coat was collected from each patient before the
commencement of treatment and stored at −80◦C. Genomic
DNA was extracted from the buffy coat using the Blood Mini
Kit of Gentra R© Puregene R© (Qiagen, Valencia, CA) according
to the protocol of the manufacturer. The concentrations
of genomic DNA were measured by a Nano Drop 2000c
Spectrophotometer (Nano Drop Technologies, Inc., Wilmington,
DE). Quantified DNA samples were placed on a matrix-assisted
laser desorption/ionization time-of-flight mass spectrometer
(Sequenom, Inc., San Diego, CA) according to the protocol of
the manufacturer. For pre-genotyping quality control, randomly
selected samples were blindly run in duplicate or triplicate. For
post-genotyping quality control, low call-rate SNPs that had a call
rate of <90% in all samples or the samples that had a call rate of
<90% in all SNPs were excluded from further analysis.

Statistical Analysis
The analysis was performed with R (12), and the missing
data were imputed with the most frequent values. A power
analysis was performed based on the data. The Cox proportional
hazards model (13) was used to carry out univariate analysis,
and the random survival forest tree (14) was used to carry out
multivariate analysis. For discrete clinical factors, the median
survival time (MST) with 95% CIs and the 24-month survival
time with 95% CIs were calculated. At first, the Cox proportional
hazards model was used to estimate the hazard ratio (HR) and
95% confidence interval (CI) of each predictor. The OS and event
indicator, used as the output variables, were calculated from the
beginning of treatment to the last visit or death. All significant
predictors (p < 0.05) selected from clinical factors with the
univariate Cox proportional hazards model were combined as a
group of predictors named “Clinical.” The independence between
SNPs was tested before running a multivariate model. To show
the results of the independence test, the linkage disequilibrium
(LD) (15) was calculated and plotted. Then, each SNP was tested
with the Cox proportional hazards model. The significant SNPs
were combined as a group of predictors named “SNP.” Two
models, RModel1 and RModel2, were built as random survival
forest trees on Clinical and Clinical + SNP, respectively. The
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justification for using the random survival forest tree instead of
the Cox proportional hazards model as the multivariate model
was given that: (1) the ensemble structure of the random survival
forest tree could avoid the overfitting issue, given the limited
number of patients and numerous predictors used in the study;
(2) the random survival forest tree could handle both categorical
and continuous predictors smoothly; (3) the Cox model assumes
that continuous predictor variables have linear relationships with
the risk of the event occurring, which is usually not true (16).

The predictive power of RModel1 and RModel2 were
estimated and compared in terms of the concordance index (C-
index) (17) with a 3-fold cross-validation (18). The 3-fold cross-
validation randomly and evenly divided the whole data set into
three groups. Then, the random survival forest classifier was
trained by using two groups as training data. The trained classifier
was tested using the remaining group to get the evaluation
metrics. In this way, three evaluation metrics could be achieved
using three disparate groups as testing data, and the mean
evaluation metrics were used in the evaluation.

RESULTS

Patient Clinical Factors
A total of 166 patients were included in this study. The death
probability was 0.51 for the data. The postulated HR was set as
2. The postulated proportions of the sample size allotted to one
group were 0.5. Type I error was 0.05, as stated above. The power
of 166 patients was 0.7, which is less than the traditional 0.8, but
it is still reasonable (19). The median age was 65.7 (64.1, 67.8)
years. About 75.3% (68.7, 81.9%) patients received concurrent
and adjuvant chemotherapy. The overall MST was 24.5 (19.3,
30.6) months, and the median follow-up time was 22.8 (9.2, 36.3)
months. The clinical factors of the patients shown in Table 1,
including gender (p = 0.0084), stage group (p = 0.016 for stage
group 2 and p = 0.19 for stage group 3), smoking (p = 0.061
for former smokers and p = 0.041 for smokers), histology (p =

0.024 for squamous, p = 0.022 for large cell, and p = 0.0018
for other), age (p = 0.011), and EQD2 (p = 0.00024), were
significant. This group of significant clinical factors was defined
as Clinical. The favorable factors were female, early-stage group,
no smoking, adenocarcinoma, young, and high EQD2, consistent
with published studies (20). Ethnicity, the use of chemotherapy,
and KPS did not show a significant correlation with survival and
were not included in the multivariate analysis.

The effect of clinical factors in patients with stage III
NSCLC was also tested similarly, and the results were similar
to that discussed above. Detailed findings were shown in the
Supplementary File.

Individual SNPs and OS
The correlation of all SNPs with OS was summarized in
Table 2. The genetic model for each SNP followed the
previous publication (21). Among them, four SNPs, including
BMP2:rs235756 (p = 0.022), SMAD9:rs7333607 (p = 0.015),
SMAD3:rs12102171 (p = 0.050), and SMAD4: rs12456284 (p
= 0.016), were significant predictors for OS. The Kaplan-Meier

(KM) plots of these four SNPs are shown in Figure 1 with p-
values for the log-rank test listed. All p-values for the log-rank
test were significant with the cut-off value of 0.05.

BMP2:rs235756 (HR = 0.63; 95% CI:0.42–0.93) in a recessive
model showed lower risk for patients with minor allele (T). The
MST increased from 22 months for patients with the wild-type
(C) to 37.9 months for patients carrying the minor allele (T)
(Log-rank p= 0.020, Figure 1A).

SMAD9:rs7333607 (HR = 2.79; 95% CI 1.22–6.41) in a
recessive model was correlated with an increased risk of death
among patients carrying theminor allele (G). Patients withminor
allele (G) of this SNP had a significantly shorter MST of 7.1
months compared with 25.1 months for patients with the wild
type (A) (Log-rank p= 0.011, Figure 1B).

SMAD3:rs12102171 (HR = 0.68; 95% CI: 0.46–1.00) was in
a dominant model. Patients carrying the minor allele (T) had a
significantly decreased risk of death. This decrease in risk resulted
in an increasedMST by nearly 11.8months: from 18.8months for
those with the wild-type genotype (C) to 30.6 months for patients
carrying the minor allele (T) (Log-rank p= 0.050, Figure 1C).

SMAD4: rs12456284 (HR = 0.63; 95% CI: 0.43–0.92) in a
dominant model which correlated with a decreased risk of death
among patients carrying the minor allele (G). These patients with
the minor allele (G) of this SNP had a significantly longer MST of
32 months compared with 22 months for patients with the wild
type (A) (Log-rank p= 0.011, Figure 1D).

The effect of SNPs in patients with stage III NSCLC was also
tested similarly, and the results were similar to that discussed
above. Detailed findings were shown in the Supplementary File.

A Combined Model of Integrating Clinical

and SNP Factors for Survival
The LD plot of 14 SNPs is shown in Figure 2. Most SNPs showed
strong independence (R2 < 0.2). The significant SNPs were
independent of each other, and the multivariate analysis of each
SNP was valid.

After a long-term follow-up of 18–100 months, the random
forest classifier of RModel2 with 1,000 trees trained with
Clinical+SNP significantly increased the C-index compared to
that of RModel1 as shown in Figure 3A. For example, the
C-index of RModel1 at 24 months was 84.1%. After adding
SNP as predictors, the C-index of RModel2 increased to 87.6%.
At 36 months, the C-index increased from 79.4 to 84.4%.
A t-test was applied on the C-index of the two models,
and the p-value was 0.003 for both models, which indicated
that RModel2 performed better than RModel1 in terms of
the C-index.

DISCUSSION

This study analyzed the correlation with clinical outcomes
in patients with several adverse genotypes, and the results
suggest that the cumulative influence by multiple genetic
variants within the TGF-β signaling pathways could improve the
prediction accuracy for survival among patients with NSCLC
after RT.
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TABLE 1 | Selected clinical factors of NSCLC patient population.

Factors Cases # n (%) MST, 95% CI (month) 2 years survival, 95%CI (%) HR (95% CI) P-value

Gender

Male 127 (76.5) 22.0 45.1 (37.2, 54.7)

Female 39 (23.5) 38.2 65.8 (53.2, 82.7) 0.52 (0.32,0.85) 0.0084

Ethnicity

Caucasian 158 (95.2) 24.5 50.2 (42.9, 58.7)

No Caucasian 8 (4.8) 25.6 50.0 (25.0, 100) 0.85 (0.34,2.09) 0.73

Stage

1 32 (19.3) 39.4 71.7 (57.7, 89.2)

2 19 (11.4) 14.3 26.3 (12.4,55.8) 2.26 (1.16,4.38) 0.016

3 115 (69.3) 23.0 47.6 (39.2,57.9) 1.39 (0.85,2.27) 0.19

Smoking

No smoking 6 (3.6) NA 83.3 (58.3,100)

Former smoker 79 (47.6) 23.1 48.1 (38.3,60.5) 6.64 (0.92,48.03) 0.061

Smoker 81 (48.8) 22.0 47.0 (36.6,60.4) 7.93 (1.09,57.55) 0.041

Chemotherapy

No 41 (24.7) 22.0 48.7 (35.5,66.7)

Yes 125 (75.3) 25.1 50.3 (41.7,60.6) 0.84 (0.55,1.28) 0.43

Histology

Adenocarcinoma (1) 35 (21.1) 37.2 65.7 (51.7,83.5)

Squamous (2) 56 (33.7) 22.2 47.5 (35.9,62.7) 1.91 (1.09, 3.34) 0.024

Other (3) 75 (45.2) 18.6 38.5 (27.3,54.2) 2.42 (1.41,4.17) 0.0014

Age 1.02 (1.005,1.04) 0.011

KPS 1.00 (0.98,1.008) 0.51

EQD2 0.97 (0.96,0.993) 0.00024

MST, median survival time; HR, hazard ratio. Bold indicate statistical significance at P value of 0.05.

TABLE 2 | Genetic correlation with OS, univariate analysis (N = 166).

Gene SNP Wild genotype# Model* HR for the minor allele (95%CI) Effect of minor on survival P-value

BMP2 rs235756 C (63.2%) rec 0.63 (0.42,0.93) Favorable 0.022

ACVR2A rs1424954 A (34.6%) rec 1.72 (0.92,3.18) Unfavorable 0.088

BMP1 rs3857979 C (75.9%) rec 1.17 (0.76,1.81) Unfavorable 0.47

INHBC rs4760259 C (90.7%) rec 1.07 (0.58,2.01) Unfavorable 0.82

SMAD3 rs4776342 A (58.8%) add 0.76 (0.52,1.12) Favorable 0.17

TGFB1 rs4803455 A (25.9%) dom 1.38 (0.88,2.18) Unfavorable 0.16

SMAD3 rs6494633 C (76.9%) rec 1.06 (0.68,1.63) Unfavorable 0.81

SMAD7 rs7227023 A (0.6%) dom 1.11 (0.15,7.95) Unfavorable 0.92

SMAD9 rs7333607 A (95.8%) rec 2.79 (1.22,6.41) Unfavorable 0.015

SMAD1 rs11724777 A (69.0%) rec 0.76 (0.49,1.16) Favorable 0.20

SMAD1 rs11939979 A (19.0%) dom 1.02 (0.64,1.64) Unfavorable 0.93

SMAD3 rs12102171 C (62.0%) dom 0.68 (0.46,1.00) Favorable 0.050

SMAD4 rs12456284 A (55.4%) dom 0.63 (0.43,0.92) Favorable 0.016

SMAD6 rs12913975 A (6.8%) dom 1.23 (0.57,2.64) Unfavorable 0.60

#The percentage was based on our data *Genetic model of inheritance: dom, dominant model; rec, recessive model; add, additive model. SNP, single nucleotide polymorphism. Bold

indicate statistical significance at P value of 0.05.

The survival significance of TGF-β1 pathway genomics
has a biologic rationale. The TGF-β is a prototype of a
multifunctional cytokine and is the ligand for the TGF-
β type I and II receptors. TGF-β composes of TGF-β1,

2, 3, and other about 30 family members, including the
activin/inhibin subfamily, such as BMP subfamily (Bone
Morphogenetic Proteins BMPs) and the mullerian inhibitory
substance (22, 23). BMPs are the intracellular signaling
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FIGURE 1 | Effect of genetic variation on Kaplan-Meier overall survival curve. (A) BMP2:rs235756; (B) SMAD9:rs7333607; (C) SMAD3:rs12102171; (D) SMAD4:

rs12456284; MST in months. MST, median survival time.

members which can activate downstream signaling genes in
TGF-β signaling pathways (24, 25). Smad proteins (Smad 1
through 9) are transcriptional regulators which are important
for intracellular TGF-β signaling (26). In TGF-β signaling
pathways, those subfamily genes have a similar effect on cell
growth, cell proliferation and differentiation, and cell death and
plays a key role in embryonic development, immune system
regulation, and the duo roles of diseases, such as skeletal
diseases, fibrosis, and cancer (23, 27–30). TGF-β signaling
is very important in lung health and disease, regulating
lung organogenesis and homeostasis, including alveolar cells
and epithelial cells differentiation, fibroblast activation, and
extracellular matrix organization. Whereas, TGF-β is the most
potent epithelial-mesenchymal transition (EMT) inducer in
NSCLC formation (31). DNA variants like SNPs can affect
gene expressions and the functions of core disease-related
genes (32).

The findings that SNPs in the TGF-β1 pathway genes
can predict survival are clinically meaningful SNPs and
consistent with the previous reports. Signature of TGF-β predicts
metastasis-free survival in NSCLC (33, 34). SNPs of TGF-β1

gene have been reported to associate with OS in patients with
NSCLC treated with definitive radio (chemo) therapy (35–37).
The signature of a single SNP may only provide a modest or
undetectable effect, whereas the amplified effects of combined
SNPs in the same pathway may enhance predictive power (7, 38).
In radiation, TGF-β1 may help in predicting radiation-induced
lung toxicity (RILT) (39–41).

The SNPs identified in the study with prognostic values
are consistent with reports from other investigators on their
significance in other cancers (42–44). BMP2:rs235756 is in the
downstream region of the BMP2 gene and has already been
shown to alter normal BMP function. Several studies suggested
that BMP2:rs235756 increased the production of the BMP
protein and the concentration of serum ferritin levels, which
promoted BMP signaling in cancer progression (42–44). BMP2
is highly expressed in lung cancer and is involved in regulating
lung cancer angiogenesis and metastasis (45, 46). Silencing the
expression of BMP-2 inhibits lung cancer cell proliferation and
migration (47). BMP2:rs235756 has previously been reported
as a significant biomarker for OS in patients with lung cancer
(21). For patients who underwent RT, BMP2:rs235756 was shown
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FIGURE 2 | Graphical representation of the P-value obtained from individual

SNP analysis and linkage disequilibrium (LD) structure.

to predict radiation pneumonitis (48), which is an important
clinical outcome.

Furthermore, this study also suggested that
SMAD3:rs12102171 correlated with OS in NSCLC.
SMAD3:rs12102171, located in the intron region between
exon3 and 4 of the SMAD3 gene, is known for its function as
a mediator of TGF-β pro-fibrotic activities. Inflammatory cells
and fibroblasts without smad3 do not auto-induce TGF-β, but
Smad3 null mice are resistant to radiation-induced fibrosis
(49). TGF-β/Smad3 signaling plays critical roles in biological
processes, such as epithelial-mesenchymal transition (EMT)
lung cancer cell progression and lung cancer patient survival
(21, 50). That report showed a significant correlation with
osteoarthritis (51). SMAD9:rs7333607 is located in the intron
region of the SMAD9 gene and only correlated with lung cancer
survival (21).

Smad4 belongs to the Smad gene family, acts as a mediator
of TGF-β signaling pathways (26), and was classified as
a tumor suppressor gene which plays important roles in
maintaining tissue homeostasis and suppressing tumorigenesis
(1). The loss of SMAD4 expression significantly correlated
with poor OS in patients with cancers, such as pancreatic
cancer, colorectal cancer, and prostate cancer (52, 53).
The SNP rs12456284 locates 3′ UTR region of the Smad4
gene, was predicted to influence the potential miRNA
binding, and downregulate the gene expression with Smad4
associated with gastric cancer (54). Genetic variants in the
BMP/Smad4/Hamp hepcidin-regulating pathway, such as
Hamp rs1882694, BMP2 rs1979855, rs3178250, and rs1980499,

FIGURE 3 | (A) Time-dependent C-index of RModel1 and RModel2. RModel2

increased the C-index from 0.73 to 0.78 compared with RModel1 at 24

months. Importance of predictors (VIMP) in the random forest for (B) RModel1

and (C) RModel2. RModel1: a model of combining only clinical predictors.

RModel2: a model of combining significant clinical and genetic factors.

were associated with OS, local-regional progression-free
survival, progression-free survival, and distant metastasis-free
survival in patients receiving definitive RT for NSCLC but not
rs12456284 (55).

In a tree analysis of the study, the variable importance (VIMP)
measures the increase (or decrease) in prediction error for the
forest classifier when a variable is randomly “noised-up.” A large
positive VIMP shows that the prediction accuracy of the forest
classifier is significantly degraded when a variable is noised-
up. Thus, a large VIMP shows a more predictive variable. The
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VIMP of each variable in the RModel1 and RModel2 are listed in
Figures 3B,C. It is shown that EQD2 and stage group were always
two important predictors in the two models. SMAD3:rs12102171
was more important than other predictors, except for EQD2
and stage group, which was not reported before. BMP2:rs235756
and SMAD4: rs12456284 have a similar importance as smoking,
which has been consistently shown as an important predictor in
the clinical OS of patients with NSCLC. SMAD9:rs7333607 was
less important and it may be overlooked should the results be
validated by independent studies.

The present study has several limitations. First, this study
has limited statistical power because of the small sample size
in each stage group and the analysis of the limited number of
SNPs. Second, the selection of the SNPs was rather arbitrary,
which was limited by the published data at the start of this study.
Additional SNPs candidates may be further identified; future
studies can use the methodology of the study to develop better
models with the inclusion of more candidates and more external
validations. Although it showed the promise of genetic variation
in guiding personalized medicine, the study shall be considered
exploratory. The findings should be validated by an independent
study population.

CONCLUSIONS

In this study, we systematically evaluated genetic variations in
the TGF-β1 pathway as predictors of the outcomes for patients
with NSCLC treated with RT. Four SNPs (SMAD3:rs12102171,
BMP2:rs235756, SMAD9:rs7333607, and SMAD4: rs12456284)
showed strong correlations with OS in patients with NSCLC after
RT. The current model improves prediction accuracy by adding
genetic variations in the TGF-β1 pathway.
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