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We investigated germline variation in pancreatic ductal adenocarcinoma (PDAC)
predisposition genes in 535 patients, using a custom-built panel and a new
complementary bioinformatic approach. Our panel assessed genes belonging to DNA
repair, cell cycle checkpoints, migration, and preneoplastic pancreatic conditions. Our
bioinformatics approach integrated annotations of variants by using data derived from
both germline and somatic references. This integrated approach with expanded evidence
enabled us to consider patterns even among private mutations, supporting a functional
role for certain alleles, which we believe enhances individualized medicine beyond classic
gene-centric approaches. Concurrent evaluation of three levels of evidence, at the gene,
sample, and cohort level, has not been previously done. Overall, we identified in PDAC
patient germline samples, 12% with mutations previously observed in pancreatic cancers,
23% with mutations previously discovered by sequencing other human tumors, and 46%
with mutations with germline associations to cancer. Non-polymorphic protein-coding
pathogenic variants were found in 18.4% of patient samples. Moreover, among patients
with metastatic PDAC, 16% carried at least one pathogenic variant, and this subgroup
was found to have an improved overall survival (22.0 months versus 9.8; p=0.008) despite
a higher pre-treatment CA19-9 level (p=0.02). Genetic alterations in DNA damage repair
genes were associated with longer overall survival among patients who underwent
resection surgery (92 months vs. 46; p=0.06). ATM alterations were associated with
more frequent metastatic stage (p = 0.04) while patients with BRCA1 or BRCA2
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alterations had improved overall survival (79 months vs. 39; p=0.05). We found that
mutations in genes associated with chronic pancreatitis were more common in non-white
patients (p<0.001) and associated with longer overall survival (52 months vs. 26;
p=0.004), indicating the need for greater study of the relationship among these factors.
More than 90% of patients were found to have variants of uncertain significance, which is
higher than previously reported. Furthermore, we generated 3D models for selected
mutant proteins, which suggested distinct mechanisms underlying their dysfunction, likely
caused by genetic alterations. Notably, this type of information is not predictable from
sequence alone, underscoring the value of structural bioinformatics to improve genomic
interpretation. In conclusion, the variation in PDAC predisposition genes appears to be
more extensive than anticipated. This information adds to the growing body of literature on
the genomic landscape of PDAC and brings us closer to a more widespread use of
precision medicine for this challenging disease.
Keywords: pancreatic cancer, genetic predisposition, medical oncology, precision oncology, genomic data
interpretation, survival analysis, structural bioinformatics
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a significant unsolved
problem in modern healthcare (1) because most patients have
metastatic disease at the time of diagnosis. Therefore, methods for
risk assessment and early detection are top priorities in the quest to
improve the survival of affected patients. The foundation of most
early diagnosis strategies is to identify at-risk individuals through an
improved understanding of genetic risk factors. Importantly, this
may also allow for the development of new therapeutic targets as we
define the molecular and epigenetic profile of affected patients.
Recent evidence suggests that genomic variations in cancer
predisposition genes are found at a higher prevalence in patients
with cancer than has been previously understood (2, 3). Known
pathogenic variants in these genes are rare, and most of the genetic
alterations observed in patients with cancer are novel and therefore
classified as variants of uncertain significance (VUS). A finding of
VUS leaves both geneticists and other members of the clinical team
with an inability to translate such information to a defined
treatment plan and is unable to clarify cancer risk for family
members. Yet, understanding of what criteria should be used in
assessing VUS continues to progress. For example, studies are
revealing un-recognized Mendelian causes of complex diseases (4)
genetic epistasis (5) the rate of somatic variation in human blood
cells (6–9), individual alleles in the same gene with different
phenotypes (10), and private variants that can be pathogenic (11–
13). Further, significant increases in PDAC patient survival with
underlying homologous recombination deficiency (14) and
molecular-targeted agents (15), combined with a high incidence
of pathogenic germline variation not identified by current clinical
protocols (16, 17). Thus, there is evidence that germline
contributions to PDAC etiology and outcomes may be broader
than currently recognized.

Previous studies examining germline contributions to PDAC
have recently identified associations with previously established
DNA damage repair deficiency mutations and proto-oncogenes
2

such as KRAS (2, 3, 18, 19). However, since PDAC is uncommon
in the general population (1), the complete repertoire of genomic
variation that underlies this disease remains to be fully
characterized. For example, most previous studies of the
germline alterations in PDAC have used different small to
medium-sized gene panels, making the interpretation of
genetic variation across all studies difficult to compare. In
addition, bioinformatics approaches used to identify and
classify genomic variants differ significantly, again leaving the
interpretation of genomic data unclear and inconsistent. We
believe that the design of specific approaches to increase the yield
of clinically relevant information is needed.

Toward this end, we designed the current study to assess
germline genetic variants in a cohort of 538 patients with PDAC
using a newly developed custom gene panel consisting of genes
related to DNA-Damage Repair (DDR), cell checkpoint and
cycle, pancreatitis and cell migration. Importantly, we
employed a multi-tier approach for genomic annotation and
summarized findings at the gene, patient, and cohort level.
Genomic annotation is a critical step in analysis wherein the
power of large database is applied to determine if variants
observed in our cohort have been previously observed in
others. Most commonly, germline databases are consulted for
germline studies. In this study, we chose a more integrated
approach by leveraging data spanning inherited disorders,
germline cancer predisposition, and somatic mutations in
many human tumor types. We found non-polymorphic
protein-coding pathogenic variants in 18.4% of samples (27.1%
when including non-coding pathogenic variants), reflecting both
the incidence of known inherited cancer syndromes, as well as
germline diseases with a potential contribution to PDAC.
Because of differences in term use between genetics and
oncology practices, we will use the terms variant and mutation
somewhat interchangeably and distinguish by context; all
variants in our cohort data are germline. All patient samples
had a coding VUS that has been previously reported in other
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studies and 90% of samples carried newly described novel VUS.
Moreover, using molecular models of the proteins to further
investigate the VUS, we identified alteration patterns in 3D, often
around specific functional sites, suggesting possible mechanisms
affected by those variants. Finally, we assessed the impact of
genomic sub-groups derived from our analytic approach on
patient outcomes. We are optimistic that affordable custom-
designed panels, when combined with a multi-tier annotation
approach, will help to inform both genomic sciences and the
evolving field of personalized medicine for patients with PDAC.
Our results build from ideas, nascent in the field, about genomic
features with mechanistic and biomedical relevance that we
believe will expand the utility of precision oncology by
enabling future research to increase the number of VUS that
are functionally interpreted.
METHODS

Study and Experimental Design
Patient samples included 538 isolates of peripheral blood
mononuclear cells (PBMC) obtained from our PDAC biobank
(whole blood) for germline DNA sequencing. This study was
performed according to the Medical College of Wisconsin
(MCW) IRB and used the Surgical Oncology Tissue Bank
(PRO # 12151), which provided the samples, and the
Pancreatic Cancer Clinical Database (PRO # 12479), which
provided all clinical data. Germline DNA was isolated from
cell pellets, using DNeasy blood and tissue spin columns (Qiagen),
and concentrations measured fluorescently with minimum
concentrations at 15ng/uL. We developed a custom gene panel
targeting 53 genes (Supplemental Table S1) gathered for their
known roles across DNA damage repair, matrix reorganization,
pancreatitis risk, and others. Genes represented three groups,
namely 1. genes most frequently linked to pancreatic cancer
(e.g., ATM), 2. genes associated to preneoplastic conditions of
the pancreas, and 3. genes seldom found in PDAC, but which are
associated with other neoplastic and non-neoplastic diseases (2, 3,
18–21). Including the last category is important since many
individuals of families carrying pathogenic variants that
influence the development of cancer, often induce neoplastic
transformation in other organs. Pathobiologically, these genes
belong to the following ontological categories: DNA damage
response (n=19), cell cycle regulators and checkpoints (n=17),
pancreatitis (n=5), and cell adhesion or migration (n=6). Several
genes have overlapping functions, such as TP53 and ATM, which
are involved both cell cycle and DNA damage sensing. Thus, our
testing platform is inexpensive and informative, two key
characteristics that can make this tool widely used in clinical
practice. Amplicons were designed with Illumina’s custom panel
software using the GRCh37 assembly. We called this panel the
MCW PDAC Germline AmpliSeq Panel. Library preparation and
sequencing was completed at MCW’s Genomic Science and
Precision Medicine Center (GSPMC). Briefly, 10 ng of DNA
input for each of two primer pools was aliquoted and prepared
using the AmpliSeq for Custom panels kit (Illumina) with 16
Frontiers in Oncology | www.frontiersin.org 3
cycles of gene specific amplification. Targets were enzymatically
digested before ligation of sample specific indexes and library
clean up. Prepared libraries were then amplified an additional
seven cycles, cleaned up with AMPure XP beads (Beckman
Coulter, Life Sciences) and assessment of library quality
completed with the Fragment Analyzer (Agilent, Standard
Sensitivity NGS fragment Analysis). Quantified libraries were
then pooled (with 56–77 samples per each of eight pools) and
paired-end sequenced on the Illumina MiSeq platform at
2x300bp. Sequencing was performed with a median target
coverage of 309 reads (Supplemental Table S1).

We generated quality metrics at all stages in the process,
including sample, library, flowcell, sequence mapping, and read
and base quality (Supplemental Text). Data was processed using
our bioinformatics workflow build using GATK v3.7 and
HaplotypeCaller (22).

Annotation of Genomic Variants
To interpret genomic variation, and as is common in the field
(23), we gathered existing annotations from national consortia
resources. However, we took a more integrated approach than is
often used and leveraged across the germline resources of
Human Gene Mutation Database (HGMD, 2018.1) (24),
ClinVar (2018.05) (25), and Genome Aggregation Database
(gnomAD, r2.0.2) (26, 27), and cancer resources of Catalogue
Of Somatic Mutations In Cancer (COSMIC, v85) (28, 29), and
The Cancer Genome Atlas (TCGA, mc3.v0.2.8 public mutation
calls) (30). We used the BioR toolkit (v5.0.0) (31), to merge these
resources and annotate our cohort. All analyses were made on
genome version GRCh37. We used snpEff (v4.3i) (29) and
ensemble canonical transcripts (GRCh37.75) to annotate and
predict the effect of each variant on protein coding sequences.
Protein-coding variants were defined as those resulting in amino
acid substitution, in-frame deletions or insertions, frameshifts,
splice donor and acceptor alterations, and start/stop codon
alterations. The remaining variant types were considered non-
coding. Database annotations were used to categorize variants
according to their clinical significance (Supplemental Figure
S1). Each variant was annotated with the germline databases,
ClinVar and HGMD, and with somatic variant databases of
cancer, COSMIC and TCGA. All variants were classified in one
of six categories: pathogenic, benign, reported VUS, novel VUS,
somatic VUS, and other. We defined pathogenic variants as those
with no conflicting classifications between HGMD and ClinVar,
and that were identified as (likely) disease causing mutation
(DM/DM)?, disease-associated polymorphisms with supporting
functional evidence (DFP), or (likely) pathogenic. We defined
benign variants as (likely) benign variants without other
conflicting annotation. We defined variants as VUS if there
were conflicting annotations within or between HGMD and
ClinVar, if they had only an explicit annotation of VUS, or if
annotated as functional polymorphism (FP) or disease associated
polymorphism (DP) in HGMD. We classified a variant’s
significance as “other” when the only annotation was as a risk
allele or a drug response phenotype. HGMD retired records (R)
were ignored. Because pathogenicity is meant to describe the
effect of a variant in germline disease, variants observed
March 2021 | Volume 11 | Article 606820
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somatically have not been assessed in the same way as those
observed in inherited disorders. For that reason, variants that
have only been observed in somatic databases were classified as
somatic VUS and are listed in Supplemental Table S2. Finally,
variants with no annotation in any of the databases considered
(HGMD, ClinVar, COSMIC or TCGA), were designated as novel
VUS. We re-coded variant classes from ClinVar and HGMD to
use the same terms of pathogenic, VUS and benign. The protein-
based scores generated by CADD, Revel, SIFT, Fathmm, Lrt and
Metalr were converted to the scale Deleterious, Tolerated or Not
Generated (NG). The thresholds for deleterious scores were set at
each tool’s default values, with the exceptions of CADD (score ≥
30, corresponding to the most damaging 0.1% of variants) and
Revel (score > 0.5). We defined functional gene sets for use in
annotating our gene panel and interpreting the potential effect of
variants in our cohort. DNA damage response pathways were
defined as specified by The Cancer Genome Atlas Analysis
Working Group (32). We defined cell cycle or cycling
checkpoints by a combination of Reactome (G2/M checkpoints,
cell cycle checkpoints, and regulation of mitotic cell cycle), KEGG
(cell cycle), and BioCarta pathways (cell cycle), augmented by the
results from Fischer (33) and Whitfield (34); we used these
pathways as organized by MSigDB (35). There is a known
association between chronic pancreatitis and development of
pancreatic cancer (36), but varying reports on the outcomes
associated with chronic pancreatitis among PDAC patients (37,
38). Thus, to investigate potential associations with germline
genetic factors related to PDAC and CP, we defined a chronic
pancreatitis genetic pathway by alterations of CFTR, CTRC, CPA1,
SDHA, SDHB, SDHC, or SDHD. SDH subunits were considered
due to the indirect link to HIF1a regulation and pseudohypoxia
that has growing evidence supporting (39–41).

Calculations of Allele Enrichment and
Depletion
For each variant, we identified its minor allele frequency (MAF)
within our cohort and in the currently healthy adult population
(gnomAD) (26). The ratio of these two MAFs is an estimation of
the enrichment or depletion of the variant, which may be a signal
for new risk or protective alleles, respectively. We will refer to
variants as “enriched” or “depleted”, according to MAF ratio in our
cohort relative to gnomAD. We defined polymorphic variants as
those with a MAF of at least 5% in gnomAD. We defined “private”
variants as those seen only in one patient sample. We used Fisher’s
Exact test to compare the number of alleles for a given variant
observed in our cohort compared to the same in gnomAD and
report the one-sided test for a greater occurrence in our cohort.

Molecular Modeling and Structural
Bioinformatics
We modeled five select genes as their protein products in 3D, to
facilitate interpretation of the observed genomic variants. We
used homology-based methods (42, 43) combined with review of
the models for quality control (44) and integration with electron
microscopy density maps, when available. To model ATM, we
utilized the 5.7Å electron microscopy map of human dimeric
Frontiers in Oncology | www.frontiersin.org 4
ATM deposited in the PDB (45) [reconstructed in 5np0 (46)]. To
model the MutSa complex, we used the 2.75Å crystal structure of
ADP-bound human MSH2/MSH6 heterodimer [2o8b (47)]. The
PALB2 model was built from the 1.9Å crystal structure of the C-
terminal WD40 domain of human PALB2 [2w18 (48)] and the
CHEK2 model from the 3.0Å crystal structure of the human
dimeric CHEK2 [3i6u (49)]. The POLE models were based on
the N-terminal 2.2Å crystal structure of Saccharomyces cerevisiae
DNA Pol epsilon [4m8o (50)] and the C-terminal 4.98Å electron
microscopy map of Saccharomyces cerevisiae DNA Pol epsilon
[reconstructed in 6hv9 (51)] along with human POLE sequence
to create human homology model structures. Each human
homology model structure was created with Discovery Studio’s
Create Homology Models tool (Biovia, v19.1.0.18287). The
models were annotated with domains as identified in Pfam
32.0 (52) accessed through neXtProt (53). Variants were
mapped to our 3D models using custom scripts and visualized
using PyMOL version 1.9.0 (54).

Clinical Outcomes Association Analysis
Using a prospectively maintained pancreatic cancer database at
MCW, we reviewed consecutive patients with biopsy-proven
PDAC from 2009 to 2017. Statistics were performed as
previously described (55, 56). Briefly, categorical variables were
compared using Chi-squared test or Fischer’s Exact test.
Continuous variables were analyzed using the Mann-Whitney
U test. Survival and follow-up were calculated from the time of
initial diagnosis to the date of death or last follow-up, with deaths
from any cause included in the survival analysis. Overall survival
was estimated using the Kaplan–Meier method and the log-rank
test was used to compare survival distributions between groups.
Survival and outcomes analyses were performed using Stata 13.1
(StataCorp, College Station, TX, USA).
RESULTS

Identification of a High Level of Genomic
Variation in PDAC-Predisposition Genes in
a Referral Population with Confirmed
Diagnosis of Pancreatic Cancer
For the identification, annotation, classification, and phenotypic
association of known and novel variants in PDAC-predispositions
genes, we sequenced DNA from peripheral blood monocyte cells
obtained from a cohort of 538 patients with histologically
confirmed PDAC (Table 1). Sequencing each sample at a
median depth of 309.2x (± 88.5) identified a total of 5,961
variants, comprised of 4,968 non-coding (83%) and 993 (17%)
coding alterations (Table 2, Supplemental Tables S1, S3),
constituting both previously described and a large percentage of
novel variants. For interpreting this extensive variation, we tested
an enhanced annotation approach wherein we combined
information derived from inherited disorders (ClinVar and
HGMD) and from studying somatic variation (TCGA and
COSMIC). We categorized the variants found in our cohort as
pathogenic, benign, previously reported variant of unknown
March 2021 | Volume 11 | Article 606820
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significance (VUS), novel VUS, somatic VUS, or other (see
Methods; Supplemental Figure S1). This classification yielded
75 known pathogenic variants, which represent 1.3% of the all the
variants reported herein, in 25 of the 53 genes tested. Five of these
75 variants are polymorphic, reducing but not eliminating their
likelihood of disease relevance; we reported polymorphic variants
but excluded them for most of our analyses. The remaining 70
were observed in 27.1% of patient samples. Notably, we also
discovered a significant number of VUS, comprising 4780 (80.2%)
of the total (Figure 1A) and 780 (78.5%) of coding variants
(Figure 1B). The majority of VUS affecting coding regions were
previously reported (53.6%) and missense or frameshift, while
Frontiers in Oncology | www.frontiersin.org 5
non-coding variants were largely novel VUS (74.9%) and intronic
(including splice sites) or synonymous (Supplemental Table S4).
We quantified the ratio of non-synonymous to synonymous
variants at the cohort (0.99) and per-patient level (0.49 ± 0.08).
This difference in the ratio between the cohort and average across
patients indicates the relative pressure against coding variation in
these genes and underscores the importance of newmethods, such
as we use below, to interpret private missense mutations. Thus, we
observed a large set of novel variants, many of which are
protein coding and private, motivating a need for more
integrated approaches for evaluating their potential disease and
clinical relevance.

We hypothesized that the pathogenic variants we observed in
our cohort could contribute to disease risk and underlying but
un-recognized familial PDAC (FPC), or de novo occurrence of
risk alleles. We were able to complete records review for all
patients with samples containing pathogenic variants and found
that 33 (23%) had a personal history of cancer. Thus, the
incidence of FPC is likely even higher than 23% in our cohort.
Compared to the national average of 10% FPC (57), it is likely
that some of these alleles represent un-recognized cases of FPC.

Pathogenic variants observed in our cohort (Supplemental
Table S5) affected DNA damage repair genes that have known
association with cancer risk in the pancreas and other organs.
Truncating and frameshift loss-of-function (LoF) changes account
for 47 of these alterations, while 12 were missense, and 16 were
non-coding. LoF alleles were most common in ATM (14 variants),
BRCA2 (6), PALB2 (4), and BRCA1 (3), as well as CFTR (6), which
is linked to the development of chronic pancreatitis, a disease that
associates with pancreatic cancer development (2, 3, 18–21). In
addition, we found missense variants primarily affecting CFTR (4
variants) and MUTYH (2). The non-coding variants mainly
affected DNA repair genes, such as MUTYH (four variants),
PMS2 (2), and MHS6 (2). Moreover, we correlated the
pathogenic variants identified in our cohort with the phenotypes
reported from previous cases, which showed that most of them
were directly associated with cancer or cancer risk (Figure 1C,
inset).We found that 10 of the pathogenic variants were associated
to breast cancer, 11 to cystic fibrosis, and 9 to ataxia telangiectasia
(Figure 1C), further supporting their relevance to patient disease
in our cohort. Additional mutations have been previously reported
from other cancer types, but they affect DNA damage sensing and
repair pathways, which is a pan-cancer mechanism that is clearly
relevant to PDAC. Finding these variants highlights our current
incomplete understanding of the interplay between germline and
somatic disease mechanisms, specifically the potential interplay of
growth and differentiation pathways that are operational in
cancer development.

A subset of nine pathogenic variants that have previously
been associated with different forms of pancreatic cancer (six
variants) and pancreatitis (three variants) affected 5.4% of the
cohort (29 patients, Table 3). All of these variants had a
frequency ratio >1.9 in our cohort as compared to gnomAD,
and four with p < 0.01, indicating a potential enrichment in our
cohort and thus a potential contribution from these alleles in
PDAC development or progression (Table 3). All variants with
TABLE 1 | Demographics of patients in the cohort.

Patients Enrolled n = 538

Age, years median (IQR) 65 (13)
Gender, n (%)

Female 252 (47)
Male 286 (53)

Race, n (%)
White 477 (89)
Black 35 (7)
Hispanic 12 (2)
Asian 7 (1)
Native American/Alaskan 2 (0)
Other 5 (1)

Radiographic Stage, n (%)
Resectable 165 (31)
Borderline 180 (33)
Locally Advanced 109 (20)
Metastatic 84 (16)
Pre-treatment CEA, ng/ml median (IQR) 3.5 (4.6)
CA19-9 producers, n (%) 303 (69)
Pre-treatment CA19-9, U/ml median (IQR) 321 (838)
Post-treatment CA19-9, U/ml median (IQR) 53 (132)
Post-surgery CA19-9, U/ml median (IQR) 19 (28)

Patients with Survival Data n = 461
Vital Status (Dead), n (%) 319 (69)
Median Overall Survival – All patients, months (n)

Resectable 45.1 (n=154)
Borderline 27.2 (n=164)
Locally Advanced 29.1 (n=81)
Metastatic 10.6 (n=62)

Median Overall Survival – Resected patients, months
Resectable 55.1 (n=137)
Borderline 38.2 (n=112)
Locally Advanced 42.4 (n=37)
TABLE 2 | Distribution of variant classification based on their potential impact on
the protein sequence.

Non-coding Coding % Coding

Pathogenic 16 59 78.7%
Reported VUS 261 532 67.1%
Novel VUS 3724 229 5.8%
Somatic VUS 15 19 55.9%
Benign 948 153 13.9%
Other 4 1 20.0%
TOTAL 4,968 993 16.7%
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p > 0.01 were private in our cohort and rare in gnomAD, which
does not necessarily preclude their contribution to rare diseases,
such as pancreatic cancer, with a later age of onset (58, 59). Of
the six pancreatic cancer variants associated with an elevated
cancer risk, five were private to individual patients, and the
variant in TP53 (p.Arg248Gln) was identified in two individuals.
Two rare population variants in BRCA2 (< 0.026% MAF) and
two in BRCA1 (0.02% MAF) were reported in our cohort (Table
3). We also identified rare variants in PALB2 and TP53. The
c.743G>A, p.R248G in TP53 has been associated with multiple
phenotypes, including pancreatic adenocarcinoma. Interestingly,
other studies of PDAC have reported two additional variants
with different amino acid substitutions at the same site as
p.R248G, supporting its relevance in our cohort (60–62). In
summary, these genetic variants have a direct mechanistic role in
PDAC, and as germline mutations they should be integrated into
the evolving field of precision medicine.
Frontiers in Oncology | www.frontiersin.org 6
Subsequently, we evaluated whether our subjects carried
mutations that supported the pancreatitis-to-pancreatic cancer
evolution hypothesis (63). Interestingly, all three pancreatitis
pathogenic variants examined were more prevalent in our cohort
than the general population, two were associated with non-
hereditary pancreatitis that included chronic, early onset
pancreatitis (CPA1, ratio of 8.54) and chronic pancreatitis (CTRC,
ratio of 1.95), while one variant was associated with hereditary
pancreatitis (CFTR, ratio of 5.04). Expanding our view to all variants
found in CFTR, we observed 23 coding VUS in 393 patients (73% of
the cohort), and 11 pathogenic coding variants (Supplemental
Table S5) in 28 individuals (5.2% of the cohort). Of these coding
variants, 22 were rarely observed in the normal healthy population,
but affected 76 patients (14.1%) in our cohort. The c.815T>C and
c.4129G>C variants represent a novel and knownVUS, respectively,
and were seen in one patient each but absent from gnomAD.
Two CFTR coding pathogenic variants [c.1521_1523delCTT
A B

C

FIGURE 1 | Genetic variants observed in our cohort are novel or have been previously associated with cancer. Clinical significance of variants was synthesized from data
aggregation (see Methods) with discrepancies and disease context (germline or somatic) summarized as different types of VUS (Supplemental Figure 1). (A) Classification of
all variants and (B) of coding variants shows the majority to be VUS. The portion of pathogenic variants is highlighted and those variants are used in the following summary.
(C) The top 20 phenotypes associated with previously observed germline pathogenic variants indicates that many are related to cancer or cancer predisposition. Thus, we
curated the phenotypes (Inset) to quantify this relationship and found that most are directly associated with cancer or with cancer risk.
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(p.Phe508del) and c.3909C>G (p.Asn1303Lys)], were recurrent in
our cohort, found in 16 and three patients, respectively
(Supplemental Table S5). Both variants are associated with cystic
fibrosis in HGMD. Overall, we identified 16 coding variants with
potential clinical impact (pathogenic, reported VUS or novel VUS)
that were detected in more than one patient in our cohort
(Supplemental Table S6); three were absent in gnomAD and a
further six had p<0.01 for enrichment. For these reasons, we
propose that these CTFR variants, with the potential to modulate
lung and pancreatic mucosal functions, should be considered for
further validation studies to understand their disease or response
associations, as well as underlying mechanisms beyond the
simplification of associating them with chronic pancreatitis.

Of note, chronic pancreatitis has an incidence of 50/100,000
people (36, 64), which is less than the rate of pathogenic
pancreatitis alleles observed in our cohort. The CTRC
pancreatitis pathogenic allele (c.*86A>G) (24) was detected in
17 (3.2%) patients and is less common in the healthy population
(0.98% MAF; Supplemental Table S5). A CPA1 pathogenic
pancreatitis allele was identified in 4 patients (0.74%) but is
rare in the healthy population (0.044% MAF with no
homozygous individuals). These genetic mutations are likely to
play a role in pancreatic cancer by increasing the probability of
the tissue to become dysregulated in function, altered in
morphology, and inflamed (65). The increased frequency of
pancreatitis-associated variants in our cohort of patients with
confirmed PDAC compared to the currently healthy adult
population supports this view. Thus, this data should alert
physicians to the fact that some patients with pancreatic cancer
may have suffered from an unsuspected, mild form of chronic
pancreatitis which may predispose to an increased risk for
PDAC – an event which could potentially be modulated by
alleles predisposing to either disease.
Novel VUS in PDAC-Predisposition Genes
Provides Evidence of Potentially Under-
Recognized Mechanisms of Disease
Our analyses underscore that many of the protein-coding genetic
variants observed in our study have neither been reported in
Frontiers in Oncology | www.frontiersin.org 7
germline nor in somatic genomic disease databases, making
them novel VUS (229 of 993 variants, 23.1%, Table 2, Figure
1B) and requiring separate, further considerations. Since our
study was designed to focus on genes with relevance to PDAC
predisposition, it can identify novel variants with potentially
unrecognized contributions to risk. At the gene level, BRCA2,
POLE, NF1, ATM, and CFTR had the most novel coding VUS
(Figure 3C). However, when we also considered non-coding
novel VUS, we observed the same affected genes, plus additional
genes, such as TSC2, SMARCA4, and POLD1 (Supplemental
Figure 3C). The importance of these observations is that they
indicate the potential contributions of the affected genes to DNA
Damage Repair and epigenetic regulation, with the latter an
increasingly recognized mechanism linked to pancreatic cancer.

We subsequently tested the idea that patients with PDAC may
be enriched for novel or rare alleles in their germline, which would
indicate potential disease predisposition (26). First, we investigated
the 174 (76%) novel coding VUS that have never been observed in
the healthy population. Within our cohort, 95 of them were seen in
a single sample, 79 in at least two samples, and 10 in more than 10
samples. These 10 alleles were in CPA1 (3 variants), BRCA2 (2),
PTEN, SDHD, MRE11A, NF1, and MSH2. Thus, we inferred that
their recurrence in our cohort and absence in the reference healthy
population render these variants of interest for future mechanistic
experimentation using cell and animal models. Second, 55 novel
coding VUS that have been observed in the healthy population were
either seen more frequently than expected (enriched) or less
frequently than expected (depleted) in our cohort. Of them, 53
were rare (Supplemental Figure S2A) and two were polymorphic.
Among the 53, 48 were 2-fold enriched and 37 10-fold enriched
(Supplemental Figure S2B). These data suggest the possibility for
an unrecognized genetic contribution to PDAC risk, due to the
concentration of these alleles that we found in affected individuals.
These alleles were spread across many genes with FANCG (five
variants) as the most frequently altered gene, followed by BUB1B (4)
and PALLD (4). Only one allele in PDGFRA (c.3123-69_3123-
68insG) was observed as 2-fold depleted (Supplemental Figures
S2A, B), suggestive of a protective or neutral association to the
disease. In summary, we identified a larger set of novel variants,
which indicate even broader genomic variation in the tested genes
TABLE 3 | Pathogenic variants in genes conferring pancreatic cancer or pancreatitis susceptibility.

Gene HGVSc HGVSp Variant ID ClinVar or HGMD Phenotype Patient
Number

Population
Frequency

Cohort
Frequency

Frequency
Ratio

Fischer’s Exact
Test p-value†

BRCA1 c.5329dupC p.Gln1777fs rs80357906 Pancreatic cancer susceptibility 1 1.62E-04 9.29E-04 5.73 1.6E-01
BRCA1 c.68_69delAG p.Glu23fs rs80357410 Pancreatic cancer susceptibility 1 1.99E-04 9.29E-04 4.68 2.0E-01
BRCA2 c.5682C>G p.Tyr1894* rs41293497 Pancreatic cancer susceptibility 1 4.08E-06 9.29E-04 227.96 8.7E-03
BRCA2 c.5946delT p.Ser1982fs rs80359550 Pancreatic cancer susceptibility 1 2.60E-04 9.29E-04 3.58 2.5E-01
PALB2 c.509_510delGA p.Arg170fs rs863224790 Pancreatic cancer susceptibility 1 3.25E-05 9.29E-04 28.60 1.8E-01
TP53 c.743G>A p.Arg248Gln rs11540652 Pancreatic adenocarcinoma 2 2.03E-05 1.86E-03 91.56 1.5E-03
CFTR c.1652G>A rs75527207 Cystic fibrosis, Hereditary

pancreatitis
1 1.84E-04 9.29E-04 5.04 5.7E-03

CTRC c.*86A>G rs760937 Pancreatitis 17 9.76E-03 1.90E-02 1.95 3.8E-02
CPA1 c.79C>T p.Arg27* rs141209213 Pancreatitis 4 4.35E-04 3.72E-03 8.54 3.9E-04
March 20
21 | Volume 1
HGVS, Human Genome Variation Society.
†We used the 2x2 test to compare the number of alleles of each variant in our cohort compared to gnomAD.
Asterisks indicate transcript termination via stop codon, or alteration of a stop codon.
1 | Article 606820

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zimmermann et al. Interpreting PDAC-Predisposing Genomic Variation
than previously described (2, 3), an observation of clear relevance to
the field of pancreatic cancer genomics.
INTEGRATION OF GERMLINE AND
SOMATIC ANNOTATIONS AT THE
PATIENT AND COHORT LEVEL IDENTIFY
RECURRENT GENETIC ASSOCIATIONS
WITH SOMATIC DISEASES

Thus far, we have assessed information in the way that is most
commonly practiced in germline clinical genomics workflows, by
looking for associations among germline resources. We next
extended our assessment by considering, for the same variants,
what level of evidence exists in somatic databases to better infer
their likelihood of a variant being dysfunctional. This approach
included variants that have only been observed in somatic
disease, which otherwise would be missed by standard
germline studies. Cross-referencing among germline and
somatic databases identified 2008 (33.7%) previously reported
variants, 34 of which have only been reported somatically and
primarily in CPA1 (five variants), POLD1 (3), and PDGFA (3;
Figure 2A, Supplemental Table S2). Among the 497 previously
reported variants in both germline and somatic contexts, the
most commonly affected genes were ATM (43 variants;
Supplemental Table S7), BRCA2 [(31); Supplemental Table
S8), TSC2 (26), and APC (23). ATM variants consisted of four
absent from gnomAD, five rare and with p<0.01, 21 rare, and six
commonly observed in gnomAD. BRCA2 variants consisted of
14 absent from gnomAD, one rare and with p<0.01, 17 rare, and
six commonly observed in gnomAD. Looking specifically at the
1974 variants previously reported in germline, 98.8%, were found
in ClinVar, 25.3% in both ClinVar and HGMD, and 1.1% only in
HGMD (Figure 2B). Among variants annotated by somatic
databases, 439 were reported in COSMIC, 45 additional by
TCGA, and 47 by both (Figure 2B). Genetic variants observed
in COSMIC and detected in our cohort were frequently
associated with hematopoietic and lymphoid neoplasms (79
variants), as well as carcinomas of the large intestine (66),
breast (27), and lung (22). Variants detected in our cohort that
had been observed in TCGA were found in endometrial cancer
(43), stomach (10), and colon (10). Thus, we conclude that the
extent of cancer genomic data shared across body sites, and likely
relevant to PDAC, is broader than expected. Finally, we observed
that 27.6% of annotated variants are in two databases, 10.6% in
three, and 0.7% in all four. Thus, combined, these results
demonstrate that considerable information can be gained by
genomic annotation using both germline- and cancer-derived
data, likely improving variant interpretation.

Private Variants Are Highly Represented in
DNA Damage Repair Enzyme Genes
We tested the hypothesis that there is an under-recognized
prevalence of germline contributions to PDAC than currently
acknowledged. To consider this premise, we investigated
patterns of incidence across individuals and genes. Most
Frontiers in Oncology | www.frontiersin.org 8
coding variants (56.7%) were private, occurring in only one
patient, while 20.8% were observed in at least five patient
samples, with a continuous distribution of incidence (Figure
3A). Across patients, the distribution of mutational burden, as
calculated from our cohort, showed a relatively symmetric
distribution with a short upper tail, suggestive of a small
number of patients who have many germline mutations
(Figure 3B). We observed a median of 32 variants per patient.
The genes with the highest overall mutational burden,
considering coding and non-coding variants, were POLE (322
variants), followed by NF1 (300) and ATM (247) (Supplemental
Figure S3C). Considering only coding variants, the genes with
highest mutational burden were ATM (77 variants), BRCA2 (67),
CFTR (47), APC (39), and POLE (38) (Figure 3C).

Because alleles may be recurrent across patients, the number
of patients affected by these alterations was not highly correlated
with the number of unique variants in each gene (Figures 3C, D).
For example, all of our patients had a either a pathogenic variant
or VUS in BRCA2, and nearly all in MEN1, APC, and BARD1,
but only BRCA2 and APC were in the top five genes for total
number of variants per gene. ATM had the most unique variants,
A

B

FIGURE 2 | Utilizing multiple databases, germline, and somatic for variant
classification increases assignments and confidence. (A) Intersection and
separation of germline and somatic classifications for all 2,008 variants in the
PDAC panel which have been previously reported. (B) Overlapping
classifications among the germline (ClinVar and HGMD) and somatic (TCGA
and COSMIC) databases shown as Venn diagram.
March 2021 | Volume 11 | Article 606820

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zimmermann et al. Interpreting PDAC-Predisposing Genomic Variation
with 14 novel VUS of the 77 (18%) reported here. However,
ATM was the 10th most frequently observed across patients.
Likewise, POLE had 38 variants, but was 23rd in frequency across
patients (Figures 3C, D). Thus, this data indicates that a larger
percentage of individuals, who present to our practice with a
Frontiers in Oncology | www.frontiersin.org 9
confirmed diagnosis of PDAC, may carry a disease-relevant
genetic variant than previously anticipated (2, 3).

Due to its prominence and clinical relevance, we made a
focused analysis of BRCA2. BRCA2 ranked second in number of
distinct coding variants per gene (Figure 3C), in which we found
A B

C D

FIGURE 3 | Distribution and quantification of coding variants in the patient cohort illustrates that gene with the most variants does not correspond to the highest
incidence in the patient cohort. (A) Ordering the 993 coding variants by incidence across our cohort illustrates that 56.7% of the mutations are private (green), and
there is a continuous distribution up to polymorphic (purple) alleles. (B) Mutational burden was fairly consistent across individuals of the cohort, with the majority of
patients having 25–35 coding variants (between red boundaries) from our 53 gene panel and few patients residing in the high or low variant burden tails. (C) The
genes with the most unique coding variants were ATM, BRCA2, and CFTR, with many genes harboring numerous pathogenic variants and VUS. (D) Incidence of
variants across the cohort showed a different order of genes [see gray connections for top 10 genes in (C)]. That is, because many of the VUS are private, genes like
ATM that have many unique variants are not the most frequently altered across the cohort. Interestingly, every patient has a BRCA2 variant, nearly all of which are
previously reported VUS. When multiple distinct variants are present in the same gene and the same patient, the more severe class was indicated in the order of
pathogenic, reported VUS, and then novel VUS.
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that every patient in our cohort carried a genetic variation
(Figure 3D). In total, we identified 210 variants in BRCA2
with 76 affecting coding and 134 involving non-coding regions.
Among coding variants, 6 of them were pathogenic
(Supplemental Table S5), 44 reported VUS and 17 novel VUS.
Breast cancer was the top phenotype associated with the
previously reported variants in this gene (Supplemental Table
S5). Of the pathogenic BRCA2 variants, we observed that three of
the six have a frequency ratio greater than 40, indicating a
significant enrichment in our cohort compared to the general
population. Two pathogenic coding variants in this gene,
c.2957delA (p.Asn986fs) and c.3847_3848delGT (p.Val1283fs),
were seen in six and two patients, respectively (Supplemental
Table S5). These variants are rare in the general population with
c.2957delA (p.Asn986fs) not even present in gnomAD and
c.3847_3848delGT (p.Val1283fs) showing a frequency ratio of
43.23 (Supplemental Table S5). Both variants have previously
been reported with breast and ovarian cancer phenotypes (25).
Lastly, we found that 38 coding variants with potential
clinical impact (pathogenic, VUS or novel) were seen in
more than one patient in our cohort (Supplemental Table S8).
Hence, this information agrees with, but also enriches the type of
annotations that extends the interpretation of genomic variation
in BRCA2.

Individual Patients Carry Multiple Variants
in the Same Gene
Clinical genomics has focused on determining the effect of
individual genetic mutations, but the process of understanding
the effects of multiple variants co-occurring in the same gene, for
the same patient, has not been developed. We sought to
understand how frequently multiple variants co-occur in the
same gene, accounting for the type of alteration. First, we
identified how many patients were affected by the coding
variants. Across our cohort, 99 patients (18.4%) had at least
one pathogenic variant, with a subset of seven patients (1.3%)
having two (Figure 4A). Previously reported coding VUS
averaged at 17 per patient (Figure 4B) with the novel coding
VUS averaging much lower at 1.9 (Figure 4C). Next, we
considered the same data, but used a gene-centric perspective.
We found that pathogenic coding variants occurred in 21 genes
(Figure 4D), with nine genes (ATM, BRCA2, CFTR, CPA1,
MUTYH, PMS2, RAD50, SDHD, and TP53) displaying a
coding pathogenic variant observed in at least two patients.
We did observe multiple VUS within the same gene and for
the same patient. For instance, among previously reported
coding VUS in ATM, we identified 27 patient samples with
two concurrent variants, six with three, two with four, and one
with five (Supplemental Figure 4A). BRCA1, BRCA2, and
PALB2 had similar numbers of patients with at least two
previously reported coding VUS, with 17, 26, and 22 patients,
respectively. Among novel coding VUS, ATM had 4 patients with
at least two variants, 14 in BRCA2, 1 in PALB2, and none in
BRCA1 (Supplemental Figure 4B). Additional genes with at
least two concurrent variants in multiple patients included APC,
NF1, and PMS2. The most extreme instance occurred in five
Frontiers in Oncology | www.frontiersin.org 10
patients, who each had eight novel VUS in NF1. Thus, taken
together, these findings suggest that the development of
polygenic risk scores for PDAC is necessary to maximize the
interpretation of each patient’s data; inferring how co-occurrence
of multiple variants alters gene function remains unknown.

Structural Bioinformatics Aids
Interpretation and Mechanistic Insight for
Genomic Variants Found in PDAC-
Predisposition Genes
Most alleles are of uncertain significance, even among PDAC
predisposition genes with well-understood cancer-relevant
functions. We chose six loci that were frequently altered in our
cohort, namely ATM, CHEK2, MSH2, MSH6, PALB2, and POLE,
to compare among sequence- and 3D-based methods for
interpreting the likely underlying mechanisms for, and thereby
disease relevance of, the genetic changes observed in our cohort.
We refer to the combination of DNA sequence-based scores, used
by most laboratories, as sequence-based methods of variant
interpretation. We denote the use of computational biophysics,
biochemistry, and structural bioinformatics, as 3D methods of
variant interpretation. Previous studies from our laboratory,
applying these methods to monogenic diseases, have shown that
their performance is most often superior to sequence-based
techniques (68, 69) – in particular, for identifying underlying
mechanisms of protein dysfunction. We tested the utility of 3D
protein structure methods to evaluate genetic changes and
compared these to sequence-based methods. Overall,
comparison among germline databases and sequence-based
methods (CADD, Revel, SIFT, Fathmm, Lrt, and Metalr) showed
many conflicting annotation results across the six proteins (Figure
5A). In contrast, our 3D approach, which leveraged 3D structures
of the proteins encoded by these six genes, a level of information
that is absent from nearly all clinical genomics studies, was able to
add information about the spatial pattern of the alleles, suggesting
common mechanisms for many (Figure 5B). Therefore, the 3D
approach enhanced our ability to interpret genetic variants and
prioritize further research for these six genes.

Among these six genes, we first assessed the gene with the
most variants in our cohort (367 in total and 77 coding; Figure
3C and Supplemental Figure S3C), and the majority categorized
as VUS (Supplemental Table S5). Across sequence-based
algorithms, missense, splice-altering, and other LoF variants
occurred throughout the protein sequence with no clear
clusters of alterations (Figure 5Ai). In 3D, we identified a non-
randomly distributed pattern where variants were located at the
ends of helices from multiple domains and on the molecular
surface (Figure 5Bi). This pattern is unusual and suggestive of a
related effect across many variants via ATM surfaces involved in
intermolecular interactions. This “helix capping” pattern is
striking and suggests that a domain-centric approach to
interpreting their effect would be insufficient. For instance,
ATM has a domain that is critical for telomere maintenance
and DNA damage repair (highlighted in pink, Figure 5Bi).
Variants were recurrently observed at the base of this
important domain. We suspect that the recurrent nature of
March 2021 | Volume 11 | Article 606820
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these variants, combined with their spatial pattern, increases
their likelihood for impacting ATM structure or function. We
next investigated CHEK2, for which sequence-based methods
commonly classified variants as deleterious (Figure 5Aii). Our
use of 3D methods illustrated that most alleles in the protein
encoded by CHEK2 occur in the core of the kinase domain
(Figure 5Bii), where they likely alter protein folding. Two
variants impact the forkhead-associated (FHA) domain, which
normally acts to bind phosphoserine motifs. Disruption of this
functionally important region is likely to dysregulate signaling.
Thus, we conjecture that these variants in the middle of the FHA
domain (blue color in Figure 5Bii) may alter interactions with
kinases that bind to CHEK2 for its regulation. Subsequently, we
modeled MutSa, a heterodimeric enzyme formed by MSH2 and
Frontiers in Oncology | www.frontiersin.org 11
MSH6 and involved in DNA mismatch repair. Consequently,
loss or decreased activity of either gene may be enough to impair
enzymatic function (70, 71). In our cohort, coding variants in
MSH2 and MSH6 were mutually exclusive, with 14 and 31,
respectively, or 45 in total (Figure 5Aiii; Supplemental Table
S5). In this case, sequence-based tools were consistent with each
other in predicting alleles as either tolerated or damaging
(Figure 5Aiii). The 3D enzyme has two channels (47). One
channel, comprised of domains I, III, and IV, binds the
mismatched DNA, while the other forms an ATPase domain,
using residues from the domain V of both proteins. In 3D, the
variants observed in our cohort occur throughout the structure,
but primarily surround the ATP binding sites, rather than at the
DNA interaction surface (Figure 5Biii). For example, MSH2
March 2021 | Volume 11 | Article 60682
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FIGURE 4 | Discovery recurrent co-occurrence of genes with multiple variants in the same sample. (A) Number of pathogenic variants identified in each patient of
the cohort with 92 patients having one pathogenic variant and 7 with two. The number of (B) reported VUS and (C) novel VUS identified in each patient. Lines
indicates average number of variants across the cohort (<1 for pathogenic, 17.3 for reported VUS, 1.9 for novel VUS). The patient cohort was first sorted by the
number of pathogenic variants and then reported and novel VUS graphed in the same patient order. (D) A bubble plot representing the number of coding variants
that occur per patient, per gene. The bubble size is proportional to the number of patients that have single or multiple variant(s) in a particular gene.
0

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zimmermann et al. Interpreting PDAC-Predisposing Genomic Variation
E809K is predicted to be tolerated by sequence-based methods,
but in 3D is in close proximity to G322D, which has variable
predictions by sequence-based scores. The 3D relationship
among variants suggests a common effect on binding or
ATPase activity. Additionally, there were several variants in the
ATPase pore that have variable sequence-based predictions, such
as MSH2 K603R and MSH6 L601H, which are nearby each other
in 3D to support the potential of similar effects. These results
reveal that 3D representation of mutational events extend the
amount of evidence that can be used to interpret MutSa variants.
PALB2 missense alleles were almost unanimously predicted to be
tolerated by sequence-based algorithms (Figure 5Aiv). The 3D
domain of PALB2 forms a radially symmetric 7-prop propeller
fold (Figure 5Biv). Variants occur throughout the 3D structure.
Because it is a symmetric molecule, we structurally aligned all 7
Frontiers in Oncology | www.frontiersin.org 12
props and identified that the variants appear at the ends of the
beta-strands (rotated and overlaid on right, Figure 5Biv).
Moreover, four of the seven positions make inter-strand
hydrogen bonds for which disruption could alter the
conformation of the b-sheet. Further, one of the altered amino
acids is a glycine and one a proline, which have unique backbone
geometry compared to other amino acids, and three variants
change small hydrophobic residues to larger hydrophilic
residues. All five of these mutations could further disrupt the
b-sheet and change the position of the adjoining loops, which
likely influence how PALB2 interacts with other proteins. Finally,
genetic variants in POLE, like MutSa, were predicted by
sequence-based methods to be primarily tolerated (Figure
5Av). In 3D, POLE variants primarily occur at three regions,
the interface between the exonuclease and the polymerase
A

B

FIGURE 5 | PDAC-associated genomic variation has inconsistent patterns in sequence based, but greater consistency in 3D. (A) Impact, variant class, and
sequence-based scores for PDAC variants of (i) ATM, ii. CHEK2, iii. MutSa, iv. PALB2, v. POLE. Variants with a mismatch in the ClinVar and HGMD classification
(pathogenic versus benign) are highlighted in orange text. Sequence based scores not generated (NG) are indicated in gray. (B) Mapping PDAC variants on the
structures of (i) ATM, ii. CHEK2, iii. MutSa, iv. PALB2, v. POLE N-terminal, vi. POLE C-terminal. Red spheres mark amino acids with variants found in this PDAC
study. For ATM and POLE N-terminal light blue spheres mark PDAC variants additionally reported in 5 or more samples in COSMIC. Various domains are indicated
by color for each structure. FATC, FRAP-ATM-TRRAP-C-terminal; FAT, FRAP-ATM-TRRAP; PI3K, phosphoinositide 3-kinase; FHA, forkhead-associated; WD40,
beta-transducin repeat; DUF1744: domain of unknown function; HS, Homo sapiens homology region.
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domains (Figure 5Bv), the helical bundle that defines the HS
homology region (Figure 5Bvi), and along the periphery of the
Domain of Unknown Function (DUF1744; Figure 5Bvi). This
finding indicates that there may be different functions affected by
alteration of each region, which is more evident by the 3D
proximity of the alleles observed in our cohort than their
position in the linear arrangement commonly used to
described genes and protein sequences. In summary, the
combination of sequence-based and 3D data suggests
mechanisms by which variants are predicted to be damaging.
Existing sequence-based methods cannot predict 3D contacts,
bond disruptions, and the spatial relationships between
functional sites. We believe that more comprehensive methods
that leverage additional information, not predictable from the
linear sequence, are needed to improve interpretation of genetic
data. Moreover, our results support that potential mechanisms of
protein dysfunction can be inferred in greater detail when
assessing variants in 3D. These inferred mechanisms can then
inform the design of specific future studies that seek to perform
functional validation using experimental approaches. We
envision that future studies from our group, using improved
3D methods to identify or prioritize the likely disease relevance
of VUS (67, 68) will have an important impact on defining the
mutational landscape underlying PDAC predisposition,
development, and progression.

Genetic Variants Identified in this Study
Associate With Distinct Demographics,
Serum Markers, and Clinical Outcomes
We have thus far investigated patterns of germline alleles with a
broad bioinformatic approach. In our final analysis, we
synthesized our data to create groups of patients within our
cohort based on genomics and tested the hypothesis that these
groups carried associations with clinical features or clinical
outcomes. We defined four groups based on DDR pathways
and extent of surgical intervention (Figure 6). Groups were
compared based on median overall survival (OS) from the date of
diagnosis and for patients with resectable and borderline
resectable PDAC. Patients with pathogenic mutations in any
DDR pathway gene and who underwent surgery had longer OS
than those with no DDR mutation (92.2 versus 46.2 months,
p=0.06; Figure 6A; Supplemental Table S9). Focusing on the
pathway of homology-directed repair (HDR), the same trend of
better OS with a pathogenic mutation was observed for both
patients that underwent surgery (92.2 versus 46.3 months;
p=0.24) and those that did not undergo surgery (20.5 versus
13.4 months, p=0.07; Figure 6B; Supplemental Table S10). We
compared patients with HDR mutations to those with other
DDR mutations outside the HDR pathway (DDR_NHDR) and
found that those who did not undergo surgery but had HDR
mutations had longer OS (20.5 versus 8.0 months, p=0.02;
Figure 6C; Supplemental Table S11). We defined a genomic
group by patients with germline alterations in genes related to
chronic pancreatitis (CP), which we will refer to as genetic
chronic pancreatitis (GCP). Patients in the GCP group had
significantly shorter OS compared to those with no GCP
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alteration, when they underwent surgery (51.7 versus 26.2
months, p=0.004; Figure 6D). Therefore, we also tested OS
using univariate and multivariate models accounting for race,
preoperative CA19-9, and stage. Univariate models indicated
high mortality associated with being in the GCP group (hazard
ratio, HR=1.9; p=0.005), while the multivariate model had an
attenuated effect (HR = 1.5; p = 0.13). GCP was linked with
patient race, with a higher proportion of non-white individuals
in the GCP group (p < 0.001; Supplemental Table S12); further
study is needed to understand the independent contributions of
these two factors. Thus, the functional impact of mutations in
GCP-associated genes on PDAC outcomes, even among patients
who do not present with CP, warrants further study.

Next, we defined additional patient groups based solely on
germline genetic patterns (Table 4) such as the presence of
pathogenic alleles, pathways, and those associated with heritable
cancer risk in previous germline studies. In this manner, we
defined 18 groups (Table 4, Supplemental Figure S5), coded
them by numbers 1–18, and correlated each of these groups with
clinical characteristics and OS. We found that among patients
who were producers of CA19-9, those that had any pathogenic
variant (67 patients, 12.5%) had higher pre-treatment CA19-9
levels (median of 498 U/ml (n=44) versus 293 (n=259); p = 0.02).
Among patients with any pathogenic allele and metastatic
disease, we observed better OS compared to the rest of the
cohort (22.0 months (n=10) versus 9.8 (n=52); p = 0.008). When
the pathogenic variants were previously reported for heritable
cancer syndromes, patients were younger (58 years (n=20) versus
66 (n=515); p = 0.02); the further subset of patients with
metastatic disease had better OS compared to the rest of the
cohort (23.2 months (n=5) versus 9.9 (n=57); p = 0.01). Thus,
there may be divisions among pathogenic variants that have
different clinical ramifications for PDAC.

Patients in our cohort who had variants previously identified
from somatic studies, were more likely to be non-white (18%
versus 9%; p = 0.01). Interestingly, patients in this group who
also had metastatic disease, showed a better OS (12.2 months
(n=20) versus 9.7 (n=42); p = 0.003). When the variant was also
previously associated with an inherited disease, those who were
producers of CA19-9 had higher pre-treatment levels of CA19-
9 (598 U/ml (n=8) versus 302 (n=295); p = 0.03); the further
subset with resectable disease had poorer OS (17.1 months
(n=3) versus 50.6 (n=151); p = 0.01; independent of
neoadjuvant treatment). Thus, the interpretation of germline
genetic variation underlying PDAC should be informed by
knowledge from somatic profiling.

We tested groups defined by genetic alteration of key PDAC
genes. Patients with variants in ATM were associated with non-
white origin (p < 0.001), and had a lower frequency of locally
advanced disease. Instead, they had a higher frequency of
metastatic disease (p = 0.04), concordant with previous reports
in brain and breast cancers (72, 73); 15.6% (n=84) of our cohort
had metastatic disease and 20.2% (n=109) had locally advanced.
Patients with any BRCA1 or BRCA2 variants and resectable
disease had better OS (79.4 months (n=68) versus 38.9 (n=86);
p = 0.05). We found additional trends among groups
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defined by pathogenic variants in BRCA1, BRCA2, and other
DDR pathway genes, but due to the few cases available,
the associations were often not statistically significant but
should be considered when planning larger studies (Table 4).
Further and more detailed descriptions of these associations
between genomics-based groups with clinical features and
outcomes are available in Supplemental Text and Table 4. We
have found that the germline genomic findings within our cohort
associate with clinical outcomes, thereby indicating that our
broader bioinformatic approach has the potential to improve
the practice of precision medicine, such as for family counseling
of PDAC-affected patients in referral populations.
Frontiers in Oncology | www.frontiersin.org 14
DISCUSSION

Advances in the field of genetics have extended our understanding
of how genomic variation in the germline predisposes to cancer,
such as the subset of well-known cancer genes including BRCA1,
BRCA2, TP53, CDKN2A, ATR, and ATM (2, 3, 18, 19). Our study
sought to identify groups of patients, previously unrecognized,
that have genetic variants that may be modifiers of their risk for
development of PDAC or clinical and pathobiology course. While
alteration of the genes mentioned above is known to influence the
development of many types of malignancies, all patients in our
cohort have at least one genetic variant that currently lacks
A B

C D

FIGURE 6 | Patient survival is associated with genomics-based features. We identified groups of patients by presence of germline genetic features in specific
pathways. Groups were compared based on median overall survival (OS, in months) from the date of diagnosis and for patients with resectable and borderline
resectable PDAC. (A) Patients with pathogenic mutations in any DDR gene and who underwent surgery had longer OS than those with no DDR mutation (Rest of
Cohort, ROC). (B) Focusing on the pathway of homology-directed repair (HDR), the same trend was observed for both patients that underwent and those that did
not undergo surgery. (C) We compared patients with HDR mutations to those with other DDR mutations outside the HDR pathway (DDR_NHDR). We found that
those who did not undergo surgery but had HDR mutations had longer OS. OS for DDR_NHDR-Surgery was not reached (NR). (D) We defined a genomic group by
patients with germline alterations in genes related to genetic chronic pancreatitis (GCP). Patients in the GCP group had significantly shorter OS compared to those
with no GCP alteration. Significant differences and p-values are indicated on the graphs.
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TABLE 4 | Genomics-based patient groups differ in clinical features and outcomes.

linical Measure Value for: p-value

Patients
in Group

Rest of
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treatment CA19-
/ml (median)

498 293 0.02

ival among
astatic (months)

22 9.8 0.008

ival among
astatic (months)

10.9 9.9 0.04

.)

ent Age 65 68 0.002

ival among
astatic (months)

16.2 9.8 0.03

e 0.002
aukee county
ent

63 49 0.02

58 66 0.002
ival among
astatic (months)

23.2 9.9 0.01

ent Race 0.01
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12.2 9.7 0.003

.)

.)

treatment CA19-
/ml (median)

598 302 0.03

ival among
ctable (months)

17.1 50.6 0.01

.)

e < 0.001
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(Continued)

Zim
m
erm

ann
et

al.
Interpreting

P
D
A
C
-P
redisposing

G
enom

ic
Variation

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

M
arch

2021
|
Volum

e
11

|
A
rticle

606820
15
Group Identifier Group Description Genomic Features Size of Group
(# with follow up)

C

Pathogenic Germline versus
Somatic Resource†

Gene(s)‡

Pathogenic Any pathogenic variant Yes G or S 67 (60) Pre
9, U
Sur
Me

Sur
Me

Population Enriched
10x

Any variant that is enriched by 10x in our cohort
compared to gnomAD

G or S MAF ≥

10x
205 (179) (n.s

Cancer VUS VUS reported in somatic or germline databases, with a
cancer phenotype

GC or S 467 (403) Pat

Cancer Either
Pathogenic

Pathogenic variants from either germline or somatic
databases

Yes GC or S 42 (39) Sur
Me

Genetic Cancer Germline variants with a cancer or cancer risk phenotype,
that are not reported in somatic databases

GC and not S 250 (219) Rac
Milw
res

Genetic Cancer
Pathogenic

Pathogenic variants from germline databases, that are not
reported in somatic databases

Yes GC and not S 20 (20) Age
Sur
Me

Somatic Cancer Somatic variants that are not reported in a germline
database

S and not GC 124 (109) Pat

Sur
Me

Somatic Cancer
Pathogenic

Pathogenic variants observed in somatic databases, but
not in germline databases for a cancer phenotype

Yes S and not GC 11 (10) (n.s

Genetic, Somatic
Cancer

Any variant reported in both somatic and germline
databases, with a cancer phenotype

GC and S 401 (346) (n.s

Genetic, Somatic
Cancer Pathogenic

Pathogenic variants reported in both germline and
somatic databases

Yes GC and S 11 (9) Pre
9, U

Sur
res

PDAC Cancer Any somatic variant observed in pancreatic cancer
samples

S for PDAC 64 (53) (n.s

ATM Any variant in ATM G or S ATM 142 (126) Rac

Rad
ATM Pathogenic Pathogenic variants in ATM Yes G or S ATM 5 (4) Vita

BRCA1/BRCA2 Any variant in BRCA1 or BRCA2 G or S BRCA1,
BRCA2

244 (202) Sur
res
-

v
t

v
t

i

v
t

id

v
t
i

v
t

-

v
e

v
e

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zimmermann et al. Interpreting PDAC-Predisposing Genomic Variation

Frontiers in Oncology | www.frontiersin.org
 16
medical interpretation (VUS) in well-established cancer genes,
potentially limiting our understanding of germline genetic
contributions to PDAC. We have described: 1. The design and
use of an exon panel that contained previously tested and newly
identified genes with the potential to influence cancer
development; 2. The reported incidence and type of genomic
variation captured by our panel at the cohort, gene, and patient
level; 3. The development of an enhanced annotation approach
based on using genomic variation data previously found in both
germline and somatic diseases; 4. The combined use of both
sequence-based and 3D bioinformatics methods for classifying
variants; and, 5. The associations among our genomic results,
clinical disease characteristics, and patient outcomes. Our findings
confirm large genomic variation, either represented by clear
pathogenic variants or those of uncertain significance (Figure
1A, Table 2), in genes with known pathobiological roles in PDAC.
Thus, it is important to discuss the significance of this variation
and draw inferences of their relevance to pancreatic cancer to
improve quantification of genetic risk.

We designed our gene panel to focus on biologic pathways
with known biologic relevance to pancreatic cancer, such as
DNA Damage response, cell cycle checkpoints, and cell adhesion
and migration. In addition, we explored genes associated with
chronic pancreatitis for which there is growing evidence to
indicate a relationship to the development of PDAC. Overall,
we found a higher level of pathogenic variants than in previous
studies (2, 3, 18, 19) which could be due to the composition of
our gene panel or specific characteristic of our patient
population, referred from a broad geographic sampling of this
country and varied in race and ethnicity. For example, all
patients in our cohort had a VUS in BRCA2, highlighting that
there may be many un-tested alleles within this gene despite the
existence of medium-throughput cellular studies that have been
used to characterize many observed alleles (63, 74). Further,
BRCA2 is one of the genes involved in double-strand break
repair and the other members of the pathway have received less
scrutiny even though they are also recurrently altered in human
cancers. Therefore, we believe the description of germline
PDAC-predisposing variation is incomplete.

The potentially incomplete description begs an important
scientific question as to the functional differences between an
allele present in an individual via germline or somatic alteration.
To address this question, we used a more integrated approach to
genomic annotation, enabling us to suggest which of the many
observed VUS were more likely than others to bear functional
relevance to our patient’s disease. For example, we found that a
third of the variants we found have been previously reported, and
of those, 26% were previously also observed in tumor samples.
These somatic VUS, which were observed in our patient’s
germline, bear a greater level of evidence for being related to
cancer, compared to VUS not previously observed, or found in
the germline setting. We tested the association between somatic
VUS and patient outcomes, although they were confounded by
patient race (non-white patients were more likely to have
somatic VUS) indicating that greater study is required to
understand the independent effects of genetic and other
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factors. Observation of somatic VUS is important since some,
though not all (e.g., CFTR), pancreatic cancer predispositions
genes, could come from families whose members may develop
other type of tumors.

We also provide information that reveals the relationship of
the VUS to other germline diseases, findings that are often absent
from oncology reports. This is important to allow investigators
and clinicians to be aware of pathogenic variants which may
increase the risk for PDAC. For example, there are patients with
pathogenic ATM alleles, which are known to cause the congenital
disease ataxia-telangiectasia (ATS), which also convey an
increased risk of developing cancer (75–78). Thus, ATS alleles,
even among patients who do not have ATS, may yet bear
significance for PDAC risk. We also observe a significant
number of CFTR (79–81), CTRC (82), and CPA1 (82, 83)
variants, which supports the association between chronic
pancreatitis and PDAC risk. Finally, patients with DDR
alterations had longer OS than other patients, and we
identified numerous associations among specific cellular
pathways and OS. Thus, our enhanced annotation approach
extended the mechanistic and medially relevant information that
could be derived from the genomic data.

Additionally, inferences on the potential damaging and
mechanistic effects of variants on the encoded 3D protein,
rather than the genomic DNA, are important but less
considered in translational genomics. Our laboratory routinely
uses this type of methodology for our study of inherited diseases
(68, 69, 84–86) and, similar to what is shown here, the encoded
protein itself added more information of potential mechanisms
of dysfunction due to genome variants. We believe that lessons
learned from biophysics and protein science have potential to aid
the interpretation of genomic variation, evidenced by our
identification of spatial patterns among the VUS observed in
our PDAC patients. These patterns enabled us to make
hypotheses about the functional mechanism affected by each
VUS. Hence, this study adds new genetic information of
potentially medical significance by describing genomic patterns
and mechanistic hypotheses that can be the subject of
future study.

Because of the normal role of the pancreas in digestion, there
has been long interest in the potential link between diet and
disease. However, dietary effects variable between studies; their
clear interpretation remains to be established (89–91). Thus,
future studies could be designed to characterize interactions
among the genetic associations we report herein and
modifiable factors including diet, and their combined influence
on cancer and pre-cancer states. The additional concept of
genetic pancreatitis – a pro-neoplastic genetic predisposition
related to an established disease, but not identified as the
disease – may be critical for harmonizing different effects that
are currently considered variable into a common model, possibly
through their shared dysregulation or over-exertion of normal
pancreatic function.

In conclusion, we present data that indicates a strong
relationship between germline alleles, functional mechanisms,
and patient outcomes, that improve our understanding of the
Frontiers in Oncology | www.frontiersin.org 17
etiology and progression of PDAC. Relationships between
patient race, genetic variants, heritable and chronic diseases,
and outcomes must be deconvoluted. We believe that the
understanding of germline genetic contributions to PDAC is
incomplete, but through the broader study of multiple tiers of
information, a more complete functional understanding will
be achieved.
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