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Radiomic models outperform clinical data for outcome prediction in high-grade gliomas
(HGG). However, lack of parameter standardization limits clinical applications. Many
machine learning (ML) radiomic models employ single classifiers rather than ensemble
learning, which is known to boost performance, and comparative analyses are lacking in the
literature. We aimed to compare ML classifiers to predict clinically relevant tasks for HGG:
overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-
methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor vIII
(EGFR) amplification, and Ki-67 expression, based on radiomic features from conventional
and advanced magnetic resonance imaging (MRI). Our objective was to identify the best
algorithm for each task. One hundred fifty-six adult patients with pathologic diagnosis of
HGG were included. Three tumoral regions were manually segmented: contrast-enhancing
tumor, necrosis, and non-enhancing tumor. Radiomic features were extracted with a
custom version of Pyradiomics and selected through Boruta algorithm. A Grid Search
algorithm was applied when computing ten times K-fold cross-validation (K=10) to get the
highest mean and lowest spread of accuracy. Model performance was assessed as AUC-
ROC curve mean values with 95% confidence intervals (CI). Extreme Gradient Boosting
(xGB) obtained highest accuracy for OS (74,5%), Adaboost (AB) for IDH mutation (87.5%),
MGMT methylation (70,8%), Ki-67 expression (86%), and EGFR amplification (81%).
Ensemble classifiers showed the best performance across tasks. High-scoring radiomic
features shed light on possible correlations between MRI and tumor histology.
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INTRODUCTION

High-grade gliomas (HGG) are considered the most frequent and
lethal primary malignant brain tumors of the adult (1).
Glioblastoma multiforme is a type of HGG with an estimated
incidence rate of 3.19 per 100,000 persons in the United States, a
median age of 64 years, and a dismally poor overall survival (OS)
despite combined radio-chemotherapy, ranging approximately
between 15 and 17 months (1, 2). Although less frequent, the
outcome of HGG is similarly poor in the pediatric population (3).
Genetic alterations may influence patient outcome, with effects on
survival, disease progression, and treatment response (2, 4). These
considerations inspired the cIMPACT recommendations for
classification of diffused gliomas and the last revision of the
World Health Organization (WHO) classification for central
nervous system (CNS) tumors, which suggested considering
isocitrate dehydrogenase (IDH)-mutant and IDH-wild-type
cancers as two separate entities due to the importance of IDH
mutation for patient survival (5, 6).

Artificial intelligence (AI) is the term used to describe the use of
computers and technology to simulate intelligent behavior and
critical thinking comparable to a human being. Specifically,
machine learning (ML) is a subfield of AI, defined as a set of
methods that can automatically detect a pattern of data, with the
ability of using uncoveredpatterns topredict future data or perform
other kinds of decision-making under uncertainty (7). The learning
process can be classified as supervised and unsupervised.
Unsupervised learning models identify the pattern class
information heuristically, providing clusters without a ground-
truth knowledge. On the contrary, the supervised learning
approach (explored in this article) identifies a pattern that
connects the inputs X to the outputs Y, given a labeled set of
input-output pairs. In recent years, AI applications in medicine
have grown exponentially, involving almost everymedical specialty
(8). In the field of radiology, the conversion of biomedical images
[such as magnetic resonance imaging (MRI), Computerized
Tomography (CT), X-Ray, etc.] to mineable data, and their
analysis with AI techniques is defined as “radiomics” (9). Thanks
to these new developments, it is possible to extractmultiple features
from radiological images reflecting tissue characteristics, and use
them as input for ML models. For example, graytone distribution
and mutual dependencies reflect tissue heterogeneity (10). One of
the most interesting applications of ML to radiology is the creation
of predictive models to estimate clinically relevant variables.
Biomedical images intrinsic parameters (represented by radiomic
features) contain information about tissue structure, molecular
data, and patient outcome, providing important information for
patient care through quantitative image analyses (9, 11). AI-
powered analyses may aid diagnosis and prognostication, with
practical applications in multiple clinical settings, including
emergency care (12).

In brain tumors, radiomic research can identify features that
describe the tumor microenvironment (13) and build predictive
models for tumor variables and patient outcome. Radiomicmodels
have been shown to outperform clinical models based on patient
age, Karnofsky performance scale, surgical resection, genetic
alterations, in glioblastoma (GBM) outcome prediction (14, 15).
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Recent studies proposed several high-performance radiomic
models for predicting OS, progression-free survival, molecular
subtypes of HGG, as well as genetic alterations critical for clinical
practice (16–20). Despite these promising results, clinical
implementation is extremely limited due to wide variations of
model performances (21–23) and controversial findings. For
example, a recent study on 152 patients with GBM concluded
that MRI features were not adequate for providing reliable and
clinically meaningful predictions throughML classificationmodels
(24).A recent review calls for improved standardizationand clinical
application feasibility (25).

Variability in model performance may depend on parameters
optimization. Radiomic workflows comprehend multiple steps
requiring parameter choice: tumor segmentation on radiologic
images to identify regions of interest (ROIs), feature extraction
and selection, training, testing and validation of the AI model,
performance evaluation (26, 27). The lack of radiomic parameters
standardizationmight limit results generalizability across studies.A
possible solution for this limitation is to compare multiple ML
algorithms in the same population for different tasks. In fact, the
classification method was shown to be the dominant source of
performance variation in radiomic analyses (28). Furthermore,
most of radiomic models presented for outcome prediction in
HGG employ classic ML algorithms, such as logistic regression,
support vector machine, and decisional trees (21, 22). Non-
ensemble learners showed inferior performance for small or
imbalanced datasets when compared to the ensemble
counterpart. Few studies have indeed shown comparative results
of single learners vs ensemble models (29–31). This is not
unexpected considering that single classifier approaches try to
learn a single hypothesis from the training set, whereas ensemble
learning tries to construct a set of hypotheses and combine them in
the best way possible (32). In fact, ensemble methods are used to
obtain better predictive performance by reducing both the bias
(representational problem) and the variance (computational
problem) of learning algorithms (33).

In this study, we chose well-established ML classifiers from
previous literature in the field and compared their performance to
predict outcome variables of HGG: OS, IDH mutation, O-6-
methylguanine-DNA-methyltransferase (MGMT) promoter
methylation, epidermal growth factor receptor vIII (EGFR)
amplification, and Ki-67 expression, based on features extracted
from conventional and advanced MRI. Our objectives were (1) to
assess the best algorithm for each prediction task, providing a
benchmark for future clinical applications. Particularly, we wanted
to compare classic and ensemble learners among ML classifiers to
provide a comprehensive viewonmodel performance; (2) to evaluate
highly predictive radiomic features extracted from different tumor
regions, highlighting possible correlations between MR parameters
and tumor molecular/genetic characteristics.
MATERIALS AND METHODS

Subjects
This retrospective observational study was conducted in
accordance to the Helsinki declaration. Approval from the
November 2021 | Volume 11 | Article 601425
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institutional review board (IRB) was obtained with protocol
number: 19 SA_2020. Consecutive patients with pathologically
proven diagnosis of HGG were recruited from March 2005 to
May 2019. Data were collected from two institutions:
Sant’Andrea Hospital La Sapienza University of Rome
(Institution 1) on a 1.5T scanner (Magnetom Sonata, Siemens,
Erlangen, Germany), and Regina Elena Institute of Rome
(Institution 2) on a 3T system (Discovery MR 750w, GE
Healthcare, Milwaukee, WI, USA). We enrolled patients
fulfilling the following inclusion criteria: histopathological
diagnosis of HGG, presurgical MRI with at least one sequence
among structural T1 or T2-weighted images, diffusion or
perfusion-weighted images. Exclusion criteria were causes of
suboptimal images (for example motion artifacts) and loss of
patients’ information during follow-up.

All patients received standard treatment after surgery with the
same protocol, including focal radiotherapy (RT) and
concomitant temozolomide (TMZ), followed by adjuvant TMZ
therapy. RT consisted of fractionated focal irradiation (60 Gy)
started within 4 weeks after surgery. The radiation dose was
delivered in 30 fractions of 2 Gy over 6 weeks. Chemotherapy
with TMZ was administered in a dose of 75 mg/m2, 7 days/week.
Adjuvant TMZ started 4 weeks after radiation with the following
protocol: 150 mg/m2 for the first cycle, increased to 200 mg/m2
for the second cycle; administered 5 days every 28 days up to
12 cycles.

Prediction labels were associated with survival at 12 months
after diagnosis (SURV12), MGMT promoter methylation, IDH
mutation, Ki-67 expression, and EGFR amplification. These
labels were chosen as they usually provide important
prognostic information in HGG. Survival cutoff at 12 months
was set based on previous studies (34–36).

Histopathological Analysis
Each tumor specimen was fixed in formaldehyde (10%) and
embedded in paraffin. Thin sections (2 mm) were mounted and
stained with hematoxylin and eosin. The histopathological
examination, including tumor grading, was performed taking
into account at least three of the following: cellular atypias,
number of mitotes, microvascular proliferation, and/or presence
of necrosis. The histopathological examination was performed
according to the 2016 edition of the WHO classification of
CNS tumors.

Immunohistochemistry
A Dako Envision Flex system was employed for the
immunohistochemical analysis. The immunostaining patterns
of EGFR were evaluated considering both cellular and tissue
distribution. The number of immunopositive cells in 10 high-
power (40×) areas were counted, and the percentage of
immunopositive cells were estimated. The ratio of positive
cells/total number of cells was calculated for each field. The
mean value of the 10 fields obtained from a section was
considered as the estimated percentage of immunoreactivity
assigned to the tumor sample. For IDH-1 mutation analysis,
we performed a test with IDH-1 R132H antibody. A positive
result was defined when a focal or diffuse immunopositivity was
Frontiers in Oncology | www.frontiersin.org 3
detected, while a negative result was when no immunopositive
tumor cells were found. Negative cases were further analyzed for
IDH-1/2 mutations as previously shown (37). All sequence
reactions were carried out using the GenomeLab DTCS quick-
start kit (Beckman Coulter, Fullerton, CA, USA). The reactions
were carried out in an automated DNA analyzer (CEQ 8000;
Beckman Coulter). All sections were immunostained with Ki-67
antibody. The positivity for Ki67 was determined by counting at
least 1,000 tumor cells in a homogeneously stained area and then
expressed in percentage.

MGMT Methylation Testing
We used EntroGen’s MGMT Methylation Detection Kit
(MSPCR, Cat. No. MGMT-RT44), a semiquantitative real-time
PCR-based essay for detection of MGMT promoter methylation
within the DMR2 locus, distinguishing between methylated and
non-methylated cytosines. Its target region starts at
chr10:131265513 (hg19 genome build) in the MGMT
promoter region and covers CpG sites 75–86. The detection of
the amplification product was done by using fluorescent
hydrolysis fraction. The procedure involves the following steps:
(1) isolation of DNA from tumor biopsies, paraffin-embedded
sections; (2) bisulfite treatment of the isolated DNA using the EZ
DNA methylation-Lightning Kit (Zymo Research, CATD5030);
(3) amplification of treated DNA using the provided reagents in
the MGMT Promoter methylation Detection kit; (4) data
analysis and interpretation using the real-time PCR software.

MRI Acquisition
MRI sequences were acquired with the same protocol including
magnetization-prepared rapid acquisition with gradient echo
(MPRAGE), fluid-attenuated inversion recovery (FLAIR), T1-
weighted, T2-weigthed, diffusion weighted images (DWI), with
apparent diffusion coefficient (ADC) map reconstruction, and
perfusion weighted images (PWI) with dynamic susceptibility
contrast (DSC) technique. Perfusion parametric maps were
obtained through a dedicated software package OleaSphere
software version 3.0 (Olea Medical, La Ciotat, France). A
relative cerebral blood volume (rCBV) map was generated by
using an established tracer kinetic model applied to the first-pass
data (38). As previously shown (39), we applied a mathematical
correction to the dynamic curves to reduce contrast agent
leakage effects. Detailed acquisition parameters can be found in
the Supplementary Material.

Image Processing and Radiomic
Feature Extraction
The radiomic workflow of our analysis was developed following
the white paper of the Image Biomarker Standardization
Initiative (IBSI) (40) and is summarized in Figure 1. For every
patient, we automatically co-registered MR data to the MPRAGE
sequence using FMRIB Linear Image Registration Tool of FSL
(https://fsl.fmrib.ox.ac.uk) (41, 42). Tumors were manually
segmented by a neuroradiologist, with three ROIs drawn on
MPRAGE and FLAIR images using 3D-Slicer (LP, with 7 years of
experience in radiology) (https://www.slicer.org/) (43). Doubtful
cases were solved as for consensus with a senior neuroradiologist
November 2021 | Volume 11 | Article 601425
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(AB, with 25 years of experience in radiology). The ROIs were
whole tumor (T2), contrast-enhancing tumor (CET), necrosis
(NEC). A further non-enhancing tumor (NET) ROI was
obtained from the other ROIs as it follows: T2 – (CET+NEC).
Based on recent findings (44), we performed intensity non-
standardness correction on our multi-institutional data by
scaling each image with respect to its mean value within
specific brain structure (i.e., NET ROI) using MATLAB
R2017a environment (MATLAB 2017, Natick, MA, USA: The
MathWorks Inc). The intensity range between 0 and 255 was not
rescaled to prevent information loss due to image
down-sampling.

We extracted a set of 1,871 radiomic features for each patient
from the combination of tumor ROIs (NET, CET, and NEC) and
multiparametric MR data (ADC, FLAIR, MPRAGE, rCBV, T1-
weigthed, and T2-weighted images). The process was carried out
through Pyradiomics package on Python 2.7 (45). Each radiomic
set included 14 shape features, 18 intensity features, and 75
texture features [gray-level co-occurrence matrix (GLCM), gray-
level difference matrix (GLDM), gray-level size zone matrix
(GLSZM), gray- level run length matr ix (GLRLM),
neighborhood gray tone difference matrix (NGTDM)] from
original and filtered images (wavelet decomposition, Laplacian
of Gaussian, exponential, logarithmic, and gradient).
Additionally, three ad-hoc fractal features were computed: box
counting two dimensions (2D), box counting three dimensions
(3D), and differential box counting, which were integrated in the
code of the Pyradiomics pipeline (46). Patients’ age at the time of
Frontiers in Oncology | www.frontiersin.org 4
diagnosis was considered a feature in our model for survival
prediction only.

Feature Selection and Classification
The pipeline was written in Python and was implemented on
Google Colab (47). Prior to any further analysis, each extracted
feature distribution was standardized by taking out outliers,
removing the mean and scaling it to unit variance with Python
Standard Scaler package. Feature selection was then performed
in order to identify an ensemble of the most predictive features
for each ROI-sequence combination. To this purpose, we used
the Boruta algorithm, a powerful and recently introduced feature
selector method, that trained a Random Forest Classifier on a
duplicated dataset (composed by original and shadow features)
and marked a feature as important comparing its Z-scores with
that of the duplicate (48). The implementation we used in this
work was boruta_py module, freely accessible from github
repository (49). Due to the retrospective nature of this study,
some MRI sequences were not acquired for all the patients, and
some patients lacked full genetic testing, leading to class
imbalance issues. In order to overcome this limitation in
binary classification, we used Synthetic Minority Over-
sampling Technique (SMOTE) approach, which oversamples
data of the minority class, creating new synthesized samples
from the existing ones (24, 50).

To find the best parameter setting, an optimization search
grid algorithm was applied on nine ML classifiers including
ensemble and non-ensemble learners (Figure 2): AdaBoost (AB),
FIGURE 1 | Radiomic workflow followed in the present study.
November 2021 | Volume 11 | Article 601425
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Extreme Gradient Boosting (xGB), Gradient Boosting (GB),
Decision Tree (DT) and Random Forest (RF), Logistic
Regressor (LR), two types of Stacking classifiers: stacking (ST)
and stacking with AdaBoost (ST_ABC), and KNeighbors (KN).
Frontiers in Oncology | www.frontiersin.org 5
AB, xGB, and GB use a set of weak learners and try to boost them
into strong learners. The GB classifier appears in classification
studies (24), as it works well with categorical and numerical data;
we decided to compare GB performance with xGB, that is the
FIGURE 2 | Machine learning classifiers tested in the present study. Non-ensemble learners included KNeighbors, logistic regressor, and decision tree. Ensemble
learners included boosting, stacking, and bagging classifiers.
November 2021 | Volume 11 | Article 601425
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fastest implementation of gradient boosted trees (24, 51). The AB
was alsooftenused for brain tumorclassification (52, 53), as itworks
to create a powerful algorithm where instances are reweighted
rather than resampled. A Decision Tree algorithm was used in
AB as a weak learner. Decision Tree (DT) and RandomForest (RF)
are both based upon decision tree algorithms. RF is actually a
collection of DTs attempting to classify a new object based on its
attributes (54). The RF classifier was already used in brain tumor
segmentation problems (55), for the MGMT promoter prediction
model (56), for the IDH status prediction (57), and for the survival
prediction (58). Logistic Regressor (LR) is one of the most used
linear classifiers to disentangle linear relationship between the data
(24). The stacked generalization is an ensemble ML algorithm that
learns how to best combine the predictions from multiple well-
performingMLmodels. Inour case, one classifierwas set on thebest
parameters from GB, RF, and LR (ST), whereas the second was set
on best parameters fromGB, RF, andAB (ST_ABC) (59). KN relies
on distance in data space and is one of the simplest of all the
supervised ML algorithms (31). Apart from the extreme gradient
boosting classifierwhichwas implemented in xgboost package (60),
all classifierswerepart ofScikit-learnpackage (61).Algorithmswere
chosen based on their known performance and extensive use in
the literature.

In order to achieve the most performant and robust model, the
Grid Search algorithm, as implemented in Scikit-learn package,was
applied when computing 10 times K-fold cross-validation (K=10)
and setting the same test split. Given the unbalanced condition for
all molecular predictors and in order to reach the same number of
trials as for SURV12, an iterativeway ofK-fold cross-validationwas
applied. This method made sure that among the possible
combinations of data splitting, only those one having the number
of minority class subjects at least equal to half of the number of
majority classwere included among the eligible reshuffles. TheGrid
Search algorithmwas set to look for the highestmean alongwith the
lowest spread of accuracy. The accuracy mean and standard
deviation were evaluated on 100 different splitting of training and
test data. Once optimal parameters were identified, model
performances were also assessed in terms of AUC-ROC curve
with 95% CI (28, 62). AUC-ROC curves were also useful when
comparing classifiers as they show the trade-off between false
positive and true positive rates in the classification (63).
RESULTS

Subjects
The study included 156 adult patients (mean age = 62 y, range =
35–83 y) with confirmed diagnosis of HGG: 121 patients were
Frontiers in Oncology | www.frontiersin.org 6
acquired at Institution 1 and 35 patients at Institution 2.
Descriptive statistics performed on genetic variables revealed
an odds ratio of 0.607, 1.186, 0.911, and 5.6 for Ki-67, MGMT,
IDH, and EGFR respectively, evaluated with reference
to SURV12.

Machine Learning Analysis
The distribution of our data is summarized in Table 1. For those
labels suffering from class imbalance issues, SMOTE was always
used. Feature selection produced multiple radiomic signatures
composed by 20 features, ordered by importance for the
predicted label. The best 15 features for every signature are
displayed in the Supplementary Material. Nine ML classifiers
were compared in the present study. We identified the best
classifier and the best ROI-sequence combination in terms of
prediction accuracy for each task (SURV12, MGMT, IDH, KI67,
and EGFR).

Prediction Performance
Regarding SURV12 prediction, the best performance was
achieved by AB and xGB classifiers on ADC radiomic features
from NET ROI and T2 radiomic features from NEC ROI
(Table 2). AB classifier demonstrated accuracy of 73.6% and
AUC-ROC mean value of 73.6% (95% CI 71.6–75.3) based on
ADC features from NET ROI (Figure 3A). xGB classifier
achieved accuracy of 74.5% and AUC-ROC mean value of
74.2% (95% CI 71.9–76.3) with T2 radiomic features from
NEC ROI (Figure 3B). Similarly, xGB classifier provided good
accuracy based on FLAIR features from NET ROI (Acc=72.1%;
AUC-ROC=72.4%; 95% CI 69.6–75) (Figure 3C).

Best results forMGMTprediction (Table 3) were obtained from
CET ROI on FLAIR images by using AB classifier (Acc=70.8%;
AUC-ROC=68.8%; 95% CI 65.9–71.7) (Figure 4). High-scoring
features mainly included texture parameters (Figure S4).

IDH prediction task showed the best performance in our
dataset (Table 4). Highest accuracy was achieved by AB classifier
with rCBV features from NET ROI (Acc= 87.5%; AUC-
ROC=86.7%; 95% CI 84.3–89) (Figure 5A). Similarly, AB
classifier provided good results with T2-based features from
CET ROI (Acc=85.9%; AUC-ROC=85.8%; 95% CI 80–84.6)
(Figure 5B) and NEC ROI (Acc=80.8%; AUC-ROC=80.5%;
95% CI 78.4–82.6) (Figure 5C). Good results were also
achieved by ST classifier based on T1 features from NET ROI
(Acc=84.2%; AUC-ROC=83%; 95% CI 80–85.9) (Figure 5D).

The prediction of Ki-67 expression provided excellent results
from ADC sequence and CET ROI (Table 5). AB classifier
provided the highest accuracy (86%) and AUC-ROC value
(70%; 95% CI 65.3–72.9) (Figure 6).
TABLE 1 | Number of patients and label distributions for label-sequence combination.

ADC FLAIR MPRAGE rCBV T1 T2

SURV12 (0/1) 134 (65/69) 140 (68/72) 138 (66/72) 93 (45/48) 122 (61/61) 122 (60/62)
MGMT (0/1) 110 (41/69) 115 (43/72) 114 (42/72) 80 (33/47) 100 (39/61) 102 (39/63)
IDH (0/1) 86 (71/15) 89 (74/15) 89 (74/15) 60 (51/9) 77 (63/14) 78 (65/13)
KI67 (0/1) 100 (18/82) 106 (21/85) 103 (22/81) 77 (16/61) 97 (17/80) 94 (16/78)
EGFR (0/1) 65 (21/44) 69 (23/46) 66 (23/43) 49 (16/33) 65 (22/43) 62 (20/42)
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EGFR amplification was correctly predicted by radiomic
features extracted from rCBV and T2 images within CET ROI,
in both cases with AB classifier (Table 6). Particularly, rCBV
demonstrated the highest performance (Acc=81%; AUC-
ROC=74.3%; 95% CI 70.8–77.8) (Figure 7A), while T2
sequence achieved accuracy of 77.8% and AUC-ROC equal to
74.1% (95% CI 70.6–77.6) (Figure 7B).

Box-plots figures comparing the best results for each classifier
and tables with high-scoring radiomic features are provided in
the Supplementary Material (Figures S1–S10).
DISCUSSION

AI has proven to be an accurate tool in predicting survival and
molecular profile of gliomas. However, high variability in results
across studies and lack of standardization are limiting its use in
clinical practice. We studied the best ROI-sequence combination
for prediction of clinically relevant variables in HGG, by
comparing multiple ML classifiers including classic and
ensemble learners. Ensemble classifiers achieved the best
performance in every task. The AB was the best classifier
Frontiers in Oncology | www.frontiersin.org 7
overall, with accuracy of 73.6, 70.8, 87.5, 86, and 81% for
SURV12, MGMT, IDH, Ki-67, and EGFR respectively, while
the LR and KN classifiers always produced suboptimal
prediction performances.

These results are in line with previous literature comparing
boosting and logistic regression-based classifiers (64). Ensemble
models showed high classification performance in different
fields. Similar results were observed by Wang et al. using four
single classifiers combined with three different algorithms
(bagging boosting and stacking) to create ensemble learners for
credit scoring (59). All ensemble types yielded a significant
improvement compared to base learners (59). In line with our
findings, Lu et al. reported higher performances for AdaBoost
compared to bagging ensemble algorithms for cancer
classification with gene expression data. The idea behind this
better performance is that AdaBoost is based on a linear
combination of single learners weighted by their own
performance, being able to filter out redundant training data
attributes and focusing on the important features (65).

Other studies compared ML classifiers in HGG, although with
different methodologies and results. Samara et al. conducted a
study comparing base models (LR, KN, DT, linear support vector
A B C

FIGURE 3 | Best ROC curves for Surv12 prediction: (A) AB classifier with ADC sequence on NET ROI; (B) xGB classifier with T2 sequence on NEC ROI; (C) xGB
classifier with FLAIR sequence on NET ROI.
TABLE 3 | MGMT best results (reported as mean ± standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

CET FLAIR Acc % 63,3 ± 11,3 68,1 ± 13,4 70.7 ± 9,3 65,5 ± 11,4,4 67,9 ± 15,7 52,2 ± 12,7 59,4 ± 14,4 70,8 ± 14,1 64,5 ± 15,7
CET FLAIR Roc % 62,8 ± 11,7 66,8 ± 13,4 63,4 ± 12,2 59 ± 10,6 67 ± 16,8 51,4 ± 13,3 55,5 ± 12,1 68,8 ± 14,6 62 ± 14,2
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TABLE 2 | Surv12 best results (reported as mean ± standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

NET ADC Acc% 71,8 ± 10 68,8 ± 11,4 67,9 ± 6,5 46,3 ± 5,4 71 ± 9 61,2 ± 12,3 59,2 ± 11,7 73,6 ± 9,3 64,2 ± 12,6
NET ADC Roc % 71,8 ± 9,7 69,1 ± 11,1 67,9 ± 6,5 46,3 ± 5,4 71 ± 9 61,2 ± 12,3 59,2 ± 11,7 73,6 ± 9,3 64,2 ± 12,6
NET FLAIR Acc % 72,1 ± 13,7 67,4 ± 9,9 71,6 ± 8,4 62 ± 13,6 69 ± 12 54,3 ± 15 59 ± 13,7 68,9 ± 7 62,3 ± 14
NET FLAIR Roc % 72,4 ± 14 67 ± 11 72,1 ± 7,6 62,3 ± 13,7 69 ± 12,2 53,9 ± 14,8 58,8 ± 13 69,5 ± 7,7 59 ± 13
NEC T2 Acc % 74,5 ± 11 65,8 ± 12,6 67 ± 16,7 58,7 ± 14,3 73,6 ± 9 52,3 ± 15,2 60,7 ± 11,4 72,7 ± 9,5 58,1 ± 13,9
NEC T2 Roc % 74,2 ± 10,9 65 ± 11,2 66,4 ± 17 58,8 ± 14,4 73 ± 9,4 52 ± 14,9 59 ± 11 72,5 ± 9,6 56,3 ± 14,3
le 601425

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pasquini et al. Machine Learning Predictions for HGG
machine) and ensemble algorithms (Bootstrap aggregating, AB,
RF, and Voting classifier) in a GBM prognostication model based
on clinical data (30). In the study, ensemble classifiers attained
the highest AUC for every dataset, especially when trained on
statistically determined sets or union sets. Osman attempted
GBM patients’ survival stratification based on conventional MRI
sequences with several classifiers. Combining nine selected
radiomic features with clinical factors (e.g., age and resection
status), even the best prediction accuracy of the ensemble
learning classifier appeared low (less than 60%), possibly due
to the multi-institutional nature of the study (31). In our
approach, we made use of advanced sequences and a larger
number of features. Among them we also included fractal
dimension-based features which have rarely been implemented
in previous studies and may help boosting up the accuracy of our
results. Further and important difference regards the use of
Boruta algorithm to reduce the features and select only those
having higher importance for the model. Also, Kickingereder
et al. proposed to evaluate the association of multiparametric
MRI features with molecular characteristics (e.g., global DNA
methylation subgroup, MGMT, EGFR) in GBM patients,
Frontiers in Oncology | www.frontiersin.org 8
training different models (e.g., stochastic GB, RF, and
penalized LR). The authors found associations between
established MRI features and molecular characteristics
(prediction accuracy of 63% for EGFR with penalized LR).
However, the link between them was not strong enough to
enable generation of ML classification models for reliable and
clinically meaningful predictions (24). In addition to a different
set of predicted outcomes, this result might be due to the type
and amount of imaging features used for prediction:
Kickingereder et al. used 31 imaging parameters for molecular
characteristic prediction, while this study extracted 1,871
radiomic features from each image.

A closer look on best performing features and ROI-sequence
combinations from our results may unravel interesting
associations between MRI parameters and pathologic features of
HGG.The best survival predictionwas achieved byABusingADC
maps from NET ROI. Also, xGB classifiers showed high
performance using T2 images from NEC ROI or FLAIR images
from NET ROI, but with higher spread of accuracy (Table 2).
Previous studies showedheterogeneous results on the samematter
(17, 31, 66), depending on size and source of datasets, type and
number of extracted features, and model parameters. NET is a
common finding in HGG and is considered a combination of
infiltrating tumor cells and vasogenic edema (67), whose
extension correlates with poor prognosis (68). After surgical
resection, recurrence occurs more frequently along the resection
margins, due to populations of malignant cells interspersed in the
NET (69). Recent research demonstrated that peritumoral MRI
textural features from FLAIR and T2 images were predictive of
survival as compared to features from enhancing tumor, necrotic
regions, and known clinical factors (70, 71). Higher performance
ofADC features fromNET is coherentwith studies demonstrating
the inverse correlation between ADC values and tissue cellularity
(72–75). In fact, tissue cellularity as measured by ADC can
differentiate between vasogenic edema and malignant tumoral
tissue within the NET, possibly recognizing patients at higher risk
for recurrence (76). Good survival predictivity onNECROI is also
supported by previous literature. Chaddad et al. reported that
shape features, particularly those extracted from necrotic regions,
can be used to effectively predict OS of GBM patients (77).
Furthermore, our best performing feature for survival prediction
on NECwas related to fractal dimension (Figure S2C), a measure
of shape complexity that has rarely been employed in radiomic
studies but demonstrated interesting correlations with patient
survival (35).
FIGURE 4 | Best ROC curve for MGMT prediction: AB classifier with FLAIR
sequence on CET ROI.
TABLE 4 | IDH best results (reported as mean ± standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

NET rCBV Acc % 83,5 ± 12,8 82,8 ± 12 76,2 ± 16,2 77,3 ± 14,4 86,7 ± 11,8 69,2 ± 17,5 78,7 ± 14,5 87,5 ± 11,9 82,8 ± 12,4
NET rCBV Roc % 83,2 ± 12,8 82 ± 13,5 78,3 ± 15,5 78 ± 14,7 85,8 ± 12,3 69 ± 18,3 78,3 ± 15 86,7 ± 12 82 ± 12,4
NET T1 Acc % 80,2 ± 14 81 ± 13,8 80 ± 12,5 68,7 ± 12 84,2 ± 15 66 ± 21 75,2 ± 13,7 85,9 ± 14 80,9 ± 12
NET T1 Roc % 79,4 ± 15 80,7 ± 15 78,2 ± 12,3 67,9 ± 11,4 83 ± 14,7 66,7 ± 21,2 76,3 ± 14,5 85,8 ± 14,9 80 ± 13
CET T2 Acc % 80,2 ± 14 81 ± 13,8 80 ± 12,5 68,7 ± 12 84,2 ± 15 66 ± 21 75,2 ± 13,7 85,9 ± 14 80,9 ± 12
CET T2 Roc % 79,4 ± 15 80,7 ± 15 78,2 ± 12,3 67,9 ± 11,4 83 ± 14,7 66,7 ± 21,2 76,3 ± 14,5 85,8 ± 14,9 80 ± 13
NEC T2 Acc % 77,4 ± 9,8 77,9 ± 11 79 ± 11 70,3 ± 12,5 79,2 ± 10,7 69,3 ± 14,3 75,8 ± 12,6 80,8 ± 10,2 79,5 ± 9,5
NEC T2 Roc % 76,6 ± 10 77 ± 10 78 ± 11,2 70,7 ± 12,6 78,9 ± 9,7 70 ± 14,9 77,5 ± 12,9 80,5 ± 10,6 78,4 ± 9
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Preoperative prediction of MGMT promoter methylation and
IDH mutation represents a crucial objective for radiomic studies
due to their pivotal role in patient outcome (2, 4). On
conventional and advanced MRI, MGMT methylated HGG
may show mixed nodular enhancement, limited edema, lower
rCBV, increased Ktrans, and higher ADC minimum values (78,
79). IDH mutant tumors usually show less enhancement, less
blood flow on perfusion weighted images, higher mean diffusion
values, smaller size, and frontal lobe location (21). Many studies
Frontiers in Oncology | www.frontiersin.org 9
tried to correlate these characteristics with MGMT and IDH
status, reporting conflicting results (78). Textural features
demonstrated higher accuracy for MGMT promoter
methylation prediction, achieving best performance with
FLAIR features from CET (70.8%, AB classifier) (Figures S3
and S4). These results are coherent with other reports (80) and
confirm that textural features outperform morphological and
intensity features in MGMT status prediction (16). Another
recent study from Sasaki et al. reported accuracy of 67% for
MGMT prediction with textural features (81). A possible
explanation for the performance discrepancy is the choice of
the classification algorithm: prediction accuracy has great
variability depending on the selected model (Table 3), with
higher performance for ensemble learners. Regarding IDH
mutation, our AB classifier achieved an accuracy of 87.5% with
rCBV-derived first-order features (median, skewness) from NET
(Figure S6A), outperforming most of previous models (21, 22).
Besides correlating with patient survival (82), perfusion-based
features were highly predictive of IDH status in another recent
study from our group based on deep-learning (37).
Kieckegereder et al. demonstrated that IDH mutation status is
associated with a specific hypoxia/angiogenesis transcriptome
signature predictable through perfusion MRI (83). Our results
seem to confirm a role for perfusion-based analysis in
discriminating IDH mutation, reflecting the known correlation
with hypoxia inducible factor (HIF) and neoangiogenesis (84).
Also, textural features achieved optimal results in the prediction
of IDH mutation based on T1 images from NET (84.2%, ST
classifier) and T2 images from CET (85.9%, AB classifier). The
accumulation of D-2HG derived from IDH mutation induces
epigenetic changes that lead to abnormal gene expression and
impaired cellular differentiation, possibly contributing to
intratumoral heterogeneity. Hsieh et al. demonstrated that
textural features can differentiate IDH mutation with 85%
A B DC

FIGURE 5 | Best ROC curves for IDH prediction: (A) AB classifier with rCBV sequence on NET ROI; (B) AB classifier with T2 sequence on CET ROI; (C) AB classifier
with T2 sequence on NEC ROI; (D) ST classifier with T1 sequence on NET ROI.
TABLE 5 | KI67 best results (reported as mean ± standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

CET ADC Acc % 82,3 ± 8,4 81,6 ± 9,7 83,9 ± 9,8 63,7 ± 13,6 82,6 ± 10,5 67,5 ± 10 76,5 ± 12 86 ± 10,6 83 ± 8,2
CET ADC Roc % 64,6 ± 15 64,5 ± 17,3 67,5 ± 18,9 50,8 ± 17,5 63,2 ± 17,8 60 ± 15,7 60 ± 19 70 ± 20 64,4 ± 17
Novem
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FIGURE 6 | Best ROC curve for KI67 prediction: AB classifier with ADC
sequence on CET ROI.
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accuracy in 39 patients with GBM. The Authors performed
tailored biopsies demonstrating an agreement between
prediction results and biopsy-proven pathology of 0.60 (85).
Shape features of tumor necrosis demonstrated good accuracy
for IDH mutation prediction in our model (Figure S6D). Such
result may partly explain the relation between necrosis shape and
survival as previously discussed (35, 77).

Ki-67 is a nuclear protein expressed by cells entering the
mitotic cycle. In gliomas, the expression of Ki-67 is roughly
proportional to the histologic grade, representing a proliferative
index with prognostic correlation (86). Radiomic models
predictive of Ki-67 expression have not been investigated
before in the literature. In our analysis we achieved an
accuracy of 86% for predicting Ki-67 expression through the
AB. Intriguingly, best performing features were texture-based
parameters extracted from the solid tumor (CET ROI) on ADC
maps (Figure S8). These results perfectly agree with the role of
Ki-67 as proliferative index in HGG, being ADC an MRI
surrogate of cellularity (72, 73).

EGFR is a transmembrane tyrosine-kinase receptor for
different growth factors, whose activation leads to DNA
synthesis and cellular proliferation (87). Amplification of
EGFR (especially EGFRvIII) is a common somatic mutation in
HGG (4), with high relevance for the definition of GBM in the
Frontiers in Oncology | www.frontiersin.org 10
recent classification (6). Despite failure of initial attempts of
targeting EGFR for therapy, the receptor remains of value for
possible future treatments (87). In our results, EGFR showed best
prediction performance with ST and AB classifiers. Particularly,
rCBV features achieved a performance of 81% with AB classifier
and T2 features achieved a performance of 77.8% with AB
classifier on CET ROI. Highest scoring features were median
intensity values for rCBV and textural features for T2 (Figures
S10A, B). These results are supported by previous evidence. Hu
et al. demonstrated a link between EGFR amplification and rCBV
textural features, with correlation to microvessel volume and
angiogenesis on tumor biopsies (88). Similarly, T2 textural
features were shown to correlate to EGFR amplification (88).

Our study had some limitations. Firstly, even though ML
studies in HGG often rely on limited populations (18, 19, 34, 36,
62, 77, 85, 88, 89), our sample size (156 patients) could be
considered small. Nevertheless, our dataset includes clinical/
genetic information (e.g., survival, MGMT, IDH, EGFR, and
KI67), together with radiomic data from different MRI sequences
(e.g., MPRAGE, FLAIR, ADC, rCBV, T1-wiethed, and T2-
weighted), thus allowing us to combine information from
different sources to better predict clinical and genetic variables.
Due to the retrospective nature of the study, some sequences
were not acquired for all the patients (Table 1). For this reason,
TABLE 6 | EGFR best results (reported as mean ± standard deviation).

ROI SEQ xGB GB RF LR ST KN DT AB ST_ABC

CET rCBV Acc % 69,8 ± 15,1 75,4 ± 15 73,1 ± 16 64,3 ± 16,3 72,9 ± 14,3 61,3 ± 21,4 66,7 ± 19,4 81 ± 13,8 66,5 ± 18,7
CET rCBV Roc % 63,9 ± 19,5 64,6 ± 18,5 64,7 ± 20 62,2 ± 21,8 65,7 ± 18,9 63,4 ± 23,3 59,4 ± 23,2 74,3 ± 17,3 62,6 ± 20
CET T2 Acc % 76,4 ± 15,2 74,7 ± 15 76,4 ± 16 60,8 ± 18,8 76 ± 17,8 59,7 ± 20,4 61,3 ± 18,7 77,8 ± 13,8 71,5 ± 16
CET T2 Roc % 70,4 ± 22,7 69,7 ± 19,8 76,3 ± 17 65,4 ± 15,7 69,8 ± 22,8 60,2 ± 19,5 55,7 ± 20,4 74,1 ± 17,6 65,6 ± 20,6
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FIGURE 7 | Best ROC curves for EGFR prediction: (A) AB classifier with rCBV sequence on CET ROI; (B) AB classifier with T2 sequence on CET ROI.
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prediction accuracy for each label was evaluated separately on
each sequence, thus limiting performance bias. Moreover, some
labels were not available for all the patients; consequently, the
number of subjects split in train and test groups changed for each
label-sequence combination. We tried to overcome this
limitation by employing two well-known and effective
techniques with the aim of balancing the asymmetric labels.
Although undersampling of the majority class was considered a
more effective approach in respect to an oversampling method
(90), we decided to use SMOTE for unbalancing issues. As
demonstrated in other SMOTE-based studies (24, 91), it could
represent a suitable solution for our purposes. In order to
overcome main SMOTE drawbacks (92, 93) we perform ML
analysis with a significant number of cross-validations. Since we
only split subjects into train and test groups, the lack of an
additional validation cohort could represent a limitation of this
study. To overcome this issue, we decided to report range of
performance obtained applying four times stratified K-fold
cross-validation. This approach provides a full accuracy range,
which includes the results that an eventual validation test
would produce.
CONCLUSIONS

In the present study we were able to predict patient OS and
highly relevant molecular features of HGG from preoperative
MRI, comparing different ML classifiers. Ensemble classifiers
(AB, ST, GB, and xGB) showed optimal performance in
prediction tasks for all the studied variables. In particular, AB
and xGB obtained maximum accuracy for survival, AB for IDH
mutation, MGMT promotor methylation status and Ki-67
expression, and EGFR amplification. Ensemble learning
outperformed classic ML algorithms in all tests, in agreement
with previous literature. Best performing features from our
analysis shed light on possible correlations between MRI and
tumor histology, as well as molecular profiles and patient
outcome in HGG. Our results may set a path for ML analysis
standardization and clinical application. Future developments
may include the evaluation of other genetic abnormalities,
prediction of recurrence, and response to therapy.
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