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Objectives: Anaplastic lymphoma kinase (ALK) rearrangement status examination has
been widely used in clinic for non-small cell lung cancer (NSCLC) patients in order to find
patients that can be treated with targeted ALK inhibitors. This study intended to non-
invasively predict the ALK rearrangement status in lung adenocarcinomas by developing a
machine learning model that combines PET/CT radiomic features and clinical
characteristics.

Methods: Five hundred twenty-six patients of lung adenocarcinoma with PET/CT scan
examination were enrolled, including 109 positive and 417 negative patients for ALK
rearrangements from February 2016 to March 2019. The Artificial Intelligence Kit software
was used to extract radiomic features of PET/CT images. The maximum relevance
minimum redundancy (mRMR) and least absolute shrinkage and selection operator
(LASSO) logistic regression were further employed to select the most distinguishable
radiomic features to construct predictive models. The mRMR is a feature selection
method, which selects the features with high correlation to the pathological results
(maximum correlation), meanwhile retain the features with minimum correlation between
them (minimum redundancy). LASSO is a statistical formula whose main purpose is the
feature selection and regularization of data model. LASSO method regularizes model
parameters by shrinking the regression coefficients, reducing some of them to zero. The
feature selection phase occurs after the shrinkage, where every non-zero value is selected
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to be used in the model. Receiver operating characteristic (ROC) analysis was used to
evaluate the performance of the models, and the performance of different models was
compared by the DeLong test.

Results: A total of 22 radiomic features were extracted from PET/CT images for
constructing the PET/CT radiomic model, and majority of these features used were
based on CT features (20 out of 22), only 2 PET features were included (PET percentile 10
and PET difference entropy). Moreover, three clinical features associated with ALK
mutation (age, burr and pleural effusion) were also employed to construct a combined
model of PET/CT and clinical model. We found that this combined model PET/CT-clinical
model has a significant advantage to predict the ALK mutation status in the training group
(AUC = 0.87) and the testing group (AUC = 0.88) compared with the clinical model alone in
the training group (AUC = 0.76) and the testing group (AUC = 0.74) respectively. However,
there is no significant difference between the combinedmodel and PET/CT radiomic model.

Conclusions: This study demonstrated that PET/CT radiomics-based machine learning
model has potential to be used as a non-invasive diagnostic method to help diagnose ALK
mutation status for lung adenocarcinoma patients in the clinic.
Keywords: positron emission tomography/computed tomography (PET/CT), machine learning, radiomics,
anaplastic lymphoma kinase (ALK) rearrangement, lung adenocarcinoma
INTRODUCTION

Lung cancer is the most common cause of cancer mortality
worldwide, and non-small cell lung cancer (NSCLC) accounts for
approximately 85% of all lung cancers (1). Treatment options for
NSCLC greatly developed in the last decades with the advance in
targeted therapies against mutated genes, such as epidermal
growth factor receptor (EGFR), anaplastic lymphoma kinase
(ALK), ROS proto-oncogene 1 (ROS-1) and v-raf murine
sarcoma viral oncogene homolog B (BRAF) (2–7). All these
activating mutated-genes can be targeted with FDA-approved
drugs. To identify these patient subsets with the specific mutated
genes, reliable biomarker testing is needed to identify the
different genetic subtypes of lung cancers. The frequency of
ALK mutation in NSCLC patients is about 5% in the western
and about 4.9% in the Asian population, especially higher in lung
adenocarcinomas patients (6.0%) (8). ALK mutation detection
has been widely used in clinic for NSCLC patients (8).

Currently, several different techniques can be used to identify
ALK-rearranged lung cancers, such as immunohistochemistry
and fluorescence in situ hybridization (9, 10). However, there are
several limitations to these techniques in the detection of ALK
mutation. First, these examinations are based on surgical
specimens or biopsies, which will exclude patients not suitable
for surgery and also biopsy. Second, due to the heterogeneity of
tumor tissues (11, 12), most sites in the tumor tissues could not
be examined, which greatly affects the accuracy of conventional
ALK mutation examination. Therefore, a non-invasive and more
reliable tool for ALK mutation examination is urgently needed.

Recently, radiomic analysis based on data derived from
clinically medical images has been used to analyze tumors,
including tumor heterogeneity, gene mutation status, and
2

response to treatments (13, 14). Conventional imaging
evaluation of tumor lesions typically includes only lesion size,
location, and enhancing characteristics. By contrast, radiomic
analysis extracts highly detailed features from clinical images to
tumor lesions, including tumor texture, shape and intensity
(15). Thus, radiomic analysis has become an alternative method
to evaluate tumors and also predict gene mutation status for
lung cancer patients. A large number of studies have shown that
the radiomic analysis can be used to predict the mutation status
of several oncogenes (16, 17). Currently, most studies in lung
cancer have been done in primary tumors using computed
tomography (CT) images (18–22). For example, Gevaert et al.
used CT images-based signature of primary lung tumors to
predict EGFR mutation status (23). Liu et al. used a set of five
CT-based features to predict EGFR mutation status (16).
Arbour et al. showed that ALK rearranged NSCLC primary
tumor CT imaging features are different from those of EGFR
mutated or wide type NSCLC (3). Recently, Song et al.
developed a machine learning model based on CT radiomic
features to predict ALK rearrangement status for lung
adenocarcinoma patients (24).

However, positron emission tomography/computed tomography
(PET/CT) radiomic features of lung adenocarcinoma have not been
well studied. In our previous studies, we demonstrated that lung
adenocarcinoma tumors with micropapillary or solid contents have a
higher maximum standard uptake value (SUVmax) and correlate
with lymph node metastasis based on PET/CT images (25).
Furthermore, we also found that the SUVmax of 18FDG PET/CT
can be used to predict the histological grade of lung adenocarcinoma
(26). Besides, we demonstrated that combining 18FDG PET/CT
metabolic parameters and clinical parameters can be used to
predict ALK and ROS-1 mutation in NSCLC patients (27).
March 2021 | Volume 11 | Article 603882
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To the best of our knowledge, this is the first study using PET/
CT radiomic approaches and a machine learning model to
predict the ALK mutation status in lung cancer primary
tumors. We collected PET/CT images of lung adenocarcinoma
patients, segmented the images, extracted radiomic features, and
used machine learning algorithms to classify the mutation status.
Here, we proposed that a novel machine learning model based on
radiomic features of PET/CT images and clinical characteristics
could be used to predict ALK mutation status in lung
adenocarcinoma patients.
MATERIALS AND METHODS

Patients Selection
We retrospectively identified 631 lung adenocarcinoma patients
treated at our hospital between February 2016 and March 2019
who underwent PET/CT scan as well as surgery or biopsy
treatments and tested for ALK mutation in primary tumors.
Histological tumor slides were reviewed by two pathological
specialists who have rich experience in the examination of lung
tumors. The criteria used to select patients includes: (1) all
patients were examined on a Siemens PET/CT machine with
the same collection conditions; (2) all the cases included in this
study had pathological results from surgery or biopsy specimens,
and all underwent ALK genetic testing, and the surgery was
completed within 2 weeks after PET/CT examination; (3) medical
history of patients was complete, and the image collection
was complete. The criteria used to exclude patients includes:
(1) patients who had undergone radiotherapy, chemotherapy, or
targeted drug therapy for lung adenocarcinoma before PET/CT
examination (38 cases); (2) multiple tumor nodules in the lung or
Frontiers in Oncology | www.frontiersin.org 3
multiple tumors in other parts of the body (15 cases); (3) tumor
lesions were close to the center and could not be separated from
the adjacent hilar anatomy (10 cases); (4) PET/CT images with
poor quality and artifacts affected the diagnosis (42 cases).
According to the final pathological results, the included cases
were divided into ALK-positive group and ALK-negative group.
The detailed process of screening and grouping of lung
adenocarcinoma cases is shown in Figure 1. This retrospective
study followed a protocol approved by the Institutional Review
Board at Shanghai Chest Hospital and the need for informed
patient consent was waived.

Positron Emission Tomography/Computed
Tomography Scan Procedures
All 631 selected patients were examined by Biograph mCT-S
PET/CT (Siemens) and the scanning conditions and parameters
are set to be consistent. The imaging agent 18F-FDG was
produced by Shanghai Atom Kexin Pharmaceutical Co., Ltd,
with PH value is about 7.0 and radiochemical purity > 95%.
Patients were examined with blood glucose less than 7.8 mmol/L.
The amount of imaging agent injected according to the standard
is 0.10–0.15mCi/kg. The parameters of the CT scan were set as
voltage = 120 kV, the milliamp seconds are automatically
adjusted according to CARE Dose, and the image acquisition is
5 mm thick per layer and reconstructed to a 512 × 512 matrix
(voxel size: 0.98 × 0.98 × 3.0 mm3). CT scan was taken first,
followed by a PET scan. PET scan used 5 beds, each bed lasts
about 120 s, the layer thickness was 5 mm. After the whole-body
PET/CT scan, a thin high-resolution CT (HRCT) scan with a
layer thickness of 1.0 mm was performed. The matrix size of all
PET reconstruction was 200 × 200, and the anisotropic voxel was
4.07 × 4.07 × 3.0 mm3. The PET images were attenuated by CT
FIGURE 1 | Flowchart of lung adenocarcinoma patient selection.
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data and reconstructed by TrueX+TOF. Finally, the
reconstructed PET and CT images were fused and transmitted
to the post-processing platform.

Processing and Analysis of Positron
Emission Tomography/Computed
Tomography Images
The ITK-SNAP 3.8.0 software (www.itksnap.org) was employed
to obtain the volume of interest (VOI). Firstly, PET images with
5mm slice thickness and HRCT images with 1 mm slice
thickness from the workstation (DICOM format) were
imported into the ITK-SNAP software to draw the primary
lung cancer lesions in multi-plane modes including cross-
section, sagittal plane, and coronal plane. After all the images
were preprocessed, the images were resampled to 1×1×1 mm3,
and grey discretization were performed to the images with 8 fixed
bin numbers. Lung cancer lesions on CT with 1mm slice
thickness or PET images were drawn on a dimensional
interface. The region of interest (ROI) was sketched by two
nuclear radiologists with more than 10 years of diagnostic
experience without knowing the pathological results. For
delineation on CT images, we observed the lesion on a window
width of 1,600 HU and a window position of −600 HU. Then the
boundary of the lung cancer was drawn semi-automatically, and
slowly adjusted manually. For the delineation of PET image, refer
to the CT boundary, the SUV threshold was set to 40% VOI by
referring to the standard values in the TrueD tool suite of
Siemens MMWP workstation, and manually sketched the
three-dimensional ROI of lung cancer using the “adaptive
brush” semi-automatic sketching tool on ITK-SNAP. When
the lesion was close to the hilar blood vessels, the CT
boundary had been delineated with reference to PET. To show
the heterogeneity of lung cancer, necrosis, bleeding, calcification
and burrs were included in the ROI drawing. If there was an
inflammatory lesion around the lesion, the pulmonary
inflammatory lesions had been excluded.

Image Pre-Processing and Feature
Extraction
Based on PET/CT images, PET images displayed molecular
metabolic information of lung adenocarcinoma lesions, while
CT images displayed morphological features. The original
images of PET images with 5 mm slice thickness and breath-
hold thin-layer CT images with 1 mm (DICOM format) as well
as the outlined lesions for every lung adenocarcinoma were
imported into the Artificial Intelligence Kit software (A.K.
software; GE Healthcare, China), two pre-processing
techniques were used to improve the recognition of image
textures. First, all the images were resampled to 1 × 1 × 1 mm3

voxels via linear interpolation. Second, the images were
normalized into standardized intensity ranges by z-score
transformation with a mean value of 0 and a standard
deviation value of 1. A total of 402 features were extracted,
including 42 histogram features, 11 grey level size zone matrix
(GLSZM) features, 15 form factor features (refer to shape
characteristics, such as sphericity of VOI and density of VOI),
Frontiers in Oncology | www.frontiersin.org 4
154 gray level co-occurrence matrix (GLCM) features and 180
run length matrix (RLM) features. All the features were extracted
by AK software, and the algorithm used in the AK software are
IBSI compliant (28). The consistency of lesions segmentation
between two nuclear medicine doctors was evaluated by
calculating the intra- and inter-class correlation coefficients
(ICCs) of the extracted PET/CT radiomic features of 50
random cases picked from 526 enrolled patients. The first
nuclear medicine doctor sketched the PET/CT features twice in
two months and the radiomics features were extracted to assess
the intra observer ICCs; the second nuclear medicine doctor
extracted the imaging features once and then assess the inter
observer ICCs between two doctors. ICCs > 0.75 indicated good
consistency (29), and the first doctor finished the remaining
segmentation (Supplementary Table S1). The final selected
features which were used to construct PET/CT model were
explained as Supplementary Table S2.

Feature Extraction, Subsampling,
Radiomics Signature Construction,
and Model Validation
All patients were randomly divided into training group and test
group at a ratio of 7:3. In the training group, to get a balance data
distribution, a synthetic minority oversampling technique
(SMOTE) was applied to sample generation of minority group
from the joint weighting of optimal features. Then minimum
redundancy and maximum correlation (mRMR) was used to
select features with high correlation with ALK mutation and
without redundancy. Least absolute shrinkage and selection
operator (LASSO) logistic regression was performed to select
the most distinguishable feature subsets in the training group.
The workflow of radiomic analysis was shown in the Figure 2.
Three different radiomic models based on radiomic features of
PET and CT images, including PET + CT radiomic model, CT
radiomic model and PET radiomic model were established
respectively to predict ALK mutation in lung adenocarcinoma
(Figure 3, Supplementary Figures S1 and S2). Radiomic score
(radscore) was calculated by summing the selected features
weighted by their coefficients and the radscore of each patient
was calculated. The formula of radscore calculation was provided
in the Supplementary Methods. The ROC curve was used to
evaluate the diagnostic efficacy, and the critical value was taken
when the Youden index was at its maximum (30). The sensitivity,
specificity, and accuracy of predicting ALK mutation in lung
adenocarcinoma were calculated, and the model was verified in
the test group. DeLong test was performed between the three
models to determine whether the area under the curve (AUC)
values of the three radiomic models for predicting ALK mutation
were statistically different. Finally, 100-folds leave-group-out
cross-validation (LGOCV) was performed to verify the
reliability of our results in PET/CT groups.

Collection of Clinical Characteristics
for Lung Adenocarcinoma
Two nuclear medicine doctors with more than 10 years of
experience in chest diagnosis evaluated the PET/CT images. A
March 2021 | Volume 11 | Article 603882
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total of 16 clinical factors in lung adenocarcinoma were collected
(Table 1) including lobulation, burr, calcification, air bronchial
sign, vacuolar sign, ground glass composition, pleural effusion,
pleural traction, maximum length, location, SUVmax of primary
tumors, age, sex, pre-treatment carcinoembryonic antigen
(CEA), smoking history and clinical stage. Regarding the
clinical factors, the smoking status was simply a binary
variable in this study, including current smoker (1) versus
non-smoker (0). The definition of smoking status was based
on following criteria, current smokers include smokers (patients
have been smoking) and ex-smokers (patients stopped smoke >
15 years, but have history of smoke > 10 pack-years), while non-
smokers include patients never or smoked < 100 cigarettes in
their lifetime. Tumor location is consistent with lung distribution
include right upper lobe, right middle lobe, right lower lobe, left
upper lobe, left lower lobe. CEA (ng/ml) is calculated according
to the value measured by immunoassay method. Clinical stage is
divided into stage I, II, III, and IV; CT evaluation indexes of
lesions: burrs refer to high-resolution CT judgment on the lung
window, thorny and radial protrusions around the lung tumor
lesions; lobes refer to tumor edges are not smooth and
protruding outward, uneven; pleural adhesion refer to the
pleura or visceral pleura is stretched and shrinks towards the
lung cancer; air bronchus signs refer to the HRCT lung window,
combined with multi-planar reconstruction technology, if it can
show bronchial shadow is defined as air bronchial signs; vacuolar
sign refer to gas shadow seen in tumor lesions, generally less than
5 mm; calcification refer to the high-density shadow observed on
the mediastinal window; ground glass composition refer to a
cloud-like or ground glass opacity on the HRCT lung window,
vascular lesions which may be displayed or bronchial movies;
maximum length (cm) refer to primary lesion measuring the
longest diameter on lung window; the PET image measuring
Frontiers in Oncology | www.frontiersin.org 5
metabolic indicator is SUVmax, measurement of lesion
maximum standardized uptake value on PET.

Construction of the Individualized
Prediction Model
Chi-square test, Student t-test and Mann-Whitney U test were
applied to clinical features. The variables with p-value < 0.1 were
included in the univariate logistic regression to calculate the
odd ratio (OR) value and p-value of clinical features. By
combining radiomic features with clinical features, we further
constructed an integrated mode (PET/CT radiomics + clinical).
The clinical model was constructed based on clinical
features to predict ALK mutation status, by Chi-square test or
Wilconxon test and univariate logistic test. Clinical variables
contributing significantly to the model were also incorporated as
well as radiomics score into a multivariate logistic regression to
establish nomogram. Meanwhile, the variance inflation factor
(VIF) was used for collinear analysis, removing factors with VIF
> 10. The independent predictive risk factors were applied to
construct the nomogram.

Statistical Analysis
IBM SPSS 25.0 (http://www.ibm.com) and R language software
(version 3.5.1, http://www.R-project.org) were used for
statistical analysis. The optimal cutoff value was the point on
the ROC curve with the largest positive likelihood ratio in the
training dataset and was used for the validation dataset. A
calibration curve was used to assess the consistency between the
radiomics nomogram and the observed value, the Hosmer-
Lemeshow test was applied to evaluate the difference. The
decision curve was used in the test group to evaluate the clinical
utility of the integrated model to predict ALK mutation in
lung adenocarcinoma.
FIGURE 2 | The workflow of radiomic analysis. Feature extraction: AK software (402), 402 means the total number of extracted features from AK software. ROI,
region of interest; GLCM, gray level co-occurrence matrix; GLSZM, grey level size zone matrix; RLM, run length matrix; mRMR, minimum redundancy and maximum
correlation; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
March 2021 | Volume 11 | Article 603882
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RESULTS

Patient Enrollment
A total of 526 patients with invasive lung adenocarcinoma were
selected. Postoperative pathology confirmed 109 cases of ALK-
positive, accounting for 20.7% of the total, 417 cases of ALK-
negative, accounting for 79.3%. (Figure 1). All the patients were
randomlysubjectedtotrainingcohort(7/10)andtestingcohort(3/10).

Extraction and Selection of Features Derived
From Positron Emission Tomography/
Computed Tomography Images
A total of 402 radiomic features were extracted. The mRMR was
used to select the most distinguishable features. The inter- and
intra-observer correlation coefficients show that 256 and 314 of
402 radiomics were identified as good reproducibility (ICC >
Frontiers in Oncology | www.frontiersin.org 6
0.75) for the CT group and PET group respectively. First, 30
features were retained after mRMR analysis (Figure 3A). Then, a
total of 22 PET/CT radiomic features were identified as robust by
LASSO logistic regression for constructing model (Figure 3B).

The radscore distribution between negative and positive ALK
mutation patients in the training group and test group
respectively were shown in Figure 3C, Supplementary Figures
S1C and S2C, we found that all 3 radiomic models can predict
the ALK mutation status in lung adenocarcinoma patients
(Table 2). We further used cross-validation analysis to
investigate the reliability of the PET/CT model (Figure 3D).

Radiomic Models: Performance
and Validation
We use ROC analysis to evaluate the performance of 3 different
models and found that every model can predict the ALK
A B

D

C

FIGURE 3 | Construction of a PET/CT radiomic model based on PET/CT images. (A) the Selection of the tuning parameter (l) in the LASSO model via 10-fold
cross-validation based on minimum criteria. Binomial deviances of the LASSO regression cross-validation model are plotted as a function of ln (l). The y-axis shows
binomial deviances and the lower x-axis the ln (l). Feature numbers along the upper x-axis indicate the number of features via the change of l. (B) The final retained
features selected by mRMR, y axis was the retained features and x axis shows the corresponding LASSO regression coefficients of them. The fitted coefficients of
the features plotted vs. ln (l). (C) Representative results of PET/CT radiomic model for predicting ALK rearrangement in training (left) and testing (right) group of lung
adenocarcinoma patients. 0, negative ALK rearrangement; 1, positive ALK rearrangement. (D) Cross-validation analysis showed that PET/CT radiomic model has
good reliability to predict ALK rearrangement in training (left) and testing (right) group of lung adenocarcinoma patients.
March 2021 | Volume 11 | Article 603882
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mutation status (Figure 4). For example, the AUC based on the
PET/CT radiomic model, is 0.85 (95% CI: 0.80–0.90) in the
training cohort and 0.86 (95% CI: 0.78–0.94) in the test cohort,
respectively; the AUC based on the CT radiomic model is 0.84
(95% CI: 0.81–0.88) in the training cohort and 0.80 (95% CI:
0.70–0.89) in the test cohort, respectively, the AUC based on the
PET radiomic model is 0.84 (95% CI: 0.81–0.87) in the training
cohort and 0.82 (95% CI: 0.73–0.91) in the test cohort,
respectively. Although the AUC value of ROC curve in PET/
CT radiomic model is higher than the other two models,
there is no significant difference between every two groups
(Supplementary Table S3, DeLong test).
Frontiers in Oncology | www.frontiersin.org 7
Integrated Clinical and Radiomic Model:
Performance and Validation
After clinical model screening, we found that age, burr, pleural
adhesion, maximum length, pleural effusion, calcification,
ground glass opacity and tumor grade were associated with
ALK mutation status by univariate logistic analysis in the
training cohort (Supplementary Table S4). We further
analyzed the 8 clinical features using multivariate logistic, and
found 3 clinical variables with significant influence on the model
(age, burr and pleural effusion), among which 2 clinical features
(age and pleural effusion) were independent predictors of ALK
mutation status (Supplementary Table S5). The ROC curve
TABLE 1 | Clinical features of 526 patients enrolled in this study.

Clinical features Training group (n = 367) Testing group (n = 159)

ALK (-) ALK (+) p Value ALK (−) ALK (+) p Value

Age, year (median, IQR) 63 (55–68) 55 (44–63) <0.001 62 (55–67) 53 (47–64) 0.003
Gender
Male 143 38 0.954 56 17 0.402
Female 147 39 71 15
Smoking
Yes 120 24 0.113 48 10 0.458
No 170 53 79 22
Location
Upper lobe, Right 101 15 0.139 44 7 0.354
Middle lobe, Right 59 22 20 9
Lower lobe, Right 38 19 19 5
Upper lobe, Left 77 13 40 6
Lower lobe, Left 15 8 4 5
CEA, ng/ml (median, IQR) 3.03 (1.71–5.43) 3.20 (1.88–5.52) 0.219 2.65 (1.63–4.87) 6.31 (1.79–28.01) 0.443
Leaflet
(+) 285 74 0.243 125 28 0.004
(−) 5 3 2 4
Burr
(+) 279 69 0.02 122 26 0.004
(−) 11 8 5 6
Pleural adhesion
(+) 101 38 0.021 41 10 0.938
(−) 189 39 86 22
Pleural effussion
(+) 1 14 <0.001 3 7 <0.001
(−) 289 63 124 25
Air bronchogram
(+) 58 14 0.693 27 28 0.29
(−) 232 63 100 4
Vacuole sigh
(+) 46 16 0.295 17 3 0.526
(−) 244 61 110 29
Calcification
(+) 5 4 0.079 1 1 0.302
(−) 285 73 126 31
Ground glass
(+) 129 10 <0.001 62 5 <0.001
(−) 161 67 65 27
Maximum length, cm (median, IQR) 2.50 (1.9–3.0) 3.00 (1.75–4.30) 0.016 2.20 (1.80–3.0) 2.55 (1.93–3.35) 0.162
SUVmax (median, IQR) 7.34 (3.21–11.45) 10.2 (6.04–13.65) 0.753 5.60 (2.90–10.0) 12.4 (8.23–16.36) 0.29
Stages
Stage I 175 22 <0.001 90 5 <0.001
Stage II 29 7 9 1
Stage III 73 22 25 6
Stage IV 13 26 3 20
March 20
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analysis results of the three models were shown in Figure 5A.
The performances of the integrated model and PET/CT radiomic
model were very close in both the training cohort and test cohort
(Table 2). In both cohorts, the integrated model achieved the
best performance with AUC = 0.87 in the training cohort and
AUC = 0.88 in the test cohort (Table 2). A statistically significant
difference in AUC was found between the integrated model and
the clinical model with the DeLong test (p <0.001), and also
between the PET/CT radiomic model and the clinical model (p =
0.023) by DeLong test in the training cohort (Supplementary
Table S6, DeLong test). However, there was no significant
difference between the integrated PET/CT + clinical model and
PET model or CT model alone.

Further, we built a nomogram to predict the presence of ALK
mutation (Figure 5B). The calibration curves of the nomograms
were shown in Figure 5C. This curve showed the good
calibration of the nomogram in terms of the agreement
Frontiers in Oncology | www.frontiersin.org 8
between the estimated and the observed ALK mutation status
in the training cohort (p = 0.142) and test cohort (p = 0.254).
Finally, we token steps to evaluate the clinical usefulness of these
models by decision curve analysis, as shown in Figure 5D, the
benefits of an integrated model based on radiomics and clinical
features were relatively higher than model based on clinical
features alone, especially between 20–80% high risk threshold.
DISCUSSION

The application of tyrosine kinase inhibitors against specific gene
targets (EGFR, ALK and ROS1) has revolutionized the treatment
for lung adenocarcinoma (31). ALK inhibitors, such as
Crizotinib and Ceritinib, have been widely used to treat
cancers with mutations of ALK, especially for non-small cell
lung cancers (32, 33). For example, a small subset of lung cancer
TABLE 2 | The performance of radiomic models in training and testing groups.

Models AUC value (95% CI) Sensitivity Specificity Accuracy Threshold

Training group
PET/CT 0.85 (0.80–0.90) 0.842 0.727 0.818 0.569
CT 0.84 (0.81–0.88) 0.87 0.701 0.798 0.571
PET 0.84 (0.81–0.87) 0.776 0.771 0.774 0.547
PET/CT + Clinical 0.87 (0.82–0.92) 0.579 0.943 0.837 0.522
Testing group
PET/CT 0.86 (0.78–0.94) 0.8 0.844 0.809 0.644
CT 0.80 (0.70–0.89) 0.824 0.719 0.803 0.543
PET 0.82 (0.73–0.91) 0.696 0.844 0.726 0.54
PET/CT + Clinical 0.88 (0.82–0.95) 0.625 0.94 0.86 0.565
Mar
ch 2021 | Volume 11 | Art
AUC, aera under ROC curve; CI, confidence interval. DeLong test of ROC curves from PET/CT, CT, PET models was shown in Supplementary Table S3. DeLong test of ROC curves
from Integrated, PET/CT radiomic and Clinical models was shown in Supplementary Table S6.
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FIGURE 4 | ROC curve analysis of three radiomics models, PET/CT, CT, and PET in training group (A) and testing group (B), respectively.
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FIGURE 5 | Evaluates the performances of integrated PET/CT radiomics-
clinical model. (A) Receiver operating characteristic (ROC) curves of
predictive performances of different methods in the training cohort (left) and
test cohort (right). The curves of 3 colors represent different models: red,
PET/CT radiomics + clinical model; blue, PET/CT radiomics model; green,
clinical model. AUC, area under the curve. (B) Nomogram for ALK mutation
prediction. The nomogram was developed by integrating radiomic score with
3 significant clinical features (age, burr and pleural effusion). The probability
of each predictor can be converted into the “points” scale at the top of the
nomogram. By sum up the points for each predictor and locate in the “Total
points” scale, we can predict the probability of ALK mutation in the “Risk”
scale. (C) Calibration curve with Hosmer-Lemeshow test of the nomogram in
the training cohort (left panel) and test cohort (right panel). Calibration curve
shows the calibration of the model in terms of consistence between
predicated risk of ALK mutation and real observed ALK mutation status. The
x-axis represents the predicted risk of ALK mutation and y-axis represents
the real ALK mutation status. (D) Decision curve analysis for the
nomograms. The y-axis measures the standardized net benefit. The net
benefit is calculated by adding up the true positive results and subtracting
the false positive results, weighting the latter by a factor relevant to the
relative harm of an undetected cancer compared with the harm of
unnecessary treatment. The red line represents the PET/CT radiomics and
clinical features model, the green line represents the PET/CT clinical features
model, the gray line represents the assumption than all patients are negative
for ALK mutation and the blue line represents the assumption that all
patients are positive for ALK mutation.
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patients with rearrangements of ALK or ROS1 genes are sensitive
to ALK inhibitors (34, 35). Therefore, the screening of patients
with ALK mutation has become a routine test in NSCLC
treatments. Currently, four primary tools for detecting ALK
rearrangement have been used in the clinic, including
fluorescence in situ hybridization, immunohistochemical
staining, reverse transcription-polymerase chain reaction (RT-
PCR) and next-generation sequencing (36). Each of these
techniques has both its advantages and limitations (37). For
example, ALK rearrangements with distinct breakpoints and
multiple fusion partners (38). Also, all these examinations need
biopsy or surgical tumor specimens. Accordingly, these
traditional ALK tools usually present a significant technical
challenge. In order to non-invasively identify patients with
ALK mutations, this study intends to develop a predictive
radiomic model based on PET/CT images.

Recently, several machine learning models based on CT
images and clinical features have been developed to predict
ALK rearrangement in lung adenocarcinoma (24, 39). The aim
of the current study is to construct a machine learning model
that can be used to non-invasively and automatically detect
ALK mutation based on PET/CT images from tumor lesions of
lung adenocarcinoma patients and clinical characteristics of
these patients. First, we constructed 3 different models using
PET/CT, CT and PET radiomic features, respectively. Our
findings showed that the PET/CT radiomic model is slightly
better than the other two models to predict ALK mutation, but
there is no significant difference between each of the two
models, which suggests that our new model based on PET/CT
radiomic features has advantage to predict ALK mutation status
with the highest AUC value (0.86) in the test cohort. There are
two PET radiomic features have been selected to construct
PET/CT model. First, the PET_Percentile10 in statistics
A

B

D

C

FIGURE 5 | Continued
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indicates that the value below which a given percentage of
observations in a group of observations fall 10%. Second, the
PET_differenceEntropy means the randomness/variability in
neighborhood intensity value differences. The final retained
features used in our model includes more CT radiomic features
than PET radiomic features after mRMR and LASSO selection,
which may be because the images used for delineation in this
study are 5mm PET images and 1mm thin-layer resolution CT
images. The extracted 1 mm CT images have higher resolution
than 5 mm PET images, which also suggests that adding a thin
layer of 1 mm CT scan in conventional PET/CT scans can help
to extract more features.

We further took steps to build an integrated model by
combining PET/CT radiomic features with clinical
characteristics and found that this integrated model has the
advantage to predict ALK mutation with the highest AUC value
(0.87) in our training cohort, which is slightly higher than the
AUC value (0.85) in the training cohort from PET/CT radiomic
model but there is no significant difference between these two
models. Notably, the integrated model has a significant
advantage to predict ALK mutation status compared to the
clinical model (AUC = 0.76).

There are several limitations in the current study. First, one of
the limitations of this study is that the model was constructed
based on the images that acquired and processed in the same
way. Parameter consistency is both our weakness and our
strength, and the data of different parameters need to eliminate
the batch effect of data (40). We will collect more data that
acquire in different parameters to validate the generalization of
this model in our next study. Second, this predictive model was
constructed based on PET/CT scans from a selected population
of lung adenocarcinoma patients in one single medical center,
results derived from this model cannot represent broad ALK
mutation status of the general lung adenocarcinoma population.
Therefore, the predictive effect of this model needs to be
validated in independent cohorts from multi-centers. Third,
ALK rearrangements are almost always mutually exclusive with
other driver mutations, such as EGFR and KRAS mutations in
lung adenocarcinoma. Therefore, the mutation of other
frequently mutated genes in lung adenocarcinoma needs to be
counted in future studies. Last, only two PET features were
employed to build this model compared to 20 CT features, and
there is no significant difference between PET/CT radiomic
model and CT radiomic model, which means that this model
was built mostly on CT images-based structural features rather
than PET images-based metabolic features. Therefore, more PET
features should be extracted and selected to develop a more
powerful model in the future.

As several other studies have pointed out previously that there
is no “one fits all” approach, although several machine learning
algorithms have been employed in radiomics model
development for feature selections (41–45). Nevertheless, the
integrated model developed in the current study may serve as a
preliminary model to support future prospective studies using
machine learning algorithms to identify ALK mutation status for
lung adenocarcinoma patients. Future studies should be
Frontiers in Oncology | www.frontiersin.org 10
performed with a larger scale of sample size and external
cohorts to validate our results.
CONCLUSIONS

In conclusion, this study highlights the feasibility of non-invasively
detecting ALK genetic status in lung adenocarcinomas using a
machine learning model based on combined PET/CT radiomic
features and clinical characteristics. The detection of ALKmutation
status using this approach might be useful for informing treatment
strategies for lung adenocarcinoma patients.
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