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The Crosstalk Between Tumor Cells
and the Immune Microenvironment in
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Breast cancer progression is a complex process controlled by genetic and epigenetic
factors that coordinate the crosstalk between tumor cells and the components of tumor
microenvironment (TME). Among those, the immune cells play a dual role during cancer
onset and progression, as they can protect from tumor progression by killing
immunogenic neoplastic cells, but in the meanwhile can also shape tumor
immunogenicity, contributing to tumor escape. The complex interplay between cancer
and the immune TME influences the outcome of immunotherapy and of many other anti-
cancer therapies. Herein, we present an updated view of the pro- and anti-tumor activities
of the main immune cell populations present in breast TME, such as T and NK cells,
myeloid cells, innate lymphoid cells, mast cells and eosinophils, and of the underlying
cytokine-, cell–cell contact- and microvesicle-based mechanisms. Moreover, current and
novel therapeutic options that can revert the immunosuppressive activity of breast TME
will be discussed. To this end, clinical trials assessing the efficacy of CAR-T and CAR-NK
cells, cancer vaccination, immunogenic cell death-inducing chemotherapy, DNA methyl
transferase and histone deacetylase inhibitors, cytokines or their inhibitors and other
immunotherapies in breast cancer patients will be reviewed. The knowledge of the
complex interplay that elapses between tumor and immune cells, and of the
experimental therapies targeting it, would help to develop new combination treatments
able to overcome tumor immune evasion mechanisms and optimize clinical benefit of
current immunotherapies.
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INTRODUCTION

Breast cancer (BC) still represents the most frequent cancer in
women and the second cause of cancer deaths worldwide (1).
Treatment options have improved the outcome of BC patients, but
still many patients progress to metastatic disease, which remains
very difficult to cure. The failure of specific therapies may be
ascribed to the fact that most anti-cancer drugs currently used
mainly target cancer cells. Indeed, emerging evidence suggests that
BC is not only composed of neoplastic cells but also of the tumor
microenvironment (TME) consisting of different cell types,
including endothelial cells, several stromal cell types, and
immune cells. The cells composing the TME undergo a complex
interplay with cancer cells through either cell–cell contacts or the
production of extracellular matrix complexes and soluble factors
that shape the microenvironment (2). The continuous and
dynamic interaction between cancer cells and the TME can
either promote or hinder cancer progression. In particular,
tumor infiltrating immune cells protect from tumor progression
by eliminating immunogenic neoplastic cells, but in the
meanwhile they can contribute to tumor resistance to therapies,
shaping tumor immunogenicity and selecting resistant tumor
clones able to escape the immune response (3). Although BC
was previously considered as a poor immunogenic cancer that
does not respond to immunotherapies due to a low mutational
burden (4), the notion of the role exerted by the immune system in
BC progression has led to the application of this type of treatments
also in this tumor. The introduction of immunotherapies
improved the outcome of many BC patients, however, data from
the clinics have underlined that it is strongly influenced by the
composition of the immune TME. Indeed, immune cells have
Abbreviations: ADCC, Antibody-Dependent Cellular Cytotoxicity; APCs,
Antigen-Presenting Cells; ARG1, Arginase 1; BC, Breast Cancer; BCIM, Breast
Cancer Immune Microenvironment; bFGF, basic Fibroblast Growth Factor; CAR,
Chimeric Antigen Receptor; CCL, CC-chemokine ligand; COX-2,
Cyclooxygenase-2; CRTH2, Chemoattractant-homologous Receptor expressed
on Th2 cells; CSCs, Cancer Stem Cells; CSF-IR, Colony-Stimulating Factor-1
Receptor; CSFs, Colony-stimulating factors; CTLA-4, Cytotoxic T Lymphocyte
Antigen 4; CXCL, C-X-C-chemokine Ligand; DCs, Dendritic Cells; DFS, Disease
Free Survival; ECP, Eosinophil Cationic Protein; EDN, Eosinophil-Derived
Neurotoxin; EMT, Epithelial–Mesenchymal Transition; EPX, Eosinophil
Peroxide; Evs, Extracellular Vesicles; G−, Granulocyte; GM−, Granulocyte-
macrophage; HMGB1, High-Mobility Group Box 1 protein; ICD, Immunogenic
Cell Death; ICI, Immune Checkpoint Inhibitor; Ics, Immune Checkpoints; IFN,
Interferon; IL, Interleukin; ILCs, Innate Lymphoid Cells; IMCs, Immature
Myeloid Cells; LAG-3, Lymphocyte activation gene-3; M, macrophage; MBP,
Major Basic Protein; MCs, Mast cells; MDSCs, Myeloid-Derived Suppressor Cells;
M-DSCs, Monocytic MDSCs; MHC, Major Histocompatibility Complex; MMPs,
Matrix metalloproteinase; MUC, Mucin; NGF, Nerve Growth Factor; NK, Natural
Killer; NO, Nitric Oxide; OS, Overall Survival; PD-1, Programmed Death 1;
PDGF, Platelet-Derived Growth Factor; PG, Prostaglandin; PGD2, Prostaglandin
D2; PlGF, Placental Growth Factor; PMN-MDSCs, Polymorphonuclear MDSCs;
PNT, Peroxynitrite; RNS, Reactive Nitrogen Species; ROS, Reactive Oxygen
Species; SCF, Stem Cell Factor; TAAs, Tumor Associated Antigens; TAMs,
Tumor Associated Macrophages; TCR, T Cell Receptor; TGFb, Transforming
Growth Factor-b; TIGIT, T cell immunoglobulin and ITIM domain; TILs, Tumor
Infiltrating Lymphocytes; TIM-3, T-cell Immunoglobulin and Mucin domain-
containing molecule 3; TME, Tumor Microenvironment; TNBC, TripleNegative
Breast Cancer; Tregs, Regulatory T Cells, VEGF, Vascular Endothelial
Growth Factor.
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been implied in the development of resistance mechanisms to
immunotherapy in BC, which hampers the establishment of
durable responses, leading to disease progression (5).

Therefore, a deeper knowledge of BC TME and of the role
that the different tumor infiltrating immune cell populations
exert on cancer progression and response to therapies would
allow the development of more effective treatments for BC.
Furthermore, the identification of TME-related characteristics
associated with a good or poor response to therapies would
facilitate patient stratification and therapeutic decisions. In this
light, in this paper we summarize the role exerted by the main
immune cell populations present in the TME in BC progression,
their influence on immunotherapies, and we discuss novel
therapeutic strategies able to counteract the tumor-promoting
activities of BC TME.
MAJOR PLAYERS IN BC IMMUNE
MICROENVIRONMENT

During the evolutionary history of a tumor, a complex and dynamic
communication between tumor cells and the cells in the TME is
established, shaping several tumor hallmarks such as sustained
proliferative signaling, avoidance of immune destruction, induction
of angiogenesis, and activation of invasion and metastasis (6).
Importantly, different types of immune cells play specific roles,
establishing a strong crosstalk network with cancer cells (Figure
1). In this sense, tumor immunoediting by innate and adaptive
immune cell populations that together constitute the so-called Breast
Cancer Immune Microenvironment (BCIM) is an important
determinant of tumor progression. Immunoediting is a dynamic
process that occurs in three steps, notably Elimination, Equilibrium,
and Escape. The Elimination is the first step, also called
immunosurveillance, in which transformed cells are destroyed by a
competent immune system able to activate a strong immune
response against cancer. During the Equilibrium phase, tumor cells
that survived the Elimination phase and immune cells reciprocally
shape each other. A balance is established between the tumor and the
immune system with a selection pressure on tumor cells, which are
genetically unstable and rapidly mutating. Tumor cell variants that
have acquired resistance to elimination then enter the Escape phase,
the final step of the process, when the tumor grows and becomes
clinically apparent. The Escape phase is characterized by the
progressive establishment of an immunosuppressive TME (7).

Based on the activity of the innate and adaptive immune
cell populations involved in the immunoediting process,
we can identify two major subclasses of immune cells: the
immunosuppressive and the immunostimulating cells. Several
lines of evidence have demonstrated that the presence of these
cells within the BCIM significantly impacts on BC progression
and treatment response. In particular, infiltration of tumors by
immunostimulating immune cells such as some macrophages,
lymphocytes, natural killer (NK) cells, innate lymphoid cells
(ILCs), dendritic cells (DCs) and eosinophils is crucial for tumor
control (8). The anti-cancer immune response generated by these
cells is, however, inhibited by the action of immunosuppressive
March 2021 | Volume 11 | Article 610303
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cells, such as myeloid-derived suppressor cells (MDSCs),
mast cells (MCs), regulatory T cells (Tregs), and type 2-
polarized tumor-associated macrophages (M2-like TAMs),
which are intrinsically associated with the developing TME (9).

Here, we briefly describe the major immune subpopulations
present in BCIM, with a particular attention to their impact on BC
patient’s prognosis and to their influence on the response to current
immunotherapies. In addition, we review the state of the art of the
therapeutic strategies aiming at reverting immunosuppression in
order to potentiate anti-cancer immune responses.

Immunosuppressive Cells
Myeloid-Derived Suppressor Cells
MDSCs are a heterogeneous population of progenitors and
precursors of myeloid cells. The molecular mechanisms behind
their generation and their true origins are still debated, and different
theories proposed. Upon an increased demand for myeloid cells,
immature myeloid cells (IMCs) can undergo a process known as
Frontiers in Oncology | www.frontiersin.org 3
emergency myelopoiesis, expanding in the bone marrow and
migrating into the periphery. Or else, IMCs may also expand and
become functionally active MDSCs extramedullary (in organs such
as spleen) (10). Conversely, in pathologic conditions such as cancer,
several cytokines, chemokines and factors, such as for example
granulocytic-colony stimulating factor (G-CSF) (11), C-X-C-
chemokine ligand (CXCL)2, CC-chemokine ligand (CCL)2, CCL5
(12) CXCL5, and CXCL12 (13) (see below Cytokine and Soluble
Factors-Mediated Mechanisms) secreted by the tumor cause the
block of their differentiation as well as their mobilization from the
bone marrow and accumulation into the primary and secondary
neoplastic lesions (10). Based on the different cell surface antigen
expressions, two subsets of MDSCs have been identified:
polymorphonuclear or granulocytic MDSCs (PMN-MDSCs) and
monocytic MDSCs (M-MDSCs). In mice, the PMN-MDSCs and
M-MDSCs are identified by a CD11b+Ly6G+Ly6Clow and a
CD11b+Ly6G−Ly6Chigh phenotype, respectively, whereas, in
humans, PMN-MDSCs are CD11b+CD14−CD15+CD33+ cells,
FIGURE 1 | Major players in immune breast TME. Among all cell populations present in breast TME, polymorphonuclear (PMN) and monocytic (Mo) Myeloid-Derived
Suppressor Cells (MDSCs), Mast Cells (MCs), Innate Lymphoid Cells Type 2 and 3 (ILC2/3), M2-like Tumor Associated Macrophages (TAMs) and FoxP3+ regulatory
T cells (Treg) are considered to exert an immunosuppressive action, while Tumor Infiltrating CD4+ and CD8+ Lymphocytes (TILs), Natural killer (NK) cells/Innate
Lymphoid Cells Type 1 (ILC1), Dendritic cells (DCs) and Eosinophils are associated with an anti-tumor activity. Created with BioRender.com.
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and M-MDSCs are CD11b+CD14+ CD15−CD33+HLA−DR−/low

cells. Other hypotheses suggest that M-MDSCs and PMN-
MDSCs may represent reprogrammed or activated monocytes
and granulocytes (10). Nowadays, it is widely accepted that these
IMCs, through the secretion of several soluble factors as well as the
production of reactive oxygen species (ROS) and reactive nitrogen
species (RNS) (see below), are able to induce severe anergy of
effector immune cells, to recruit Tregs and to promote the M2-like
TAM polarization, thus generating a strong immunosuppressive
TME. In particular, MDSCs are able to recruit Tregs at the tumor
site throughout the expression on their membrane of the immune
stimulatory receptor CD40. The same receptor is exploited by
MDSCs to directly inhibit T-cell proliferation by its binding with
the ligand CD40L expressed on T-cell plasma membrane (14, 15).
Recently, MDSCs have also been associated with the formation of
the pre-metastatic niche, to the stimulation of angiogenesis and the
maintenance of cancer stem cells (CSCs), a small population of cells
responsible for tumor initiation and metastases (16–18). Several
studies have shown that MDSCs are associated with poor prognosis
in BC patients. Notably, Kumar et al. reported that MDSCs are
more enriched in triple-negative BC (TNBC) patient samples
compared to non-TNBC (19), and high levels of circulating
MDSCs significantly correlate to liver and bone metastases and
higher levels of circulating tumor cells (20). In summary, many lines
of evidence suggest that MDSCs play a detrimental role in
BC progression.

Mast Cells
MCs are innate immune cells characterized by their cargo of
inflammatory mediators stored in cytoplasmic granules, which
are released upon encountering the appropriate stimuli, such as
IgE, that play a central role in allergic diseases (21). MC
degranulation is known to have beneficial roles in response
against pathogens, such as helminths, bacteria, and viruses.

They are distributed in diverse tissues throughout the body
and, like other immune cells, originate into the bone marrow
from the hematopoietic stem cell progenitor which can become a
committed MC progenitor that through the bloodstream
migrates to peripheral tissues to complete maturation (22).
Their differentiation, growth, and survival are strongly
regulated by tissue microenvironmental factors, of which stem
cell factor (SCF), the ligand of the c-Kit receptor, and interleukin
(IL)-3 are the best-characterized (23).

Interestingly, other endogenous factors such as IL-4, IL-6, IL-
9, IL-10, IL-33, nerve growth factor (NGF), and transforming
growth factor b (TGF-b) contribute to MC maturation and
function (22). Inside the tumor, MCs are able to suppress the
anti-tumor immune response by inducing an adenosine-
mediated immunosuppressive crosstalk with MDSCs and Tregs
and by limiting the adaptive immunity through IL-13 secretion
(24, 25). However, the influence of MCs in BC prognosis is still
much debated. MCs, through the secretion of the great variety of
bioactive components contained inside the cytoplasmic granules,
may exert both pro- and anti-tumor effects. In particular, in vitro
and in vivo studies indicate that MCs exhibit a pro-tumor activity
through the promotion of lymphatic and blood vessel formation,
tumor growth, and metastasis (26). On the other hand,
Frontiers in Oncology | www.frontiersin.org 4
Samoszuk et al. demonstrated that depletion of MCs with
imatinib enhanced tumor growth in a murine model of BC,
supporting MC anti-tumoral role (27). Another study associates
MCs with a greater survival and favorable prognosis (28).
Consistently, Rajput et al. reported that in a cohort of 4.444
invasive BC patients with a long term follow-up, stromal MCs
correlate with a good prognosis (29).

M2-Like Tumor Associated Macrophages
Macrophages are terminally differentiated myeloid cells which
are responsible for the elimination of infectious agents and the
regulation of adaptive immunity. For many years, macrophage
biological origin was attributed to bone marrow-derived
progenitors and blood monocyte intermediates that
differentiate into mature cells once seeded into organs (30).
However, several genetic tracing data revealed that multiple
macrophage populations develop from embryonic progenitors
and are able to self-renew by local proliferation of mature,
differentiated cells. Each tissue microenvironment has been
demonstrated to influence macrophage morphological and
functional characteristics (31). Based on their functional role,
macrophages have been classified in two different subtypes: anti-
tumoral M1-like and pro-tumoral M2-like polarized TAMs (32).
In mice, both M1- and M2-like TAMs are characterized by the
expression of markers such as CD11b, F4/80 and colony-
stimulating factor-1 receptor (CSF-1R) and low levels of
expression of the myeloid differentiation marker Gr1, whereas
major histocompatibility complex (MHC) class II glycoproteins
and CD206 are used to distinguish between M1- and M2-like
TAMs, respectively. In humans, macrophages are identified by
the expression of CD68, CD312, CD115, and other markers.
However, it is important to note that TAM phenotypes are much
more complex and categorizing them into binary states is not
completely correct (33). Several data indicate that the pro-
tumoral M2-like TAMs within the BCIM play pivotal roles in
promoting tumorigenesis and metastasis formation via both
non-immune and immune related mechanisms. The non-
immune role of TAMs consists in the release of numerous
angiogenic factors, such as vascular endothelial growth factor
(VEGF), platelet-derived growth factor (PDGF), and basic
fibroblast growth factor (bFGF), that stimulate angiogenesis
within the tumor, as well as in the secretion of many signaling
molecules, including EGF, matix metalloproteinases (MMPs),
CCL2, CCL18, and macrophage (M)-CSF that consequently
activate tumor cell epithelial–mesenchymal transition (EMT),
invasion, and metastasis (34, 35). The pro-tumoral M2-like TAM
infiltration contributes to establish an immunosuppressive
microenvironment. For example, it has been reported that M2-
like TAMs, through the secretion of TGF-b, as well as IL-10,
suppress CD8+ T cell functions by direct transcriptional
repression of genes encoding functional mediators, such as
perforins, granzymes, and cytotoxins (34, 36). Moreover, in
virtue of their high expression levels of enzymes such as
arginase 1 (ARG1) and indoleamine 2,3-dioxygenase 1, M2
TAMs deplete the TME of the amino acids arginine and
tryptophan, which are essential for T and NK cell proliferation
and survival (35) (see below). Several studies demonstrated that
March 2021 | Volume 11 | Article 610303
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M2-TAMs are a poor prognostic factor in BC (37–39). In
particular, M2-TAMs promote tumor growth by facilitating
immunosuppression, angiogenesis, and inflammation, and can
also promote tumor recurrence after conventional therapies (30,
39). Consistently, CSF1-expressing TAMs are associated with
more aggressive tumors, in a cohort of 47 BC patients (33).
Moreover, signatures of M2-like TAM infiltration correlate with
a poor prognosis in luminal and triple negative subgroups of
BC (40).

FoxP3+ Regulatory T Cells
Tregs are a distinct specialized subpopulation of T cells that act to
suppress immune response. Tregs represent half of the
CD4+CD25+ T cell population. In addition, a small number of
CD8+FoxP3+ Tregs have also been identified in a large cohort of
BC patients (41). Physiologically, Tregs are involved in the
regulation of T and B lymphocyte activation as well as in the
homeostasis of cytotoxic lymphocytes (9, 42). The normal thymus
produces FoxP3-expressing CD25+CD4+ Tregs. In addition to
these naturally occurring Tregs, some naive CD25–CD4+ T cells
may also differentiate to Tregs in the periphery (43). Tregs are also
involved in a broad spectrum of pathologies such as
autoimmunity, allograft rejection, and hypersensitivity. Their
role in immunosuppression is indisputable since they can
disrupt the host immune response through a multitude of
mechanisms involving cell–cell contacts and the production of
immunosuppressive cytokines and metabolites, thus sustaining
tumor progression and aggressiveness. Tregs appear to have a
major role in disrupting the immune control of cancers and are
therefore associated with worse patient outcome (44).

Higher numbers of Tregs in the peripheral blood of BC patients
compared with healthy controls have been reported, and their ability
to infiltrate tumors increases with tumor stage and correlates with
poor prognosis in invasive BCs (41, 45). Tregs are recruited in the
TME by several chemokines and cytokines produced by tumor cells,
cancer associated fibroblasts or immunosuppressive cells. CXCL12 is
one of the main factors that induce Treg recruitment. Interestingly,
the expression of CXCL12 and its receptor CXCR4 is increased by
hypoxia, which could further promote Treg infiltration in breast
tumors, especially in the basal-like subtype (46). Related to the
different BC subtypes, it has been described that Treg infiltration
signature is associated with poor prognosis in luminal, triple negative
and HER2+ BC. Interestingly, Peng et al. also reported that, in a
cohort of 122 patients with primary invasive ductal BC, patients with
a low FoxP3+/CD8+ ratio showed a higher disease free survival (DFS)
than patients with an higher FoxP3+/CD8+ ratio (47). Moreover,
the depletion of Tregs in advanced primary tumors induces a
strong CD4+ T cell and interferon (IFN)g-dependent anti-tumor
response (45). In particular, the interferon (IFN) g derived from the
CD4+ cells, but not from the CD8+ and NK cells, is responsible for
the tumoricidal effects after Treg depletion in PyMT breast
carcinomas (48).

Anti-Tumor Immune Cells
Tumor Infiltrating T cells
TILs include all the cells with a lymphocytic nature infiltrating
the tumor tissues. Of particular interest are cytotoxic (CD8+) and
Frontiers in Oncology | www.frontiersin.org 5
helper (CD4+) T-lymphocytes (49) that constitute an essential
part of the adaptive immunity. CD8+ T-lymphocytes are the
major effector cells involved in tumor elimination by recognizing
tumor-associated- and neo-antigens presented by MHC class I
(47). CD4+ T cells can support and help the CD8+ T population
during the anti-tumor response via the secretion of a wide range
of effector cytokines. In general, TIL abundance in tumors is
fundamental for the establishment of an important immune
response against cancer. Indeed, a huge literature is consistent
with a positive correlation between TILs and good prognosis of
BC patients. For example, an increased number of TILs positively
correlates with increased DFS and overall survival (OS) in both
TNBC and HER2-positive BC patients treated with neoadjuvant
chemotherapy. Surprisingly, this correlation is completely lost in
luminal A tumors (50). Further studies are needed to elucidate
the underlying mechanisms, which might be related to the effects
of the endocrine therapy on the immune system in Luminal
A patients.

Natural Killer Cells
NK cells derive from a common lymphoid progenitor into the
bone marrow and then spread to primary and secondary
lymphoid tissues, as well as within non-lymphoid tissues
including the lungs, liver, and the peripheral blood (51, 52).
Phenotypically, they are identified as CD3−NK1.1+ in mice,
while in humans two main subsets exist: cytotoxic
CD56dimCD16+ cells and cytokine-producing CD56brightCD16−

cells (51). In both mice and humans, NK cells can be divided in
four subsets, corresponding to different maturation stages, based
on the expression of CD27 and CD11b surface markers. Immature
NK cells do not express the two markers. During maturation, they
acquire CD27 expression and then CD11b, while fully mature NK
present in peripheral blood are nearly all CD11b+ CD27−. These
different phenotypes correspond to different cell functions, with
CD27+ cells showing the best ability to secrete cytokines, and
CD11b+ CD27− displaying high cytolytic function (53, 54). NK
cells play an important role in cancer immunosurveillance,
eliminating a variety of transformed cells through the release of
cytolytic granules containing perforins and granzymes. Differently
from T-lymphocytes, NK cells participate in the innate immunity
and can recognize and kill altered cells without prior sensitization.
Moreover, NK cells recognize and eliminate cells that do not
express MHC class I, a mechanism that many cancer cells, and BC
CSCs in particular, exploit to escape from T cell-mediated
cytotoxicity (55, 56). For these reasons, NK cells are the most
effective immune cell subpopulation to control and eventually
eliminate abnormal cells. However, in BC and several other
solid cancer types, tumor infiltrating NK cells display a
CD56brightCD16− phenotype and secrete invasion-associated
enzymes such as MMP9 and, similarly to decidual NK cells,
exert pro-angiogenic functions through the secretion of VEGF
and angiogenin (57, 58). VEGF induces tumor vessel growth and
exerts immunosuppressive functions, promoting the proliferation
of immunosuppressive cells, limiting T-cell recruitment and
enhancing T-cell exhaustion (59). This shift in NK cell function
may be induced by several factors present in the breast TME, as
previously described for lung cancer, where TGF-b, adenosine,
March 2021 | Volume 11 | Article 610303
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and prostaglandins downregulate NK activating receptors and
induce the production of VEGF and placental growth factor
(PIGF) that promote cancer progression (55, 60, 61).
Interestingly, the balance between pro- and anti-tumor activity
exerted by NK cells differs in the different BC subtypes. Indeed, a
strong presence of NK cells that in turn is associated with a good
prognosis has been found in ER+ and HER2+ BC patients, while
NK cell infiltration correlates with poor prognosis in TNBC
patients (40).

Innate Lymphoid Cells
ILCs are immune cells deriving from the common lymphoid
progenitor and belong to the innate counterparts of T cells. In
effect, ILCs have been proposed as the evolutionary precursors of
T cells that do not express antigen-specific receptors (62). They
are tissue resident cells extremely rare in the peripheral blood
(63, 64), able to detect changes in the local microenvironment
through receptors for cytokines that are released during tissue
damage, and to trigger the adaptive immunity (65). Based on
their hallmarks, such as their cytokine signature and phenotype,
ILCs are divided into three major groups: ILC1s, ILC2s, and
ILC3s, even if two additional immune cell types, NK cells and
lymphoid tissue inducer cells, are also included in the ILC
family (66).

In response to IL-12, IL-15, and IL-18, ILC1s secrete IFNg
that is extremely important to induce macrophages and DCs to
eliminate bacteria and to present antigens. ILC2s secrete type-2
cytokines such as IL-5, IL-9, IL-13, and amphiregulin, which on
one hand are involved in the expulsion of helminths and in
helping to repair the damaged tissues, while on the other hand
are able to enhance Treg functions and thus immunosuppression
(67). ILC3s, instead, produce IL-22 and IL-17 that are able to
stimulate the secretion of antimicrobial peptides and mucus by
epithelial and goblet cells, respectively (68, 69).

Like NK cells, ILC1s are dependent on IL-15 and exhibit potent
cytotoxic activities against tumor cells, limiting tumor growth in
mammary preclinical model (70, 71). In BC, Irshad et al. identified
an interesting mechanism through which ILC3s, together with
stromal cells, are able to promote lymphatic metastasis by
modulating the local chemokine milieu. In particular, in a
preclinical mouse model of TNBC, CCL21-dependent ILC3
recruitment into the primary tumor stimulates CXCL13
production by the stromal cells, which in turn promotes the
production of the cancer cell motile factor RANKL that induces
cell migration (72). Moreover, in BC an enrichment of ILC2s in
tumors compared to healthy tissue was observed, and IL-33
administration in 4T1 BC cell model accelerates tumor growth
and the development of lung and liver metastases, which is
associated with increased intratumoral infiltration of ILCs,
MDSCs and Tregs (73, 74). However, the real contribution of
ILCs in cancer disease is still a matter of debate. Whether the
enrichment of ILCs into the tumor site results from newly recruited
cells or from local in situ proliferation is another open question.

Dendritic Cells
DCs are specialized antigen-presenting cells able to orchestrate an
efficient anti-tumor immunity as well as to participate in the
Frontiers in Oncology | www.frontiersin.org 6
immune tolerance. Mouse and human conventional DCs derive
from common DC precursors in the bone marrow. There are two
main subsets of DCs, monocytic DCs (mDCs) that are generally
CD11c+, and plasmacytoid DCs (pDCs) (75, 76). DCs induce an
efficient T lymphocyte activation and anti-tumor immune response
stimulation through the process of antigen presentation on MHC
class I and II molecules to T-lymphocytes, as well as by producing
immunomodulatory signals through cell–cell contacts and soluble
factors (77).

DCs have been found in many cancer types, including BC,
where they are poorly activated and often dysfunctional, since the
TME promotes their production of IL-10 and TGF-b, which
contribute to the expansion of Tregs (77). Moreover, an increase
of DCs has been observed in the peripheral blood of BC patients,
with higher levels in HER2-positive BC patients compared to
HER2 negative ones, suggesting differences between the different
BC subtypes (78). However, the prognostic role of DCs in patients
remains unclear, likely due to their heterogeneous composition
that comprises cells at different maturation stages. In a recent
study about metastatic BC, Holsbø and Olsen analyzed gene
expression profiles in patient blood samples and examined genes
and gene sets associated with risk of BCmetastasis. Among the top
genes, pDC-related genes and processes were identified (79). This
was in line with another study, in which pDC infiltration in
primary localized BC correlates with an adverse outcome,
suggesting their contribution in tumor progression (80). On the
other hand, Bailur and colleagues’ results suggest a positive
association between circulating pDCs and BC survival (76, 80).
Similarly, the presence of CD83+ mature intratumor DCs strongly
associated with better patient survival in node-positive tumors
(81), and CD11c+ mDCs positively correlated with T cell
infiltration and OS in TNBC patients (82). Moreover, different
subsets of DCs can have different correlations with therapeutic
response in BC patients. Indeed, a significant increase of DCs in
the blood was noted in BC patients whose tumors showed a good
pathological response following neoadjuvant capecitabine and
docetaxel preceded by adriamycin and cyclophosphamide
regimens. However the presence of a decreased amount of
intratumoral CD1a+ DCs did not show any significant
correlation with response to therapy, in both primary breast
tumors and metastatic axillary lymph nodes (83, 84).

Eosinophils
Eosinophils are innate immune cells involved in the protective
immune response of the host against helminthes (85), viral (86)
and microbial pathogens (87). Human eosinophils derive from
CD34+CD117+ pluripotent hematopoietic stem cells in the bone
marrow, where they complete their maturation and subsequently
enter into the bloodstream (88).

Phenotypically, eosinophils are characterized as CD11b+Gr-
1loF4/80+ cells. These markers are also found on macrophages,
but eosinophils can be distinguished due to their high
granularity, lack of expression of MHC-II and expression of
the sialic acid-binding lectin Siglec-F (89).

Eosinophils are recruited from the blood into the sites of
inflammation where, upon activation, they can release an array
of inflammatory mediators such as for example cationic proteins
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(major basic protein (MBP), eosinophil cationic protein (ECP),
eosinophil peroxide (EPX), and eosinophil-derived neurotoxin
(EDN)) that are unique to eosinophils and are important in the
defense against parasitic infections (90). Noteworthy, IL-5
together with IL-3 and GM-CSF, is crucial for supporting the
maturation of human eosinophils in the bone marrow (91) and
mediates their survival by NF-kB-induced Bcl-xL, which
inhibits apoptosis.

Evidence indicates the presence of eosinophils in the TME of
several human hematological and solid tumors, including BC,
even if the mechanisms responsible of the eosinophil infiltration
into the tumors are not completely known (92–94). However,
some data show that the high-mobility group box 1 protein
(HMGB1), IL-1a, and IL-33 potentially trigger eosinophil
recruitment (95). Moreover, macrophages and MCs can recruit
eosinophil via the production of VEGFs (96, 97) and/or the
release of histamine and prostaglandin D2 (PGD2) through the
activation of the chemoattractant-homologous receptor
expressed on Th2 cells (CRTH2) (98) and H4 receptor
(99), respectively.

Into the TME, eosinophils influence other leukocytes, such as
T cells, NK cells, DCs and macrophages. In particular, they are
able to recruit and activate T cells through CXCL9, CXCL10, and
CCL5, to attract NK cells by IL-6, IL-12, and CXCL10
production, and to induce M1 polarization (100). Therefore,
the presence of eosinophils into the tumor or in bloodstream is a
favorable prognostic factor for most cancers, although evidence
for a pro-tumorigenic role for eosinophils is reported (101). In
BC eosinophils appear to be anti-tumorigenic, enhancing the
patients’ ability to respond against disease (102). In particular,
Ownby et al. reported that BC patients with eosinophil counts of
less than 55/mm3 had significantly higher risk of recurrent
disease than patients who had normal or high levels of
eosinophils (102). Moreover, a study on a cohort of 930 BC
patients reported a benefit for relative eosinophil count (REC)-
high vs REC-low in BC-specific survival and in time to treatment
failure (93).
MECHANISMS OF
IMMUNOSUPPRESSION IN BREAST TME

During tumor progression, several immunosuppressive mechanisms
appear, with a huge advantage in terms of growth, aggressiveness and
resistance to treatments for cancer cells. As reported above, the
BCIM contains specific immune sub-populations that, through
complex and dynamic mechanisms, are able to inhibit the host
anti-tumor immune response, by affecting the activity of the main
immunostimulating populations. It is important to note that, to
generate a tumor immunosuppressive microenvironment, the
presence of the immunosuppressive cells inside the tumor lesion is
absolutely indispensable. Several anti-inflammatory mechanisms
used by BC cells to mobilize and recruit the immunosuppressive
mediators have been identified. Here we summarize the main
communication strategies that the tumor cells apply to recruit
these pro-tumor immune cells as well as the mechanisms through
Frontiers in Oncology | www.frontiersin.org 7
which these cells inhibit the activity of the anti-tumor immune cells,
distinguishing between cytokine/soluble factors, cell–cell contact and
exosome-mediated mechanisms (Figure 2).

Cytokine and Soluble Factors-Mediated
Mechanisms
Colony-stimulating factors (CSFs) are essential for the
proliferation, activity and differentiation of the myeloid-cell
lineage. G-, GM- and M-CSF are the main components of this
family. Interestingly, BC cells can upregulate the expression of
these CSFs through a variety of mechanisms, promoting the
mobilization and infiltration of specific MDSC populations into
the tumors (12, 103, 104). In particular, the mTOR pathway
drives G-CSF expression in in vivo preclinical models of BC,
where, notably, the CSC compartment exhibits an elevated
production of G-CSF, thus identifying a positive correlation
between CSCs and immunosuppressive TME (11). In addition,
it has been demonstrated that tumors actively reprogram
metabolic pathways to evade effective anti-tumor immunity.
Interestingly, a high glycolytic rate is associated with an
increased secretion of both G-CSF and GM-CSF in TNBC
cells (105).

Equally, also the chemokines play an important and
fundamental role in the regulation of the TME. In particular,
the secretion of CXCL2 and CCL22 by DNp63-carrying BC cells
has been reported to be associated with MDSC infiltration.
Importantly, CCL2 and CCL5 have been identified to be
important chemokines implicated in monocyte and/or M-
MDSC migration to tumors (12). Instead, CXCL5 and CXCL12
(SDF-1) play an important role in PMN-MDSC recruitment into
the primary tumor in a BC mouse model with the deletion of
Tgfbr2 (13).

Once recruited inside the tumor, the MDSCs explicate a
strong immunosuppressive activity both directly, through the
continuous production of reactive oxygen species (ROS), nitric
oxide (NO) and several cytokines and, indirectly, by attracting
additional immunosuppressive populations. In particular, it is
widely reported that M-MDSCs are able to produce mainly O2

–,
H2O2, and peroxynitrite (PNT), while PMN-MDSCs mainly
release NO and arginase, which deplete L-arginine from the
TME, inhibiting T cell function. These MDSC-derived ROS,
NRS, and PNT are able to modify the T cell receptor (TCR) and
the CD8 molecules, inducing the block of T-cell immune activity
(106). Interestingly, MDSCs can directly block the entry of CD8+

T cells into tumors, by producing high levels of PNT, as well as
are able to inhibit T-cell proliferation, strongly impairing the
anti-tumor immune response (12, 107). MDSCs as well as the BC
cells themselves can also produce immunosuppressive cytokines,
such as IL-10, IL-6 and TGF-b, inducing inflammation that may
facilitate immune suppression (108, 109). Moreover, to amplify
the immunosuppression mechanisms repertoire, MDSCs are
able to attract Tregs in a CCR5-dependent manner by
secreting CCL4 and CCL5 (12). In addition, to further increase
the complexity of the immunosuppressive network, Tregs have
been identified as an important source of IL-10 in the TME. High
IL-10 production levels amplify the immunosuppressive
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mechanisms sustaining the expression of FoxP3, TGF-bR, and
TGF-b. TGF-b plays a complex role in BC progression, since it
acts as a tumor-suppressor in normal and premalignant cells and
as a tumor promoter during the more advanced phases of tumor
development, with several epigenetic modification of its signaling
partners and target genes controlling this dual role (110). Indeed,
while under physiological conditions TGF-b inhibits mammary
ductal growth and epithelial stem cell self-renewal, when released
in the TME it induces EMT and the secretion of matrix
components that stimulate invasion and metastatic spreading,
and, together with VEGF, recruits endothelial cells and promotes
their proliferation, favoring angiogenesis (111). Moreover, TGF-
b participates in the downregulation of IL-2 expression, which is
a requirement for T cell proliferation (44). Concomitantly, TGF-
b favors the Treg infiltration in tumor tissues, which could also
be directly induced by cancer cells through the expression of
several chemokines, such as S1P, CXCL12, CCL20, CCL5,
CCL28, and CCL2/22 (44).
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As reported above, also TAMs, mainly as pro-tumoral M2,
are abundant in the BCIM. TAMs originate primarily from bone
marrow-derived blood monocytes/M-MDSC recruited in the
TME and induced to rapidly differentiate into macrophages
(12). Moreover, one of the main mechanisms found in
different types of cancer, including BC, is the secretion of
CCL2 through which the cancer cells are able to attract and
increase the TAM abundance into the TME (112, 113). The
presence of TAMs has been associated with the secretion of an
array of chemokines, cytokines, and enzymes able to induce
immunosuppression and to downregulate the activation of
immune cells involved in the anti-tumor response. Notably,
chemokines such as CCL2, CCL5, CCL17, CCL18, CCL20 and
CCL22, cytokines such as hepatocyte growth factor (HGF),
PDGF-B, VEGF, IL-4, IL-10, prostaglandin (PG) and TGF-b
and enzymes, such as Cathepsin K, cyclooxygenase-2 (COX-2),
ARG1 and MMPs secreted by TAMs can directly inhibit both
CD8+ and CD4+ T cell effector function as well as recruit Tregs
A B

C

FIGURE 2 | Mechanisms of immunosuppression in breast TME. Breast cancer cells developed several mechanisms to promote immunosuppression. (A) Cytokines
and soluble factors are the main players in cell communication and signaling and they are able to mediate immune cell recruitment, mobilization and/or tumor
infiltration. Moreover, they promote inflammation and contribute in changing TME composition, making it more immune suppressive. (B) Another strategy adopted by
breast cancer cells is to overexpress on their surface immune checkpoint receptors such as PD-L1 or CTLA4, inducing cell–cell contact mediated death or anergy in
T cells and suppressing immune response against tumor. (C) Finally, tumor derived exosomes could induce a reprograming in both immune suppressive and
immune cells promoting tumor progression and survival by a wild range of molecules through different mechanisms. Created with BioRender.com.
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into the tumor lesion (114). In particular, PGE2, the major
product of COX-2, plays a pivotal role in BC progression,
though the binding to seven transmembrane G-protein-
coupled receptors expressed on several immune cell subsets
(115). Inhibition of its production by unselective COX
inhibitors such as aspirin or other non-steroidal anti-
inflammatory drugs has been associated with a reduced risk of
developing BC (116), which constitutively expresses high
amounts of COX-2 (117). PGE2 is secreted by both cancer
cells and immune cells present in the TME, where it promotes
the differentiation of MDSCs, from bone marrow progenitors,
and DCs and their recruitment and activation, the M2
polarization of macrophages and their expression of
programmed death ligand (PD-L)1. In addition, it suppresses
NK anti-metastatic activity by reducing the expression of their
activating receptors, stimulates the induction of Th2 cells and
Tregs while inhibiting Th1 polarization, overall inducing
immunosuppression (115).

Besides chemokines, cytokines, and eicosanoids, an
immunosuppressive role is also played by metabolites produced
by cancer cells, such as adenosine. Adenosine is a purine nucleoside
present at low levels in healthy tissues, but released in high amounts
in inflamed tissues and in the TME, where it acts as a danger signal.
Adenosine is produced by the ectoenzyme CD73 from AMP,
generated by CD39 starting from ATP. These two ectoenzymes
are expressed at high levels on MDSCs and tumor cells from
different cancers, and correlate with poor response to therapy in
TNBC patients (118). Adenosine binds four different G-protein-
coupled receptors that have been found to be expressed on multiple
immune subsets. It exerts several immunosuppressive activities,
such as the inhibition of activation and proliferation of CD4+ T
and NK cells, induction of Tregs, skewing of DCs to tolerogenic or
regulatory subsets and of macrophages to the M2 phenotype (61,
118) (Figure 2A).

Cell–Cell Contact-Mediated
Immunosuppressive Mechanisms
An additional strategy by which BC cells are able to evade
immune destruction is mediated by cell-cell contact. Plasma
membrane receptors such as the Programmed Death 1 (PD-1)
and the Cytotoxic T lymphocyte antigen 4 (CTLA-4) are
responsible for the T cell anti-tumor suppression activity,
leading to tumor escape from the immune surveillance (119).
In normal conditions, PD-1 is expressed on T and B
lymphocytes, providing peripheral tolerance and protection
against autoimmunity, while its ligand PD-L1 is mainly
expressed on the surface of antigen-presenting cells. In
pathological conditions, such as cancer, the cells can acquire
the capability to overexpress PD-L1 and PD-L2. Although the
mechanism is not completely understood, the PD-1/PD-L1/PD-
L2 axis is able to induce anergy and/or apoptosis of PD-1+ T
cells, attenuating the anti-tumor immune response and
promoting Treg immunosuppressive activity (120, 121).
Interestingly, a higher PD-L1 expression has been observed in
HER2+ BC and TNBC subtypes rather than in the Luminal
subtypes (122, 123).
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In addition, CTLA-4, which belongs to the immunoglobulin
superfamily, is expressed mainly on activated T cells, playing the
role of T cells activity inhibitor. In fact, CTLA4 is homologous to
CD28, a T-cell co-stimulatory protein, able to bind CD80 and
CD86 on antigen-presenting cells. Thanks to its role in inhibiting
the immune response against the tumor, CTLA-4 correlates with
a poor prognosis in BC patients. Interestingly, besides on T cells,
CTLA-4 is often expressed on BC cells (124, 125). Although its
exact role in BC cells is still unknown, it might contribute to the
regulation of PD-L1 expression and cell proliferation, as
observed in lung cancer (126). Moreover, BC cells not only
express these receptors on their surface, but they can also induce
PD-1 expression in other immune cell populations, enhancing
their immunosuppressive function. In particular, it has been
described that tumor cells can modulate PD-L1 expression on
MDSCs through the release of cytokines such as IFNg. In fact,
IFNg-activated pSTAT1 is able to activate IRF1 protein, leading
to its binding on a specific sequence in the cd274 promoter,
enhancing PD-L1 transcription. In fact, IFNg is highly
expressed in cells of the tumor tissues and its neutralization
significantly decreased PD-L1+ MDSCs in the TME in vivo (127).

Furthermore, previous works demonstrated that also Tregs,
accumulated in BC microenvironment, express high levels of
CTLA-4 and PD-1, participating in T cell inhibition (128).

Interestingly, in addition to PD-L1 and CTLA-4, BC cells
often upregulate other immune checkpoint (IC) markers as a
mechanism of resistance to current inhibitors (129). For
instance, T-cell Immunoglobulin and Mucin domain-
containing molecule 3 (TIM-3) correlates with the presence of
other IC markers such as lymphocyte activation gene (LAG)-3
and PD-L1 (129). TIM-3 is an IC receptor that is emerging as a
target for cancer immunotherapy. It is expressed on both tumor
and immune cells, and contributes to immune tolerance (130).
LAG-3 is a cellular receptor expressed by activated T
lymphocytes and is associated with T cell exhaustion (131),
and it is commonly upregulated with PD-1 (132). Additionally,
the T cell immunoglobulin and ITIM domain (TIGIT) co-
inhibitory receptor (131), is highly expressed on CD8+ and
CD4+ TILs in TNBC, while its ligands are present on antigen
presenting cells and cancer cells (133). These three ICs, due to
their properties, have been proposed as prognostic markers in
BC, together with CD47 (131, 132, 134, 135). The CD47 receptor
is expressed on the surface of several types of cancer cells and
functions as an anti-engulfment signal that protects cells from
phagocytosis by macrophages (136, 137). In particular, it is
highly expressed on TNBC, and it has been associated with
EMT and poor prognosis (135) (Figure 2B).

Exosomes and Microvesicles as Important
Players in Sustaining Tumor Progression
Due to their lipid double layer, extracellular vesicles (EVs) are
able to carry stably active biological molecules and have a crucial
role in cellular communication and trafficking in both
physiological and pathological conditions. Exosomes are a
subclass of EVs involved in intercellular communication that
are released by all cell types, including cancer cells. Cancer
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exosomes have been demonstrated to mediate the main steps of
tumor progression, in particular through the modulation of
immune response, TME reprogramming and metastasis
formation (138). It has been reported that BC cells often
release exosomes containing TGF-b and IL-10, leading to T
cells suppression (139–141). In particular, it has been shown that
tumor-derived EVs are predominantly taken up by MDSCs,
inducing MDSC immunosuppressive functions (142).

Moreover, it has been shown that tumor-derived exosomes
could carry PD-L1 on their membrane surface. Besides inhibiting
effector T cell recruitment and activation, exosome PD-L1
confers resistance to ICI therapy. Their ability to competitively
bind to PD-L1 antibodies may contribute to the still largely
unknown mechanisms of resistance of exosomal PD-L1 (143).

Numerous studies have underlined the role of exosomes in
processes involved in tumor progression and survival, modulating
immune cells such as DCs, T cells, macrophages, and NK cells and
exerting a pro-inflammatory effect (144). For example, BC-derived
exosomes can induce a pro-inflammatory response in
macrophages localized at distant sites through the activation of
NF-kB, which in turn stimulates production of inflammatory
cytokines (145). In particular, palmitoylated proteins on the
cancer exosome surface are able to bind to TLR2 enhancing NF-
kB activation. In turn, activated macrophages prepare pre-
metastatic niches that favor colonization by tumor cells (145).
Furthermore, despite the molecular mechanism is not fully
understood, it has been shown that tumor-derived EVs are able
to increase the expansion of CD4+CD25+FoxP3+ Treg cells,
inducing their suppressor activity and at the same time blocking
the proliferation of activated CD8+ T cells (141, 146).

Interestingly, it has been demonstrated that BC-derived
exosomes can contain and transmit also non-coding RNA, such
as lncRNA SNHG16, which is able to induce CD73 in gd1 Treg cells,
enhancing their immunosuppressive effect via adenosine generation
(147). Further studies have underlined the presence in EVs of
miRNAs able to contribute to tumor progression. For instance, BC-
secreted exosomal miR-105 could induce a metabolic program in
cancer associated fibroblasts by activating the MYC signaling,
adapting them to a different metabolic environment (148, 149).
Another example is miR-503 that can enhance polarization of the
microglia from a tumor-suppressive M1 to a tumor-promoting M2
phenotype, thus contributing to brain metastasis in BC (150).
Interestingly, hypoxic conditions favor the release of
immunosuppressive exosomes by BC cells. In fact, hypoxia
increases the EV content of two immunosuppressive factors,
TGF-b1 and miR-23a, which inhibit NK cell function by directly
targeting the expression of CD107a and decreasing the cell surface
expression of the activating receptor NKG2D (151) (Figure 2C).
IMPORTANCE OF THE TME IN RESPONSE
AND RESISTANCE TO IMMUNOTHERAPY

Immunotherapy in BC
Immunotherapy has entered the clinical practice for BC patients
as early as 1998, with the FDA-approval of the humanized HER2
Frontiers in Oncology | www.frontiersin.org 10
monoclonal antibody trastuzumab, followed by other HER2
targeting antibodies (152). These drugs improved overall
survival of patients affected by early or advanced HER2+ BC.
However, tumors often display intrinsic or acquired resistance
mechanisms, and most patients eventually experience disease
progression (153).

Besides these passive immunotherapies, active immunotherapy
for BC has been extensively studied. Although encouraging results
came from preclinical analysis, most of the clinical trials with
vaccines targeting tumor associated antigens (TAA) such as
HER2 or mucin (MUC)1 failed to significantly improve patients’
outcome (154). Currently, new vaccines based on tumor-specific
neo-antigens and shared oncoantigens that play a key role in the
biology of CSCs are giving promising results that will hopefully pave
the way for their clinical translation (155–159). Recently,
immunotherapy options for BC treatments have expanded, with
the introduction of the ICI atezolizumab (a PD-L1 antibody) in
combination with chemotherapy for the treatment of patients with
PD-L1+ unresectable locally advanced or metastatic TNBC (152).
However, the Phase III double-blind IMpassion130 trial
(ClinicalTrials.gov NCT02425891) demonstrated a clinically
meaningful but not statistically significant difference in OS
between patients treated with nab-paclitaxel plus atezolizumab or
placebo, and a complete response rate of only 10.3% in PD-L1+
patients subjected to the combinatory treatment (160, 161).

Altogether, the results coming from the different BC
immunotherapy regimens applied so far either in the clinical
practice or in clinical trials suggest that multiple tumor cell
intrinsic and extrinsic mechanisms of resistance need to be
targeted to increase their efficacy. In particular, it is becoming
increasingly evident that the immunosuppressive activity of the
TME greatly affects tumor response to immunotherapy (5).

The Role of TME in the Response to
HER2-Targeted Therapies
The composition of the TME is key in determining the sensitivity
of HER2+ BCs to HER2-targeted therapies (153). Indeed, several
studies have shown that the presence of TILs and the expression
of immune-associated gene signatures in pre-treatment biopsies
are associated with longer DFS in HER2+ BC patients treated
with anti-HER2-based therapy in the neoadjuvant or adjuvant
settings (50). This is mainly due to the ability of immune cells to
enhance trastuzumab anti-cancer activity. In fact, NK-dependent
antibody-dependent cellular cytotoxicity (ADCC) plays a central
role in trastuzumab-mediated cancer cell killing (162). Moreover,
trastuzumab-induced HER2 internalization leads to HER2
presentation in MHC class I molecules, which can activate
anti-tumor CD8+ T cells (163). Therefore, although the main
mechanisms responsible for primary or acquired resistance to
trastuzumab and to the other HER2-targeted therapies are
cancer cell-intrinsic (153), the presence of M2 macrophages
and other immunosuppressive cells in the TME significantly
impairs the efficacy of HER2-targeting antibodies (164).
Interestingly, trastuzumab treatment can increase the immune
evasive properties of BC cells through the induced secretion of
TGF-b, IL-6 and other immunosuppressive cytokines that, in
turn, recruit immunosuppressive cells (165, 166). Indeed, the
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presence of a high number of TILs in patients with residual
disease after neoadjuvant therapy was associated with worse DFS
(167), probably due to an increase in Treg cells (168), indicating
that immune-mediated resistance mechanisms need to be
inhibited in BC patients to guarantee a good response to
HER2-targeted therapy.

TME Mediates Resistance to Immune
Checkpoint Inhibitors
The poor response of most BCs to single-agent ICI therapy
reflects intrinsic or acquired resistance (169). The mechanisms
responsible for acquired resistance to ICIs in BC are currently
unclear. However, lack of TILs and the presence of high numbers
of MDSCs and other immunosuppressive cells correlate with low
response (170). Of note, the TME composition in primary cancer
differs from that in metastases, and clinical and preclinical data
have demonstrated that primary BC are more responsive to ICIs
than their corresponding lung or liver metastases, demonstrating
that TME is important in determining response to
immunotherapy (171). Indeed, many cells within the TME can
impair the response to ICIs by inhibiting effector T cells (172),
and depletion of intra-tumor MDSCs or Treg cells improved
responsiveness to PD-1/PD-L1 blockade in preclinical models of
BC (173, 174). Therefore, association of ICIs with therapies that
revert the immunosuppressive activity of TME may improve
their efficacy.
STRATEGIES TO REVERT IMMUNE
SUPPRESSION AND IMPROVE CANCER
IMMUNOTHERAPY

The growing understanding of themechanisms that cause resistance
to immunotherapy will pave the way to the development of
combination strategies that associate immunotherapy with drugs
able to revert TME immunosuppression. Indeed, several studies
have demonstrated that therapies that either recruit T or NK cells or
reduce immunosuppressive factors in the TME can sensitize poorly
immunogenic tumors to immunotherapy (175) (Figure 3).

The first strategy to improve the effectiveness of
immunotherapy, and in particular of ICIs, is to recruit and
activate effector cells such as anti-tumor T lymphocytes, since
ICIs are not able to unleash antitumor responses if fully primed T
cells are not present at the tumor site (176). This effect may be
obtained with adoptive cell transfer therapy, and in particular
with the administration of chimeric antigen receptor (CAR) T
cells. Several clinical trials with CAR T cells specific for different
tumor antigens such as HER2 (NCT03696030), EpCAM
(NCT02915445), MUC1 (NCT04020575 and NCT02587689)
and mesothelin (NCT02792114), alone or in combination
regimens, are currently ongoing in BC patients. Till now, CAR
T efficacy in solid tumors has demonstrated limited, mostly due
to the presence of physical barriers that limit their infiltration in
the tumor and to the immunosuppression exerted by the TME,
but their combination with ICIs and other immunotherapies is
expected to ameliorate cancer patient outcomes (177). However,
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it must be taken into account that, due to the difficulties in
finding BC specific antigens, CAR T cells have been generated
that targets TAAs, and therefore they can induce cytokine release
syndrome and other severe reactions (178), as observed in a
patient who died of pulmonary distress 5 days after receiving
HER2-targeting CAR T cells (179), rising safety concerns.

Anti-cancer vaccination is a promising alternative to induce T
cell recruitment in the tumor. Recently, cancer vaccines have
been repositioned as a way to activate an immune response
whose brakes are then removed by ICIs (154). A phase I clinical
trial is testing the association of the personalized cancer vaccine
RO7198457—an mRNA-based vaccine targeting an unspecified
amount of tumor-associated antigens expressed in the patient’s
tumor—with atezolizumab in patients with TNBC and other
solid tumors (NCT03289962). Moreover, several clinical trials
are currently recruiting patients affected by TNBC or other
advanced BCs that will be treated with vaccination in
association with the anti-PD-1 pembrolizumab or the anti-PD-
L1 durvalumab (NCT04024800; NCT03362060; NCT03632941;
NCT03789097; NCT04634747; NCT04418219; NCT03199040;
NCT03606967; NCT02643303)). In the next years, the results
coming from these trials will clarify the effectiveness of combined
therapies based on ICIs and vaccination for BC treatment.
Interestingly, cancer vaccines targeting CSCs can also synergize
with HER2-targeted immunotherapy, as we have recently
demonstrated in a preclinical model (180). Thus, multiple
combination strategies might be developed in the next years to
further improve BC treatment.

Another strategy to induce T cell activation and increase the
efficacy of immunotherapy in BC patients is its association with
cytotoxic chemotherapies that can induce immunogenic cell
death (ICD), with the subsequent release of tumor antigens
that prime T cells. Not all cytotoxic agents lead to ICD, but
doxorubicin, mitoxantrone, paclitaxel and oxaliplatin do (181,
182). Moreover, these immunomodulating drugs improve
immunotherapy by downregulating PD-L2 and upregulating
MHC class I expression on tumor cells, increasing their
immunogenicity (183). Several clinical trials testing the
combination of ICIs with immunogenic chemotherapy have
been performed (some examples are NCT02555657;
NCT02622074; NCT03139851; NCT02425891), and the results
from the IMpassion130 trial (NCT02425891) have led to the
FDA approval of atezolizumab in association with nab-paclitaxel
for first line, metastatic, PD-L1+ TNBC (160, 161).

Very recent data have shown that ICIs can act not only on T
cells but also on NK cells, which express several ICs that inhibit
their cytotoxic function, such as PD-1, TIM3, TIGIT, LAG-3 and
CD96 (184). Several clinical trials are ongoing investigating the
effects of ICIs on NK cells in different solid cancers, as reviewed in
(185). Besides the classical ICs, NK cells express specific inhibitory
receptors such as KIRs and NKG2A, and several inhibitory
receptor blocking antibodies are currently undergoing clinical
evaluation in solid cancers. Monalizumab, a mAb targeting
NKG2A, is currently being tested in combination with
trastuzumab in metastatic HER2+ breast cancer (NCT04307329).
However, the study of these novel drugs in BC patients is still
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limited. Nevertheless, since NK cells represent an attractive tool
for cancer immunotherapy thanks to their ability to kill cancer
cells in an MHC-independent manner, other NK-based
immunotherapies have been developed (186). Besides
stimulation with cytokines (such as IL-12, IL-15 or IL-2,
discussed below), the anti-tumor effects of endogenous NK cells
can be stimulated by administration of bispecific and trispecific
killer cell engagers (BiKE and TriKE, respectively), constituted by
antibodies targeting CD16 or NKG2D and one or two tumor
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antigens (61). TriKEs can also be engineered to sustain NK cell
proliferation in vivo, through the insertion of a modified IL-15
cross-linker (51). BiKe and TriKE specific for HER2 or EpCam
were developed for BC, and, during the revision of this paper, GT
Biopharma announced the initiation of clinical development of
TriKE therapy for the treatment of HER2+ breast and
gastrointestinal cancers, using a tri-specific scFv recombinant
fusion protein conjugate composed of anti-CD16 and anti-
HER2 antibodies, and a modified form of IL-15 (61).
FIGURE 3 | Strategies to revert immune suppression and improve cancer immunotherapy. Actually, several methods used in breast cancer treatment take
advantage of immunomodulation mechanisms and are promising tools for tumor immunotherapy. One strategy is to improve immune cell activity against the tumor
by innovative therapies such as CAR-T/CAR-NK administration, which employs patient’s T/NK cells engineered with chimeric receptors targeting antigens
characteristics of cancer cells, or as anti-cancer vaccination, which stimulates the activation of the patient’s tumor-specific T cells. An additional method ongoing in
clinical studies is the use of monoclonal antibodies against immune checkpoints or immune checkpoints inhibitors (ICIs) to block T-cell suppression, and the use of
BiKE and TriKE reagents to induce antitumor NK cell activation. Moreover, an antitumor immune response may be activated by chemotherapy drugs inducing
immunogenic cell death. A second strategy to improve tumor immunotherapy is to revert the immunosuppressive activity of TME often displayed in several breast
cancers. In this sense, cytokine pharmacological modulation or inhibition of specific immunosuppressive pathways can be performed. The effects of single or
combined therapies are actually studied. Created with BioRender.com.
March 2021 | Volume 11 | Article 610303

https://BioRender.com
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Salemme et al. Breast Cancer Microenvironment Influences Immunotherapy
Recently, adoptive NK cell therapy strategies have been
explored in preclinical and clinical studies. Although adoptive
transfer of autologous NK cells expanded ex vivo induced only
very limited antitumor effect in patients with solid cancers,
partially due to the immunosuppressed state of patients’ NK
cells, a phase I clinical trial in patients with treatment-refractory
HER2+ solid cancers treated with trastuzumab, bevacizumab,
and autologous in vitro expanded NK cells reported preliminary
antitumor activity, supporting the assessment of this approach in
phase II trials (187). Alloreactive human pluripotent stem cell- or
PBMC-derived NK cells have been widely investigated. However,
in BC patients a phase II trial with allogeneic NK cell
administration after lymphodepleting chemotherapy and total
body irradiation gave poor results (188).

The difficulties in obtaining large amounts of NK cells led to the
development of NK cell lines, among which EBV-transfected NK-92
is the only approved by the FDA for use in clinical trials (189). A
clinical trial associating the infusion of NK-92 cells to the IL-15
super-agonist N-803 that promotes enhanced NK cell function,
several chemotherapeutic drugs and vaccines targeting CEA, Ras
and MUC-1, is currently recruiting TNBC patients who have
progressed on standard of care therapy (NCT03387085). In order
to improve their efficacy, NK cells expressing tumor-targeting CARs
were generated. Autologous, allogeneic and NK cell lines can all be
engineered to express CARs. Most CAR-NKs developed so far were
tested in hematological malignancies, and some clinical trials are
currently evaluating the safety and efficacy of PD-L1 or HER2-
targeting CAR-NK therapy in solid tumors, although, to the best of
our knowledge, there is not published data on human trials on BC
up to now (186). Of note, the identification of CD142 (also known
as tissue factor) as an antigen highly expressed in TNBC cells and
CSCs, led to development of CAR-NKs specific for this aggressive
type of BC, which led to positive results in preclinical studies (190),
and similar results were obtained with EGFR-CAR NK cells (191),
opening the way for a clinical development. Although CAR-NK
therapy is still under evaluation, it displays potential advantages
over CAR-T cell therapy. Indeed, NK cells release mainly IFNg
and GM-CSF, which are relatively safer than the cytokines released
by activated CAR-T cells (IL-6 and TNF-a) that can cause cytokine
release syndrome. Finally, CAR-NK cells can kill target cells in both
CAR-dependent and CAR-independent manners, increasing their
efficacy (51).

Another strategy to improve tumor immunotherapy is to revert
the immunosuppressive activity of TME that characterizes most BCs.
To this end, both drugs that deplete immunosuppressive cells and
inhibitors of inflammatory cytokines have been tested. No selective
MDSC inhibitors are currently known; however, many existing
drugs reduce systemic and intratumor MDSCs, potentiating
immunotherapy over time (15). DNA methyl transferase (DNMT)
and histone deacetylase (HDAC) inhibitors, besides increasing
tumor cell intrinsic immunogenicity through the upregulation of
MHC class I and the antigen processing machinery (192), exert this
effect (193). The HDAC inhibitor romidepsin is being evaluated in
association with nivolumab and cisplatin in TNBC (NCT02393794),
while the DNMT inhibitor decitabine in combination with
pembrolizumab, followed by standard neoadjuvant chemotherapy,
Frontiers in Oncology | www.frontiersin.org 13
is under evaluation for locally advanced HER2− BC (NCT02957968).
Recently, a key role of PI3Kd and PI3Kg isoforms in promoting
integrin4-dependent MDSC recruitment in the TME and in
stimulating the immunosuppressive polarization of MDSCs and
TAMs has been shown (194). Therefore, the PI3Kd and PI3Kg
inhibitor IPI-549 is under evaluation in combination with
atezolizumab and nab-paclitaxel in TNBC patients (NCT03961698).

Since in BC the dominant TAM phenotype is that of tumor
promoting M2, which is associated with poor prognosis (195),
macrophage depletion or re-education to anti-tumor M1 is an
attractive approach for TME modulation (196). The most widely
used strategy to date has been TAM depletion from the TME
through inhibition of CSF-1/CSF-1R axis. CSF-1/CSF-1R
inhibitors have been administered either as a monotherapy
(NCT02265536) or in association with chemotherapy
(NCT01596751 and NCT02435680). However, the available
results from other cancer types showed only modest efficacy
(196). This could be partially due to the ability of chemotherapy
to recruit Tie+ macrophages in the TME, which in turn promote
cancer cell dissemination (197). Therefore, a phase I clinical trial
that evaluates the efficacy of the Tie2 kinase inhibitor rebastinib
in combination with paclitaxel and the microtubule inhibitor
eribulin mesylate in patients with advanced BC is currently
ongoing (NCT02824575).

Aberrant overexpression of many proinflammatory cytokines
has been reported in breast tumors, with a different profile
during cancer progression (108). The modulation of cytokines
present in the TME can be pharmacologically performed in order
to either increase cytokines that promote anti-tumor immune
responses or inhibit those that favor tumor progression (198).
Among the anti-tumoral cytokines, IL-2 is one of the most
studied, since it potentiates the activation of both cytotoxic T
and NK cells, and can therefore enhance ADCC (198).
IL-2 (aldesleukin or its pegylated more stable form
bempegaldesleukin) administration has therefore been
associated with trastuzumab, cancer vaccines or ICIs in several
clinical trials in BC patients. However, the few results available so
far indicate only a modest benefit (NCT00784524;
NCT00003199; NCT03435640). This could be ascribed to the
induction of compensatory immunosuppressive mechanisms,
such as increased expression of IC molecules, secretion of
inhibitory cytokines such as IL-10 and TGF-b, triggering of
Treg cells and MDSCs, and activation of intracellular
suppressors of cytokine signaling proteins that terminate the
antitumor response (198). Therefore, many strategies that inhibit
immunosuppressive cytokines have been developed and tested in
a multitude of clinical trials in BC patients. TGF-b, IL-6 and IL-8
are among the most promising cytokines to be targeted, since
their overexpression has been associated with advanced disease,
higher risk of recurrence, stemness, therapeutic resistance as well
as immune suppression (199–202). Several TGF-b targeting
agents are under analysis in BC patients. An anti-PD-L1/TGF-
bRII bifunctional antibody (M7824) is currently undergoing
clinical evaluation either as a single agent in stage II–III
HER2+ BC (NCT03620201) or in combination with radiation
(NCT03524170), with eribulin (NCT03579472) or with a
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brachyury-targeting virus-based vaccine plus trastuzumab
emtansine or the class I HDAC inhibitor entinostat in TNBC
patients (NCT04296942). Similarly, the selective TGF-bR1
inhibitor galunisertib is under evaluation in combination with
paclitaxel in TNBC patients (NCT02672475). For what concerns
IL-6, the neutralizing IL-6 receptor antibody tocilizumab—FDA-
approved for the treatment of cytokine release syndrome in CAR
T-treated patients—is emerging as a potential new therapeutic in
BC. Two clinical trials are recruiting patients to test its
administration in combination with either trastuzumab and
pertuzumab in metastatic HER2+ BC or with atezolizumab
and nab-paclitaxel in advanced TNBC patients (NCT03135171
and NCT03424005). In preclinical models of TNBC, IL-8
inhibition was shown to revert the mesenchymal phenotype,
decrease MDSCs in the TME and enhance tumor cell killing by T
and NK cells (202), providing the rational for combining IL-8
inhibitors with immunotherapy or chemotherapy. Reparixin, a
small molecule inhibitor of the IL-8 receptors CXCR1 and
CXCR2, has been tested in clinical trials (NCT01861054;
NCT01861054) in HER2− BC patients, reporting a 30%
response rate in 27 patients and a decrease in the aldehyde
dehydrogenase CSC marker in about 25% of patients (203).
Besides cytokines, molecules involved in the production of the
immunosuppressive metabolite adenosine represent promising
targets for BC therapy. In this light, clinical trials are currently
ongoing in TNBC and other solid tumors combining
immunotherapy with pembrolizumab or atezolizumab and
inhibitors of CD73 or adenosine receptors (CPI-006 and CPI-
444, respectively; NCT03454451 and NCT02655822), although
the results have not yet been published (204).
CONCLUSIONS

The introduction of immunotherapy has revolutionized the
treatment of several cancer types, shifting the focus from
cytotoxic therapies toward treatments that boost anti-tumor
immune responses. However, only a small percentage of
patients affected by BC currently benefit from immunotherapy.
Indeed, the clinical efficacy of immunotherapy is limited to a
subset of patients, and secondary resistance often develops in
responding patients, further constraining the possibility of
immunotherapy of substantially improving the outcome of
BC patients.

A plethora of mechanisms contribute to the low efficacy
displayed by immunotherapy in general, and of ICIs in
particular, when administered as a single agent in the majority of
BC patients, and it is now well known that the TME plays a pivotal
role in the resistance mechanisms. Indeed, tumor progression is
strictly intertwined with modifications of its TME that promote
cancer cell proliferation while inhibiting the effector functions of
anti-tumor immune responses, generating an immunosuppressive
microenvironment that finally results in tumor outgrowth and
metastatic dissemination. This immunosuppressive milieu
generated by the crosstalk between cancer cells and immune and
stromal cells present in the TME significantly dampens the
protective anti-tumor immune responses activated by
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immunotherapies, thus resulting in treatment failure. The
awareness of the existence of these mechanisms has shed light
on the need to develop combination therapies that support the
effect of ICIs and other immunotherapies by either expanding
the activation and recruitment of effector cells, such as T
l ym p h o c y t e s a n d NK c e l l s , o r b y i n h i b i t i n g
immunosuppressive cells and soluble factors. Of note, recent
evidence from the literature and the clinics is expanding the
focus of immunotherapy from its traditional T cell-centric view
to a broader vision. Indeed, others and we have previously
suggested that the humoral response plays a key role in
immunotherapy-induced anti-cancer responses (157, 205, 206).
This is particularly important considering that CSCs from BC
and many solid cancers downregulate antigen-processing and
presentation, thus escaping T cell responses (155). For the same
reason, NK cells are emerging as new potential allies in cancer
immunotherapy. Hundreds of clinical trials are currently testing
different combinations of drugs, sometimes obtaining
encouraging results. However, we must be conscious that BC
and its TME represent a very heterogeneous and dynamic system
that changes over time as the result of a complex crosstalk
between neoplastic cells, immune cells and cancer therapies.
This implies that a deeper understanding of the role played by
the innate and adaptive immune response in individual BCs,
and the characterization of the TME features that mostly
influence the efficacy of immunotherapy, are needed to develop
more effective treatments able to simultaneously activate anti-
tumor immune responses and hinder the mechanisms leading to
tumor immune escape. To this end, the identification of new
predictive biomarkers of response to ICIs and combined
therapies, which could help to stratify patients and guide the
therapeutic decision, is urgently needed. Many efforts to define an
immune signature distinctive of BC patients that positively
respond to immunotherapy have been made, but clear-cut data
are still missing (122, 207). The identification of personalized
biomarker profiles, although representing a demanding challenge,
may represent in the next years an important tool that could
improve the development of optimal personalized combination
therapies able to significantly improve BC prognosis.
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