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Colorectal mucinous carcinoma (MC) is associated with inferior prognosis and response
to treatment compared to adenocarcinoma (AC). The molecular landscapes of MC and
adenocarcinoma with mucous composition (AMC) are not well-defined. We aimed to
describe the genomic landscape of MC and AMC in a large colorectal cancer cohort.
Tumor samples from patients with MC, AMC, or AC were analyzed using next-generation
sequencing. MC had a molecular signature distinct from that of AC; genomic features
were similar between AMC and MC but not between AMC and AC. HERZ2 ampilification
and TP53 and APC mutation rates were lower, whereas SMAD4, PIK3CA, ACVR2A,
KMT2D, LRP1, TGFBR2, GRIN2A, BRAF V600E, PTEN, and BRCAZ2 mutation rates were
higher in MC than in AC. The mutation frequencies in MAPK, PI3K, and TGF-3 pathways
were higher, whereas those of cell cycle proteins and Wnt were lower in MC and AMC
than in AC. The proportion of hypermutated tumors was significantly higher in MC and
AMC than in AC. As MC has a distinct molecular signature from AC, immunotherapy can
be potentially applied in treating MC. Similar molecular profiles of AMC and MC suggest
that treatment strategies for MC, but not AC, can be used for AMC treatment.

Keywords: colorectal cancer, mucinous adenocarcinoma, adenocarcinoma with mucous composition,
next-generation sequencing, hypermutated tumor

INTRODUCTION

According to the 2018 global cancer statistics released by the International Cancer Research
Institute of the World Health Organization (WHO), colorectal cancer (CRC) has the third highest
incidence rate and second highest mortality rate, and an increasing annual prevalence rate (1, 2).
According to the WHO classification, mucinous carcinoma (MC) is a distinct pathological CRC
subtype, with a substantial mucous component of more than 50% of the tumor volume, and
accounts for 10-15% of all CRC cases (3, 4). MC constitutes a histological subtype with poor
differentiation potential and is a predictive factor for poor prognosis (5, 6).
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MC is clinically more prevalent among women, frequently
located in the proximal colon, and associated with young age,
high malignancy grade, tumor infiltration, lymph node
metastasis, and peritoneal metastasis (4, 7). Compared with
adenocarcinoma not otherwise specified (AC), patients with
MC are reportedly less responsive to neoadjuvant radiotherapy
and chemotherapy (8). The efficacy of first-line chemotherapy
with oxaliplatin or irinotecan is lower among patients with
advanced MC than among those with AC. Furthermore,
patients with metastatic MC do not benefit from treatment
with anti-epidermal growth factor (EGFR) monoclonal
antibodies, even in cases with wild-type RAS and BRAF (9).
Therefore, it is important to investigate the molecular
characteristics of colorectal MC in detail and explore a more
effective treatment strategy.

Colorectal MC has unique molecular characteristics. Most
early studies focused on protein expression levels and reported
that MUC2 and MUCS5AC are upregulated in MC tumors (10,
11). Recent genomic analyses have reported that colorectal MC
has a higher mutation frequency in Ras/MAPK and PI3K/Akt/
mTOR pathways in MC than in AC, with a higher incidence of
microsatellite instability (MSI), which is potentially associated
with Lynch syndrome and the CpG island methylator phenotype
(4). However, owing to limitations in detection technology,
previous studies have not revealed the genetic landscape of
MG, including comprehensive genomic characteristics, pathway
analyses, and biomarkers for immunotherapy. The fraction of
mucous composition varies substantially among Colorectal
Cancers. Prior studies confirm that the variation of mucous
composition in CRC is associated with distinct molecular and
clinical features (12, 13). However, adenocarcinomas with
relatively low mucous composition (less than 50%, also known
as AMC) are usually diagnosed and treated as AC. The somatic
mutational landscape of this unique subgroup is less known and
the best clinical management of AMC needs to be addressed in the
light of the mutational background (4).

In this study, we aimed to perform comprehensive targeted
next-generation sequencing (NGS) to detect the two pathological
subtypes of CRC, MC and AMC, and gain deep insights into
their molecular characteristics, through the evaluation of the
landscape of genetic alterations, pathway analysis, and analysis of
biomarkers for immunotherapy to provide a molecular basis for
the establishment of a precise treatment strategy for MC
and AMC.

MATERIALS AND METHODS

Patients and Tumor Selection

Tumor specimens of patients with CRC involved in this study
from January 2018 to September 2019 were sent for NGS
analysis. Of 2,115 patients with CRC, 1,226 with a confirmed
pathological diagnosis of MC, AMC, or AC were selected and
recruited. Patients with an uncertain diagnosis of the
pathological subtype or those with other special pathological
subtypes, such as signet-ring cell carcinoma, undifferentiated

carcinoma, and squamous cell carcinoma, were excluded. Of
2,115 patients with CRC, 1,226 with a confirmed pathological
diagnosis of MC, AMC, or AC were selected and recruited.
Patients with an uncertain diagnosis of the pathological subtype
or those with other special pathological subtypes, such as signet-
ring cell carcinoma, undifferentiated carcinoma, and squamous
cell carcinoma, were excluded. MC was defined as extracellular
mucus secretion accounting for >50% of the tumor volume.
AMC was defined that accounted for <50%. And AC was defined
as tumor with no extracellular mucus secretion. All tumor tissues
were assessed independently by two experienced pathologists
before sample disposal to pathologically confirm the diagnoses.

This study was approved by the Institution Review Board of
the Sixth Affiliated Hospital of Sun Yat-sen University in
accordance with the Declaration of Helsinki. Written informed
consent was obtained from all enrolled patients.

NGS Analysis

NGS analysis was carried out at OrigiMed (Shanghai, China), a
College of American Pathologists-accredited and Clinical
Laboratory Improvement Amendments-certified laboratory,
using a 450-gene comprehensive assay (14). At least 50 ng of
DNA was extracted from each 40 mm formalin-fixed paraffin-
embedded (FFPE) tumor sample using a DNA Extraction Kit
(QIAamp DNA FFPE Tissue Kit) in accordance with the
manufacturer’s protocols. This panel encompassed all coding
exons of 450 cancer-related genes and 64 selected introns of 39
genes that are frequently rearranged in solid tumors.
Furthermore, the probe density was increased to ensure high
capture efficiency in the conservatively low-read-depth regions.
Peripheral blood was sampled from each patient as the normal
control sample for genomic profiling. The genes were captured
and sequenced with a mean coverage of 900x for FFPE samples
and 300x for matched blood samples using an Illumina NextSeq
500 Platform (Illumina Incorporated, San Diego, CA, USA).

Genetic Analysis

All types of genetic alterations, including single-nucleotide
variant (SNV), short and long indels, copy number alterations
(CNAs), and gene rearrangement, were called using a suite of
bioinformatics pipelines. Analysis of SNVs and indels began with
the alignment of raw reads to the human genome reference
sequence (hgl9) with the Burrows-Wheeler Aligner (v0.62;
BWA, Cambridge, MA, USA), followed by polymerase chain
reaction (PCR) duplicates removal using MarkDuplicates
algorithm from Picard (version 1.47; Cambridge, MA, USA).
Local realignment and base quality recalibration for SNVs were
performed using GATK (v3.1-1; Cambridge, MA, USA) and
subsequently called by MUTECT (v1.7; Cambridge, MA, USA).
The CNAs included: (1) amplification, defined as an increase in
the number of gene segment copies by =8, and (2) homozygous
deletion, defined as decrease of complete loss of gene segment
copies in samples with 20% purity. To identify these alterations,
tumor cellularity was estimated by allele frequencies of
sequenced single-nucleotide polymorphisms (SNPs). For
detection of gene rearrangement, aligned reads with abnormal
insert size of 2,000 or zero bp were collected and used as
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discordant reads, that is, paired-end reads that could not be
closely mapped to a genome reference, with each read of paired
reads aligned to the same chromosomes or different
chromosomes. Originally, the discordant reads with the
distance less than 500 bp formed clusters were further
assembled by fermi-lite to identify potential rearrangement
breakpoints. The breakpoints were double confirmed by BLAT,
and the resulting chimeric gene candidates were annotated. For
germline mutations, common single nucleotide polymorphisms,
defined as those from the dbSNP database (Version 147), at a
frequency of more than 1.5% from the Exome Sequencing
Project 6500 (ESP6500), or at a frequency of more than 1.5%
from the 1000 Genomes Project, were excluded. Furthermore,
the variant allele frequency was adjusted with tumor purity
estimated using FACETS.

Tumor Mutational Burden (TMB) and MSI
The TMB was estimated using the method of Chalmers et al. (15).
In brief, the somatic, coding, base substitution, and short indel
mutations were enumerated. Driver mutations and germline
alterations in the dbSNP database were not enumerated. The
TMB was determined by dividing the total number of mutations
by the size of the coding region. The MSI status was determined in
all cases. Based on the MSI score, samples were classified as MSI-
high (MSI-H) and microsatellite stable (MSS).

Statistical Analyses

Qualitative variables were assessed using Fisher’s exact test.
Normally distributed quantitative data were analyzed using the
t-test and non-normally distributed data were analyzed using the
Wilcoxon rank test. All tests were two-tailed and significance was
defined as a P value less than 0.05. All statistical analyses were
performed using R software (Version 3.4.2).

RESULTS

Clinical Characteristics

We defined MC as adenocarcinoma with mucous composition
greater than 50% and AC as adenocarcinoma with no mucous
composition. Adenocarcinoma with mucous composition but less
than 50% is called AMC. Table 1 summarizes the characteristics
of the patients. In total, 1,226 patients with CRC were enrolled in
the study and divided into three categories by histological
subtype: MC (10.5%), and AMC (8.2%), and AC (81.3%). The
median age of patients with MC was less than that of patients with
AC (56 vs. 59 years, P = 0.037), and the incidence of MC in the
right colon was higher than that of AC (41.9 vs. 24.2%, P < 0.001).
Patients with MC accounted for a larger proportion of patients
with stage III CRC (44.2%) than AC (29.9%, P < 0.001) and AMC
(29.0%, P = 0.091); but for AMC, the difference is only marginally
significant. Furthermore, AMC was significantly more common
in the right colon than AC was (50 vs. 24.2%, P < 0.001). No
significant differences were observed between AMC and AC with
respect to other clinical features.

Comparison of Common Gene Mutations
Among MC, AMC, and AC

Comprehensive targeted NGS revealed that the top 10 prevalent
mutations in MC were KRAS (55.8%), TP53 (53.5%), APC (46.5%),
SMAD4 (34.1%), ACVR2A (28.7%), PIK3CA (28.7%), KMT2D
(22.5%), LRP1 (21.7%), TGFBR2 (20.2%), and ARIDIA (19.4%)
(Figure 1A). In general, the mutation profile of MC was different
from that of AC (Figure 1B); however, the mutation profiles of MC
and AMC did not differ significantly (data not shown). Among the
commonly mutated genes in CRC, TP53 (53.5 vs. 79.5%, P < 0.001)
and APC (46.5 vs. 75.1%, P < 0.001) displayed a significantly lower
mutation rate, whereas SMAD4 (34.1 vs. 19.1%, P < 0.001), PIK3CA

TABLE 1 | Patient and tumor characteristics.

Characteristics MCN = 129 (%) AMCN = 100 (%)

ACN = 997 (%)

P value MC vs. AC P value AMC vs. AC P value MC vs. AMC

Gender

Female 50 (38.8) 47(47) 390 (39.1)
Male 79 (61.2) 53(53) 607 (60.9)
Age

Median 56 62 59
Range 17-86 28-82 16-96
Primary Tumor Site

Left colon 55 (42.6) 25 (25) 320 (32.1)
Right colon 54 (41.9) 50 (50) 241 (24.2)
Rectum 20 (15.5) 24 (24) 427 (42.8)
NA 0(0) 1(1) 9(0.9)
Stage at diagnosis®

Stage | 3 (2.3 5(5) 58 (5.8)
Stage Il 40 (31) 33 (33) 232 (23.3)
Stage Il 57 (44.2) 29 (29) 298 (29.9)
Stage IV 27 (20.9) 32 (32) 367 (36.8)
NA 2(1.6) 1(1) 42 (4.2)
Sample Source

Primary lesion 126 (97.6) 100 (100) 984 (98.7)
Metastatic lesion 3(2.4) 0 (0) 13 (1.3)

1.000 0.134 0.227
0.037 0.399 0.043
<0.001 <0.001 0.016
<0.001 0.133 0.091
0.415 0.622 0177

aStage at diagnosis based on AJCC (8th edition). MC, mucinous carcinoma; AMC, adenocarcinoma with mucous composition; AC, adenocarcinoma; AJCC, American Joint Committee

on Cancer; NA, not applicable.
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(28.7 vs. 192% P = 0.014), ACVR2A (28.7 vs. 9.1%, P < 0.001),
KMT2D (22.5 vs. 6.4%, P < 0.001), LRP1 (21.7 vs. 4.8%, P < 0.001),
TGFBR2 (20.2 vs. 6.4%, P < 0.001), and GRIN2A (14.7 vs. 4.5%,
P <0.001) displayed a significantly higher mutation rate in MC than
in AC.

Furthermore, pathway analysis revealed that the mutation
frequencies in MAPK, PI3K, and TGFf} pathways were higher,
whereas those of cell cycle proteins and the Wnt pathway were
lower, in MC and AMC than in AC (Figure 2).

Comparison of Clinically Actionable
Alterations Among MC, AMC, and AC

The mutation pattern of clinically actionable alterations in MC
was different from that in AC but similar to that in AMC. The
mutation rates of BRAF V600E (10.9 vs. 3.3%, P < 0.001), PIK3CA
(28.7 vs. 19.2%, P = 0.014), PTEN (14.7 vs. 7.2%, P = 0.027), and
BRCA2 (17.8 vs. 5.5%, P < 0.001) were significantly higher in MC
than in AC. Although HER2 mutation rates were comparable
between MC and AC (3.9 vs. 6.2%, P = 0.423), HER2 amplification
occurred at a rate of 2.1% in AC but was not detected in MC or
AMC. The mutation rate of KRAS was significantly higher in
AMC than in AC (65.0 vs. 49.2%, P = 0.001); however, it did not
significantly differ between MC and AC or MC and AMC. The
mutation frequencies of clinically actionable genes in MC, AMC,
and AC are summarized in Table 2.

Gene fusions in receptor tyrosine kinases have been recently
identified as druggable targets in CRC (16). One patient with an
MC tumor in the right colon harbored an ETV6-NTRK3 fusion
and the tumor was identified as MSI-H. NCOA4-RET and
FGFR2-PIBF1 fusions were observed in patients with MC and
AMC, respectively. The frequency of druggable fusions did not
significantly differ among the three CRC pathological subtypes.

Comparison of Immune Biomarkers in MC,
AMC, and AC

We defined hypermutated tumors as MSI-H tumors or those
harboring POLE mutations that result in a dramatic TMB

elevation. In general, the proportion of hypermutated tumors
was significantly higher in MC and AMC than in AC (MC 27.9%
vs. AC 8.4%, P < 0.001; AMC 18% vs. AC 8.4%, P = 0.003).

The percentage of MSI-H tumors was significantly higher in
MC and AMC than in AC (MC 22.5% vs. AC 6.8%, P < 0.001;
AMC 17% vs. AC 6.8%, P = 0.001) and comparable between MC
and AMC. Although the percentage of all POLE mutations
among the three subtypes did not differ significantly, the
proportion of POLE mutations resulting in a high TMB in
MSS tumors was significantly higher in MC than in AC (5.4
ys. 1.6%, P = 0.004). The median TMB and median number of
somatic mutations were also significantly higher in MC and
AMC than in AC (Figure 3 and Table 3).

Hypermutated Tumors in MC

We further evaluated the relevant immunotherapy indicators in
MC, which revealed that 29 of 129 patients harbored MSI-H
tumors, among which three harbored POLE mutations. Seven of
100 patients harbored MSS tumors with POLE mutations
(Figure 4). Moreover, all POLE mutations detected in MSS
tumors were located in the exonuclease domain, which led to
extremely high levels of TMB. Only one E972G mutation in an
MSS tumor was not located in the exonuclease domain and the
TMB in this case was relatively lower (79.5 muts/Mb) than that
in cases of POLE mutations in the exonuclease domain (TMB
range, 121.1-595.5 muts/Mb). Furthermore, POLE mutations
detected in three patients harboring MSI-H tumors were not
present in the exonuclease domain. Details of clinical and
molecular characteristics of MC with POLE mutations are
summarized in Table 4.

DISCUSSION

This study identified the comprehensive genomic features of MC
and AMC by targeted NGS using a large cohort of patients with
CRC. We comprehensively compared genetic differences

Cell_Cycle MAPK MMR
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FIGURE 2 | Comparative analysis of the frequencies of genetic alterations based on signaling pathways playing an important role in oncogenesis in colorectal cancer.
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TABLE 2 | Comparison of clinically actionable gene alterations in MC, AMC, and AC.

Genes MCN = 129 (%) AMCN = 100 (%) ACN =997 (%) P value MC vs. AC P value AMC vs. AC P value MC vs. AMC
KRAS 72 (565.8%) 65 (65.0%) 491 (49.2%) 0.135 0.001 0.135
NRAS 4 (3.1%) 2 (2.0%) 36 (3.6%) 1.000 0.570 0.698
VEGFA 2(1.6%) 3(3.0%) 13(1.3%) 0.687 0.173 0.656
EGFR 9(7.0%) 2(2.0%) 100 (10.0%) 0.168 0.231 0.072
BRAF 14 (10.9%) 8 (8.0%) 33 (3.3%) <0.001 0.027 0.507
V600E
BRAF 6 (4.7%) 5 (56.0%) 22 (2.2%) 0.123 0.091 1.000
non-V600E
HER2 (ERBB2) 0 (0.0%) 0 (0.0%) 21 (2.1%) 0.158 0.248 NA
amplification
HER2 (ERBB2) 5 (3.9%) 4 (4%) 62 (6.2%) 0.423 0.508 1.000
mutation
All druggable 2 (1.6%) 1(1%) 7 (1.7%) 1.000 1.000 1.000
fusion
NTRK1 0 (0%) 0 (0%) 5 (0.5%) 0.039 0.689 NA
fusion
NTRK3 1(0.8%) 0 (0%) 1(0.1%) 0.036 1.000 0.506
fusion
PIK3CA 37 (28.7%) 31 (31.0%) 191 (19.2%) 0.014 0.008 0.771
AKT1 5 (3.9%) 3 (3%) 22 (2.2%) 0.224 0.491 1.000
PTEN 19 (14.7%) 14 (14%) 72 (7.2%) 0.027 0.013 0.844
BRCA1 6 (4.7%) 5 (5%) 9 (1.9%) 0.057 0.06 1.000
BRCA2 3 (17.8%) 9 (9%) 55 (5.5%) <0.001 0.043 0.553
MC, mucinous carcinoma; AMC, adenocarcinoma with mucous composition; AC, adenocarcinoma; NA, not applicable.
1000
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FIGURE 3 | Comparison of immunotherapy-related biomarkers in MC, AMC, and AC. MC, mucinous carcinoma; AMC, adenocarcinoma with mucous composition;
AC, adenocarcinoma; MSI, microsatellite instability; TMB, tumor mutational burden; MSS, microsatellite stability.

between MC, AMC, and AC and identified the following major
features. In general, MC had a molecular signature that was
distinct from that of AC. The genomic features were similar
between AMC and MC but different between AMC and AC. MC
had a distinguished mutation pattern for prevalent gene

mutations and biomarkers used clinically for CRC. Most
importantly, the proportion of hypermutated tumors in MC
and AMC was significantly higher than that in AC, indicating the
higher applicability of immunotherapy for patients with these
histological subtypes. Our results support developing more
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TABLE 3 | Comparison of immunotherapy-related biomarkers in MC, AMC, and AC.

Characteristics MCN =129 (%) AMCN = 100 (%)

ACN = 997 (%)

P value MC vs. AC P value AMC vs. AC P value MC vs. AMC

Hypermutated tumor® 36 (27.9) 18 (18.0) 84 (8.4) <0.001 0.003 0.086
MSI-H tumor 29 (22.5) 17 (17.0) 68 (6.8) <0.001 0.001 0.324
POLE 10 (7.8) 7 (7.0 43 (4.3) 0.117 0.209 1.000
ALL mutation

POLE 7 (5.4) 1(1) 16 (1.6) 0.004 1.000 0.074
Hypermutation in MSS tumor®

TMB <0.001 <0.001 0.967
Median (muts/Mb) 7.0 6.9 5.4

Range 1.2-591.5 0-254.7 0-825.3

Somatic mutations number 0.002 0.003 0.963
Median (N/tumor) 9 9 8

Range 2-277 1-160 1-269

AHypermutated tumors are defined as MSI-H tumors or tumors harboring POLE mutations, resulting in drastic TMB elevation.

PHypermutation in MSS tumors associated with POLE-mutated cases with dramatic TMB elevation in MSS CRC, mostly caused by POLE mutations in the exonuclease domain.
MC, mucinous carcinoma; AMC, adenocarcinoma with mucous composition; AC, adenocarcinoma; CRC, colorectal cancer; MSI, microsatellite instability; TMB, tumor mutational burden;
MSS, microsatellite stability.
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FIGURE 4 | (A) Hypermutated tumors include MSI-H tumors and tumors harboring POLE mutations. (B) Genomic landscape showing associations among MSI-H,
microsatellite instability, high TMB, MSI status, and POLE mutation. TMB, tumor mutational burden.

TABLE 4 | Clinical and molecular characteristics of MC with POLE mutations.

Number Gene Sex Age(years) Primary tumor site Stage TMB(muts/Mb) MsSI Variation type DNA change Amino acid change
1 POLE female 51 Right colon | 57.7 MSI-H  Substitution c.5648C>T p.A1883V

2 POLE  male 43 Right colon Il 58.9 MSI-H  Substitution c.557C>T p.A186V

3 POLE  female 40 Left colon Il 104 MSI-H  Truncation €.4337_4338del  P.V1446Gfs*3
4 POLE female 37 Rectum Il 396 MSS Substitution c.1231G>T p.V411L

5 POLE female 59 Left colon I 268.6 MSS Substitution c.857C>G p.P286R

6 POLE female 41 Rectum Il 1211 MSS Substitution c.1231G>C p.V411L

7 POLE female 56 Right colon Il 79.5 MSS Substitution C.2915A>G p.E972G

8 POLE  male 47 Right colon Il 383.4 MSS Substitution c.1231G>T p.V411L

9 POLE female 47 Right colon Il 591.5 MSS Substitution c.857C>G p.P286R

10 POLE male 76 Left colon | 309.5 MSS Substitution c.857C>G p.P286R

MC, mucinous carcinoma; TMB, tumor mutational burden,; MSI, microsatellite instability.

tailored treatment strategies for patients with CRC according to
an individual’s histological subtype.

Previous studies have suggested that mutations in SMAD4,
GNAS, BRAF, and KRAS occur at high frequencies in MC,
whereas TP53, APC, and NRAS mutations are less common
(17, 18). The high frequency of BRAF mutations in MC is well-
documented in the literature and supported by our findings (19,
20). Patients with metastatic CRC harboring a BRAF V600E

mutation have a significantly worse prognosis. This study found
the BRAF V600E mutation rate was significantly higher in MC
and AMC than in AC, whereas the mutation rate of BRAF (non-
V600E) did not significantly differ among the three groups. The
SMAD4 mutation frequency was significantly higher in MC and
AMC than in AC. Patients with a SMAD4 deletion have worse
relapse-free survival and are resistant to chemotherapy with 5-
fluorouracil (21). MCs were associated with an unsatisfactory
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response to neoadjuvant chemotherapy. However, whether
SMAD4 plays a role in chemotherapy resistance mechanisms
needs further research. On the other hand, the stage of the cancer
is significantly associated with the frequency of specific mutation.
For example, BRAF (V600E) is more frequent in high-stage MC.
The observation suggests that the variation in the mutation rates
among the three cancer types is attributed to the different clonal
evolution processes, from which MC arises as a unique subtype.
A recent study reported that approximately 5% of patients
with CRC harbor a HER2 mutation. In patients with CRC, nearly
half of HER?2 alterations are mutation rather than amplification
or protein overexpression. Herein, HER2 amplification was not
observed in MC. However, a proportion of patients with MC
harbored HER2 mutations. Previous animal experiments have
reported that the growth of implanted tumors harboring mutant
HER2 can be inhibited by HER2 inhibitors, including
trastuzumab, lapatinib, and afatinib, alone and in combination
with trastuzumab and tyrosine kinase inhibitors (22-24).
Immune checkpoint inhibitors (ICIs) have recently been
widely used in solid and hematological malignancies (25). We
defined hypermutated tumors as MSI-H tumors or those
harboring POLE mutations that result in a dramatic TMB
elevation, as there is robust evidence for MSI-H and POLE
mutations as predictive biomarkers for a good response to
immunotherapy in CRC (26, 27). Pembrolizumab has been
approved for treating solid tumors with MSI-H/deficient
mismatch repair (AIMMR) and nivolumab + ipilimumab has
been approved for treating advanced CRC with MSI-H/dMMR
(28, 29). Recently, a study on neoadjuvant treatment of CRC was
conducted using a combinatorial treatment with an anti-PD-1
antibody and anti-CTLA-4 antibody. The treatment resulted in a
pathological response in 20/20 patients and primary pathological
remission in 19/20 patients with dMMR tumors (30). MC is
significantly more likely to be associated with MSI-H in the colon
and rectum (20). The proportion of MSI-H tumors in this study
was significantly higher in MC and AMC than in AC, suggesting
that immunotherapy is suitable for a larger proportion of
patients with MC and AMC. MC was more prevalent in stage
III CRC in this study, indicating that patients are more likely to
develop local lymph node metastasis and present locally
advanced CRC. In some cases of locally advanced CRC, it is
challenging for surgeons to perform RO (margin-negative)
resection, which results in a worse prognosis for patients. ICIs
in a neoadjuvant setting would be an effective treatment
alternative for patients with MC with MSI-H/dMMR; thus, it is
necessary to clarify the MSI/MMR status before any treatment.
Immunotherapy in MSS CRC tumors still lacks efficacy;
therefore, there is an urgent need to identify biomarkers for
immunotherapy in MSS tumors. Hypermutation in MSS CRCs
is often associated with POLE mutations accompanied by
dramatic TMB elevation, owing to the loss of DNA replication
fidelity caused by POLE mutations in the exonuclease domain
(27). Wang et al. summarized the POLE/POLDI mutation rate in
47,721 patients with different cancer types and identified that
patients harboring POLE/POLDI mutations have a significantly
higher TMB. When adjusting for cancer types and MSI status for

multivariate Cox regression analysis, POLE/POLDI mutations
were found to be independent risk factors for identifying
patients that could benefit from ICI treatment (27). In this
study, the frequency of POLE mutations resulting in high TMB
in MSS tumors was significantly higher in MC than in AC. In
addition, the proportion of hypermutated tumors (MSI-H or
POLE mutations) was 27.9% in MC, suggesting that up to 30%
of patients with CRC MC may benefit from immunotherapy.
Furthermore, the mutation pattern of POLE differed between MSS
and MSI-H tumors and POLE mutations occurring in the
exonuclease domain markedly increased the TMB in MSS tumors.

We acknowledge that the current study had several
limitations. First, the retrospective study design could not
exclude selection bias. Second, the clinical data of patients’
treatments and outcomes were not controlled and collected in
the current study; therefore, the clinical impacts of our findings
need further confirmation. Finally, on the potential benefit of
ICI, the effects of tumor infiltrating lymphocytes need to be
evaluated along with the mutational profile as well as MSI and
POLE statuses; whereas in the current study still lacks the
pathological data for tumor immune microenvironment. On
the other hand, the somatic mutational landscape is also
affected by the host immune environment, hence serve as a
proxy to the activities of the immune cells.

In spite of the limitations, using the large cohorts of MC (n =
129) and AMC (n = 100) via a comprehensive targeted NGS panel,
our results reveal the molecular landscapes of MC, AMC, and AC,
which could lead to tailored treatment for different histological
subtypes of CRC. The selection of baseline clinical and
pathological characteristics was relatively intact in this study,
allowing the analysis of clinical and genomic features. Our
findings shed new light on the treatment and management of
patients with MC and AMC. Further prospective studies in
patients with MC and AMC are warranted to validate our
findings, especially regarding the potential use of immunotherapy.

CONCLUSIONS

We identified a distinct genomic landscape in colorectal MC via
comprehensive genomic profiling for commonly mutated and
clinically actionable genes. Hypermutated tumors account for
nearly 30% of MC, suggesting that a large proportion of patients
with MC may benefit from immunotherapy; therefore, there is a
need for comprehensive molecular testing in these patients.
AMC has similar genomic features to MC but different from
AC, suggesting the potential for the use of MC treatment
strategies for treating AMC.
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