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Ovarian cancer is the deadliest of gynecological malignancies with approximately 49%

of women surviving 5 years after initial diagnosis. The standard of care for ovarian

cancer consists of cytoreductive surgery followed by platinum-based combination

chemotherapy. Unfortunately, despite initial response, platinum resistance remains

a major clinical challenge. Therefore, the identification of effective biomarkers and

therapeutic targets is crucial to guide therapy regimen, maximize clinical benefit, and

improve patient outcome. Given the pivotal role of c-MYC deregulation in most tumor

types, including ovarian cancer, assessment of c-MYC biological and clinical relevance

is essential. Here, we briefly describe the frequency of c-MYC deregulation in ovarian

cancer and the consequences of its targeting.
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INTRODUCTION

Ovarian cancer is the most lethal gynecologic malignancy with an estimated 21,410 new cases and
13,770 deaths expected for 2021 in the United States (1). According to the tissue of origin, ovarian
tumors are classified into epithelial and non-epithelial types (2). Tumors that arise from germ and
sex cord stromal cells in the ovaries constitute ∼10% of ovarian cancers (3). Epithelial-derived
ovarian tumors account for ∼90% of ovarian cancers and can be subdivided into four major
histological subtypes including serous, endometrioid, clear-cell, and mucinous carcinomas (3). Of
these types, high-grade serous tumors (HGSOC) are the most commonly diagnosed (3). Despite
advances in surgical and therapeutic options for ovarian cancer, resistance to platinum-based
chemotherapy remains a major clinical challenge. Several mechanisms of platinum resistance have
been proposed, including the altered expression of oncogenes such as c-MYC (4, 5).

c-MYC was discovered four decades ago as the human cellular homolog of the avian
myelocytomatosis viral oncogene (v-myc) (6–10). Further studies strongly linked c-MYC to cancer,
marking it as a bona fide human oncogene (11, 12). Following the initial discovery of c-MYC,
genomic amplification of two additional human paralogs N-MYC and L-MYC were identified in
neuroblastoma and small-cell lung cancer, respectively (13–15).

Oncogenic c-MYC arises throughmultiplemolecularmechanisms at the DNA, RNA and protein
levels, rendering c-MYC no longer dependent of control signals (16–19). c-MYC deregulation
reprograms gene expression and promotes uncontrolled cell proliferation – one of the hallmarks
of cancer (16, 20–22). Given its pivotal role as a driver in cancer progression and maintenance, as
well as its association with drug resistance, c-MYC has become an ideal target for cancer therapy
(19, 22, 23). However, given the lack of enzymatic activity and the absence of surface domains
suitable for most pharmacological inhibitors, c-MYC is considered an “undruggable” protein
(24, 25). Nevertheless, several strategies have been employed to inhibit c-MYC transcription,
disrupt c-MYC/MAX dimerization, or prevent binding of c-MYC/MAX heterodimers to enhancer
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box (E-box) DNA sequences (19). Antisense oligonucleotides and
RNA interference (RNAi) directed against c-MYC, as well as,
inhibitors targeting c-MYC upstream and downstream signaling
pathways have also been evaluated (19).

c-MYC FUNCTION AND REGULATION

c-MYC is a basic helix-loop-helix leucine zipper (bHLHZ)
transcription factor that regulates the expression of ∼15%
of all human genes (26). Binding of c-MYC to promoter
regions of target genes at E-boxes (including the 5′-CACGTG-
3′ consensus sequence and other non-consensus sites) requires
dimerization with its protein partner, MAX (27, 28). Upon
DNA binding, c-MYC/MAX heterodimer recruits co-factors
required for transactivation of gene expression (26, 29). As a
transcription factor, c-MYC plays a central role in the control
of several essential functions including proliferation, growth,
cell-cycle progression, angiogenesis, metabolism, differentiation,
apoptosis, cell adhesion and motility, among others (16, 20,
26, 30–32). In addition, c-MYC may repress gene expression
through interaction with MIZ-1, SP1/SP3, and NF-YB/NF-YC
transcription factors (33).

In normal (non-transformed) cells, c-MYC expression is
tightly regulated at multiple levels (34). Transcriptionally, c-MYC
is controlled by numerous transcription factors (including CNBP,
FBP, and TCF), enhancers, and non-B DNA structures such as
G-quadruplexes (35, 36). Post-transcriptional regulation of c-
MYC is exerted by RNA-binding proteins (CELF1 and HuR)
and non-coding RNAs (35, 37). Post-translationally, c-MYC
stability and transcriptional activity are controlled by a variety
of different proteins (33). Phosphorylation at Serine 62 (Ser62)
by Ras-activated ERKs stabilizes c-MYC and promotes activation
(38). Subsequent phosphorylation at Threonine 58 (Thr58) by
GSK3β leads to PP2A-mediated dephosphorylation at Ser62
and ubiquitination by Fbw7, resulting in c-MYC proteosomal
degradation (38). Oncogenic activation of c-MYC is commonly
induced by gene amplification or translocation, transcriptional
upregulation, and enhanced protein stabilization (16, 35).

c-MYC DEREGULATION IN OVARIAN

CANCER

c-MYC Gene Amplification
c-MYC is located in chromosome 8q24, which is frequently
translocated or amplified in cancer (39). In fact, integrated
genomic analyses of ovarian carcinoma revealed that one of
the most common focal amplifications resides within the region
containing c-MYC (40). Early reports by Yasue et al., using
Southern blot hybridization, showed that c-MYC was amplified
in human ovarian tumor cell lines (41). Later, Zhou et al. reported
c-MYC amplification in 25% of ovarian tumors, mainly papillary
serous adenocarcinomas (42). Additional studies found c-MYC
amplification in ∼20–50% of ovarian carcinomas (43–54). In
contrast, Smith et al. found no evidence of c-MYC rearrangement
or amplification in tissues from serous adenocarcinomas (55).
Nevertheless, Ross et al. identified c-MYC amplification as a

potentially targetable genomic alteration in patients with relapsed
epithelial ovarian cancer (EOC) (48).

By using fluorescent in situ hybridization (FISH) on ovarian
tumor tissue arrays, Dimova et al. reported a high frequency
for c-MYC copy-number increases (38.5%), including 22.1%
amplifications and 16.4% gains (47). In addition, c-MYC copy-
number changes were associated with the degree of malignancy
and histological type (47). Similarly, by using next-generation
sequencing (NGS), Du et al. found that c-MYC had a high
frequency of copy-number variations (29%) in tumors from
recurrent ovarian cancer patients (56). Surprisingly, by using
quantitative PCR (qPCR) analysis, Yamamoto et al. observed
significantly higher c-MYC copy-numbers in early-stage EOC,
however, low c-MYC copy-numbers were associated with a
statistically significant poor prognosis (57).

Darcy et al. found limited predictive or prognostic value
of c-MYC gene amplification and polysomy for chromosome
8 in women with suboptimally-resected, advanced-stage EOC
(58). In contrast, Wang et al. reported a trend toward poorer
survival for ovarian cancer patients with c-MYC amplification
(51). In fact, survival was significantly poorer in patients with
amplification of both HER-2/neu and c-MYC oncogenes (51).
Similarly, a study by Katsaros et al. found that patients with
c-MYC amplification and high p185/p21 co-expression had a
significantly worse survival than those with normal levels (52).
Moreover, Jung et al. reported an association between c-MYC
amplification with late stage and high grade in endometrioid
EOC (59). However, c-MYC amplification had no impact on
clinical outcome in serous and endometrioid tumors (59).
Diebold et al. found no correlation between c-MYC amplification
and histological tumor type, histological grade, FIGO stage, DNA
ploidy, proliferative activity or prognosis (50). Similar results
by Baker et al. showed no apparent relationship between c-
MYC amplification and tumor grade, response to platinum-based
chemotherapy, hormone receptor status, or initial CA-125 levels
(46). Taken together, these observations suggest that although c-
MYC gene copy-number variation and amplification have been
commonly reported in ovarian cancer, a relationship between
c-MYC gene aberrations and prognostic or clinicopathological
significance has not been clearly established.

c-MYC mRNA Expression
Early studies by Slamon et al., using Northern blotting, showed
that c-MYC transcript levels were higher in human ovarian
adenocarcinomas compared to normal tissues (60). Similar
reports showed that c-MYC mRNA levels were higher in early-
stage ovarian cancer tissues compared with those in normal
samples, as evident by qPCR analysis (57, 61). In fact, Kohler et al.
found that c-MYC mRNA expression was increased in 47.6%
of ovarian carcinomas (62). Similarly, a study by Tashiro et al.
revealed that c-MYC transcripts were overexpressed in 37.5%
of ovarian tumors (including 63.6% of serous adenocarcinomas)
relative to normal ovarian tissues (63). Moreover, significantly
higher c-MYC expression was observed in stage III compared
with stage I and stage IV tumors (63). On the other hand, a study
by Bauknecht et al. showed high c-MYC mRNA expression in
28% of ovarian carcinomas (64). An association between c-MYC
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gene amplification and high mRNA expression levels was also
observed (59, 64).

Tanner et al. found no significant association between c-MYC
mRNA expression in EOC and clinical parameters including
metastatic spread, survival time, FIGO stage, or histological grade
and type (65). Similarly, Yamamoto et al. found no significant
difference between c-MYC mRNA expression levels and survival
rate for early-stage EOC (57). Jung et al. also reported no
relationship between high c-MYC mRNA expression and patient
outcome in serous and endometrioid tumors (59). On the other
hand, a study by Iba et al. comprising EOC specimens from
patients who underwent the standard of care revealed that
responders had higher c-MYCmRNA levels than nonresponders,
and a better 5-year survival rate (66). In contrast, analysis of
HGSOC data from The Cancer Genome Atlas (TCGA) revealed
significantly worse disease-free (DFS) and overall (OS) survival in
patients with high c-MYCmRNA levels (67). Overall, the clinical
significance of c-MYC mRNA expression in ovarian cancer has
been inconsistent.

c-MYC Protein Expression
Expression of the c-MYC protein had been previously
detected in ovarian carcinoma tumor and stromal cells by
immunohistochemical methods (IHC) (62). Using the same
approach, Skírnisdóttir et al. observed positive staining for
c-MYC in 76% of cases from early-stage EOC (68). Positivity
status was associated with tumor grade (68). Similarly, Chen
et al. found that c-MYC protein was overexpressed in 65.9%
of cases from EOC compared to normal ovary; however, no
significant difference was observed between histological subtypes
(69). Plisiecka-Hałasa also observed a high incidence of c-MYC
overexpression in endometrioid and clear-cell carcinomas
(70). By using flow cytometry, van Dam et al. found that
c-MYC protein was overexpressed in 35% of epithelial ovarian
carcinomas (71). A similar study by Watson et al. showed that
serous papillary ovarian carcinomas expressed significantly
higher nuclear c-MYC protein levels compared with normal
ovary (72).

Reports by Sasano et al. revealed no significant correlation
between c-MYC intracellular distribution and nuclear and
histological grade or mitotic activity in ovarian carcinomas (73).
Nevertheless, studies in ovarian mucinous tumors showed that
positive c-MYC protein expression and distribution correlated
with tumor size and tumor classification, respectively (74, 75).
However, retrospective analysis of clinical data suggested that
a standard histological criteria is a more accurate indicator
of tumor behavior than assessment of the pattern of c-MYC
expression based on immunostaining alone (75).

Paradoxically, Plisiecka-Hałasa et al. found that c-MYC
overexpression was associated with better tumor differentiation,
higher p27, and lower Ki-67 expression in ovarian carcinomas
treated with platinum-based regimens (70). On the other hand,
Ning et al. found that increased nuclear c-MYC expression in
early-stage ovarian cancer correlated with clinical stage and
shorter overall survival (61). However, a study by Curling et al.
showed no significant association between c-MYC protein and
prognosis in ovarian carcinomas (76). Similarly, Jung et al. found

no relationship between high c-MYC protein expression levels
and patient outcome in endometrioid tumors (59). Yamamoto
et al. also reported no significant difference in survival rate for c-
MYC protein expression in early-stage EOC (57). Nevertheless, a
positive association between phosphorylated c-MYC (Ser62) and
expression of proliferation markers such as Ki-67 was observed
(57). In addition, high phosphorylated c-MYC was associated
with relatively poor prognosis (57). Similar to amplification and
mRNA expression, the association between c-MYC protein levels
and clinical parameters in ovarian cancer is not clear. Assessment
of the clinical relevance of phosphorylated c-MYC in ovarian
cancer warrants further investigation.

TARGETING c-MYC IN OVARIAN CANCER

Antisense Oligonucleotides
Early reports showed that targeting c-MYC in vitro with
triplex-forming (TFOs) and liposomal phosphorothioate
oligonucleotides (PTOs) inhibits ovarian cancer cell growth
(77, 78). In fact, evidence indicates that PTOs against c-MYC
inhibit the proliferative effect of TGFα in ovarian cancer cells
(79). Also, resistance to TGFβ – an antiproliferative growth
factor – coincides with the loss of c-MYC repression in ovarian
carcinoma cells (80). On the other hand, Janicek et al. showed
that PTOs against c-MYC in ovarian cancer cells leads to both
antiproliferative and stimulatory activity (81).

Small Interfering RNAs (siRNAs)
SiRNA-mediated c-MYC knockdown in MYC-amplified
ovarian cancer cells inhibits proliferation and induces
replicative senescence by increasing the Cdk inhibitor p27
and decreasing CDK2 activity (82). High c-MYC, low p27,
and high phosphorylated Rb protein signature correlates with
poor patient survival in ovarian cancer (83). Induction of p27
by miR-124 decreases phosphorylated Rb and c-MYC protein
levels leading to cell cycle arrest in vitro and reduced tumor
growth in vivo (83). Moreover, targeting c-MYC with siRNAs
in platinum-resistant ovarian cancer significantly inhibits cell
growth and viability, induces cell-cycle arrest and activates
apoptosis in vitro, and reduces tumor growth in vivo (67).

Small-Molecule Inhibitors
Blocking c-MYC/MAX heterodimerization with the small-
molecule inhibitor 10058-F4 significantly inhibits ovarian cancer
cell proliferation in part by inducing apoptosis and cell cycle
arrest (84). Similarly, 10058-F4 treatment in primary cultures
of epithelial ovarian carcinoma induces caspase-3 activity and
inhibits cell proliferation (84). Moreover, c-MYC inhibition with
10058-F4 reduces glutamine uptake in cisplatin-resistant ovarian
cancer cells (85).

Elevated expression of c-MYC has been observed in
primary HGSOC cells sensitive to BRD4 inhibition by JQ1,
a selective small-molecule BET bromodomain inhibitor (86).
By targeting BRD4 and c-MYC, JQ1 suppresses ovarian cancer
cell proliferation and induces apoptosis (87). In addition, c-
MYC amplified primary cell lines and xenografts derived from
chemotherapy-resistant ovarian tumors are sensitive to JQ1 (88).
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In fact, JQ1 increases the sensitivity of platinum-resistant ovarian
cancer cells to cisplatin (87).

Dual targeting of FAK—an integrin-linked non-receptor
tyrosine kinase—and c-MYC by VS-6063 and JQ1 inhibitors
leads to cell cycle arrest and decreased cell survival in ovarian
cancer cells in vitro (89). In primary tumors of HGSOC, co-
upregulation of FAK and c-MYC suggest a co-targeting approach
as a therapeutic strategy in ovarian cancer (89). Residual cells
from HGSOC patients treated with neoadjuvant carboplatin
and paclitaxel chemotherapy exhibit elevated FAK activity (90).
Inhibiting FAK sensitizes platinum-resistant ovarian cancer
tumors to cisplatin in vivo (90).

Simultaneous inhibition of CDK7 and CDK12/13 with THZ1
abrogates c-MYC expression and decreases tumor growth
in platinum- and PARP inhibitor-resistant patient-derived
xenograft (PDX) models of HGSOC (91). Dual inhibition
of PARP (Olaparib) and CDK4/6 (Palbociclib) inhibits the
growth of ovarian cancer cells in vitro and slows down
tumor growth in vivo in part by inducing homologous
recombination (HR) deficiency in a MYC-dependent manner
(92). Concomitant upregulation of glutaminase (GLS) and c-
MYC has been observed in platinum-resistant ovarian cancer
cells (93). Inhibition of GLS—a downstream target of c-MYC—
by CB-839 sensitizes ovarian cancer cells to PARP inhibition and
prolong survival in tumor-bearing mice (93).

MicroRNAs (miRNAs)
Small non-coding RNAs such as miRNAs have been implicated
as regulators and mediators of c-MYC function (37). Therefore,
miRNAs may serve as potential therapeutic targets against MYC-
driven cancers (37). Lower expression of miR-145 has been
observed in EOC cell lines and tumor tissues, and its upregulation
inhibits cell proliferation and promotes apoptosis by directly
repressing c-MYC (94). In addition, miR-145 inhibits glutamine
metabolism in ovarian cancer through c-MYC/GLS1 pathways
(95). Furthermore, high miR-145 expression was significantly
associated with increased overall survival in patients with ovarian
cancer (95). Similarly, EOC tissues and cells exhibit lower levels
of miR-494 (96). Overexpression of miR-494 inhibits in vitro
growth andmigration by directly targeting c-MYC (96). Recently,
Majem et al. also found that miR-654-5p is downregulated in
ovarian serous carcinomas and restoration suppresses ovarian
cancer development by impacting on the oncogenic function of
MYC, AKT andWnt pathways through directly targeting CDCP1
and PLAGL2 (97).

Cisplatin-mediated downregulation of miR-145 has been
shown to contribute to PD-L1 upregulation in ovarian cancer
(98). Increasing miR-145 levels negatively regulates PD-L1
by repressing c-MYC expression in cisplatin-resistant ovarian
cancer cells (98). These observations suggest that miR-145
may serve as an adjuvant therapeutic target in ovarian cancer
(98). Sun et al. also demonstrated that c-MYC regulates
cisplatin resistance in ovarian cancer by suppressing miR-137
and promoting expression of EZH2, which in turn activates
cellular survival pathways (99). On the other hand, inhibition
of c-MYC-miR-137 axis sensitizes resistant cells to cisplatin
(99). Active c-MYC-miR-137-EZH2 was also confirmed in

tumor samples from recurrent patients with ovarian cancer
(99). Similarly, overexpression of let-7g increases sensitivity
to cisplatin treatment in EOC, and inhibits cell growth by
c-MYC and Cyclin-D2 downregulation (100). In addition,
siRNA-mediated silencing of the histone deacetylase HDAC1
suppresses cell proliferation, increases apoptosis, and sensitizes
ovarian cancer cells to cisplatin treatment by inducing c-MYC
downregulation and miR-34a upregulation (101).

Long Non-coding RNAs (lncRNAs)
Evidence indicates that lncRNAs are able to control the
expression and function of c-MYC (102). In addition, c-
MYC transcriptionally regulates lncRNA expression through
feedback loops (102). For example, c-MYC directly stimulates
transcription of DANCR, an oncogenic lncRNA upregulated
in ovarian cancer (103). Silencing DANCR increases p21
expression, decreases cell proliferation, and reduces ovarian
tumor burden in an orthotopic xenograft model (103).
Another oncogenic lncRNA, MALAT-1, which is upregulated
in EOC tissues and cell lines, promotes c-MYC mediated
epithelial-mesenchymal transition through sponging miR-22
(104). Silencing MALAT-1 inhibits cell proliferation, migration,
and invasion (104). On the other hand, MAGI2-AS3, which
is lowly expressed in ovarian cancer tissues and cell lines,
acts as a tumor inhibitor by negatively regulating miR-525-5p
and enhancing MXD1 expression (105). MXD1 competitively
interacts with MAX, repressing c-MYC transcriptional activity
(105). These findings suggest that targeting MYC-related
lncRNAs may represent a potential alternative therapeutic
strategy against ovarian cancer.

CONCLUDING REMARKS

As a transcription factor, c-MYC plays a key role in the
regulation of multiple cellular processes. In non-transformed
cells, c-MYC expression is tightly controlled. However, aberrant
c-MYC expression has been reported in most human tumors.
Thus, it is not surprising that c-MYC has been considered as a
potential therapeutic target against many cancer types, including
ovarian cancer. In fact, several approaches have been proposed
to inhibit c-MYC either directly or indirectly, some of which
have entered clinical trials. Reports on the prognostic value of
c-MYC in ovarian cancer have been inconsistent, which may
be explained in part by the complexity of the disease, patient
background, and choice of methodology. Further investigation
into the potential role of c-MYC as a prognostic marker in
ovarian cancer is required in the context of histological subtypes,
disease subgroups, genetic racial/ethnic differences, and reliable
detection methods.
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