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Purpose: The present study aims to comprehensively investigate the prognostic value
of a radiomic nomogram that integrates contrast-enhanced computed tomography
(CECT) radiomic signature and clinicopathological parameters in kidney renal clear cell
carcinoma (KIRC).

Methods: A total of 136 and 78 KIRC patients from the training and validation cohorts
were included in the retrospective study. The intraclass correlation coefficient (ICC) was
used to assess reproducibility of radiomic feature extraction. Univariate Cox analysis and
least absolute shrinkage and selection operator (LASSO) as well as multivariate Cox
analysis were utilized to construct radiomic signature and clinical signature in the training
cohort. A prognostic nomogram was established containing a radiomic signature and
clinicopathological parameters by using a multivariate Cox analysis. The predictive ability
of the nomogram [relative operating characteristic curve (ROC), concordance index (C-
index), Hosmer–Lemeshow test, and calibration curve] was evaluated in the training
cohort and validated in the validation cohort. Patients were split into high- and low-risk
groups, and the Kaplan–Meier (KM) method was conducted to identify the forecasting
ability of the established models. In addition, genes related with the radiomic risk score
were determined by weighted correlation network analysis (WGCNA) and were used to
conduct functional analysis.

Results: A total of 2,944 radiomic features were acquired from the tumor volumes of
interest (VOIs) of CECT images. The radiomic signature, including ten selected features,
and the clinical signature, including three selected clinical variables, showed good
performance in the training and validation cohorts [area under the curve (AUC), 0.897
and 0.712 for the radiomic signature; 0.827 and 0.822 for the clinical signature,
respectively]. The radiomic prognostic nomogram showed favorable performance and
calibration in the training cohort (AUC, 0.896, C-index, 0.846), which was verified in the
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validation cohort (AUC, 0.768). KM curves indicated that the progression-free interval (PFI)
time was dramatically shorter in the high-risk group than in the low-risk group. The
functional analysis indicated that radiomic signature was significantly associated with T
cell activation.

Conclusions: The nomogram combined with CECT radiomic and clinicopathological
signatures exhibits excellent power in predicting the PFI of KIRC patients, which may aid in
clinical management and prognostic evaluation of cancer patients.
Keywords: contrast-enhanced computed tomography, artificial intelligence, kidney renal clear cell carcinoma,
prognosis, weighted correlation network analysis
INTRODUCTION

Regarded as one of the most prevalent tumors of the urogenital
system, renal cell cancer (RCC) is a highly malignant cancer
derived from the renal epithelium of the parenchyma. In 2020,
45,520 new cases were diagnosed in males and 28,230 in females.
RCC accounted for 5% of all male malignancies and 3% of all
female malignancies in 2020 (1). KIRC, the most epidemic
histological subtype of primary RCC, accounts for almost 90% of
all kidney malignancies with five-year survival rates of
approximately 44–69% (2, 3). Progress has been achieved through
multiple optional methods in surgical resection and systemic
therapies for KIRC; however, overall survival and prognosis,
especially if the cancer is detected at an advanced stage, are still
unsatisfactory if the cancer is not treated optimally, due to high
invasiveness, high mortality, and resistance to chemoradiotherapy
(2, 4).Worse still, the incidence of RCChas been steadily increasing
over the past several years (1, 2). The ability to predict prognosis
preoperatively and non-invasively is vital. However, specific
biomarkers are still lacking because of the complexity of disease
progression and high heterogeneity of KIRC. It is urgent that we
explore biomarkers that are capable of predicting and monitoring
prognosis with good accuracy and then provide a personalized
strategy for judgment of clinical treatment.

Radiomics, as a rapidly developing field of transforming
medical images into available data in radiology, has the
capability to investigate efficacy monitoring, prognosis
surveillance, micro-environment evaluation, and biological
behavior assessment via quantitatively extracting features and
excavating in-depth characterization of tumor phenotypes
beyond imaging interpretation (5, 6). Radiomics not only can
show relationships between radiomic signatures and genomics,
metabolomics, and proteomics but also offer a non-invasive way
to create objectively quantitative biomarkers of tumor biology
that might be of value in predicting prognosis and therapy
response (7). Recently, increasing attention has been focused
on the application of computed tomography (CT) radiomic in
RCC, which has satisfactory potential in lesion characterization
(8–10), histological grade (11–13) and assessment of response to
treatment (14, 15). Nevertheless, the correlation between
radiomic features and the prognosis of KIRC patients is still
undefined, and thorough research should be conducted to
provide references for clinical work.
2

To address the need for a non-invasive, preoperative method
of assessing the prognosis of KIRC patients, we have developed a
contrast-enhanced computed tomography (CECT) radiomic
prognostic signature based on three-dimensional (3D) medical
images, and we have identified clinical signature based on clinical
parameters in this study. With the combination of radiomic
features and clinical parameters, a comprehensive nomogram
was established to evaluate the progression-free interval (PFI) of
patients suffering from KIRC. In order to further investigate the
relationship between radiomic characteristics and gene
regulation, weighted correlation network analysis (WGCNA)
and function enrichment as well as signaling pathway analysis
were performed. Fortunately, the results of this research
indicated that our radiomic nomogram could not only predict
prognosis and guide clinical therapy of KIRC but also elucidate
the underlying molecular mechanism of KIRC.
MATERIALS AND METHODS

Sample Collection
A total of 136 patients with KIRC were collected from our
hospital from 2012 to 2016 as the training cohort of the study.
This study was approved by the hospital ethics committee, and
informed consent was waived due to its retrospective nature.
The inclusion criteria were as follows: (1) KIRC was
histologically confirmed postoperatively; (2) patients
preoperatively received CECT examination; and (3) CECT
images and corresponding prognostic data could be obtained.
The exclusion criteria were as follows (1): the patients received
preoperative chemotherapy or chemoradiotherapy; (2) the renal
lesion was poorly displayed on the images; and (3) preoperative
CECT image, relevant clinicopathological parameters of
patients were lacking. Data of clinicopathological parameters
[age, gender, clinical staging (cTNM), and pathology grade, PFI
time] and CECT images were obtained from electronic patient
record system.

The validation cohort comprised CECT images of patients
with KIRC from The Cancer Imaging Archive (TCIA; http://
www.cancerimagingarchive.net/) datasets and their relevant
clinicopathological data gathered from websites from The
Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/).
The inclusion and exclusion criteria and collection of
July 2021 | Volume 11 | Article 613668
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clinicopathological parameters were consistent with those
mentioned above.

Image Acquisition and Delineation of the
Area of Interest
An abdominal CECT examination containing phase scanning of
the corticomedullary phases (CMP) (30–40 s), nephrographic
phases (NP) (70–90 s), and excretory phases (EP) (3–4 min) was
preoperatively adopted in enrolled patients. Three CT scanning
instruments were applied in this study, and the specific models
and scanning parameter configurations were shown in Table 1.
In our study, only the corticomedullary phase (CMP) of CECT
was used for radiomic analysis, and the identification of CMP
was determined by the method of previous studies (16, 17). The
3D volumes of interest (VOI), including the target lesion on the
CMP of the CECT images, was segmented by two experienced
radiologists with 10 years of radiology experience using ITK-
SNAP (http://www.itksnap.org/) (18).

Radiomic Features Extraction
Feature extraction was conducted by Ultrasomics (Version 2.1),
which is software capable of high-throughput extraction of
massive image features (19–21). A total of 2,944 high-
throughput radiomic characteristics were acquired automatically
from VOI based on each target lesion of the tumor. The radiomic
features consisted of six different feature types (1): 122 original
(such as first-order statistics, shape descriptors, texture classes,
gray-level co-occurrence matrix, gray-level run length matrix, and
gray-level size zone matrix) (2); 1,170 co-occurrence of local
anisotropic gradient orientations (CoLIAGe) (3); 432 wavelets +
local binary pattern (LBP) (4); 1,080 Gabors (5); 80 phased
congruency-based local binary pattern (PLBP); and (6) 60
wavelet-based improved local binary pattern (WILBP) features.

Intraclass Correlation Coefficient Analysis
In order to assess the reproducibility of radiomic features
exaction, 30 cases were randomly chosen from all patients, and
their CECT images were segmented by the two radiologists
mentioned above in a double-blind condition to test the
consistency of the delineation of the tumor VOI. The intraclass
correlation coefficient (ICC) was adopted to measure the inter-
observer consistency of the feature extraction. Radiomic features
with ICC values ≥0.75 indicate a strong consistency.

Sample Grouping and Feature
Preprocessing
In the design of this study, the cases from our hospital were used
as the training cohort, and the cases from TCIA were used as the
validation cohort. Similarly, according to the grouping
Frontiers in Oncology | www.frontiersin.org 3
information, the corresponding radiomic features and clinical
parameters were divided into two groups. A calculative model
was applied to the training cohort to learn underlying patterns
hidden in the datasets, and a validation cohort was used to
evaluate the predictability of the model. For these radiomic
features, z-score standardization was conducted to normalize
the radiomic profiles in the training cohort and validation
cohort, respectively.

Survival Analysis and Establishment of
Prognostic Signatures
To search for radiomic features and clinical parameters
significantly associated with survival, survival analysis of the
training cohort was performed using the “survival” package. We
defined PFI as an end point event, and PFI is commonly used in
cancer therapy monitoring. The definition of the endpoint was
consistent with previous studies (22, 23). Univariate Cox
regression analysis was conducted to investigate the relevance
of each radiomic feature, clinical variable, and PFI. Significant
(P < 0.1) variables were contained in the subsequent regressive
analysis. Aimed at selecting predictors with the highest predictive
power, using the R “glmnet” package the LASSO-penalized Cox
regression algorithm was adopted to reduce the dimension of
high-dimensional data in the training cohort and to select the
radiomic features with the strongest prognostic value and the lowest
relationship among each other (24, 25). In LASSO regression, the
optimal Lambda value was chosen according to the minimum
mean square error. With the help of the “survival” package,
multivariable Cox analysis was applied to further determine the
most useful prognostic radiomic features and clinical variables with
independent prognostic values using stepwise regression analysis
and the best subset regression method. Subsequently, a radiomic
signature and a clinical signature were established by linear
combination method. The weight coefficients of the radiomic
features and clinical variables were derived from the regression
coefficients in multivariate survival analysis by setting the PFI as the
attributive variable. The KIRC patients were split into low- and
high-risk groups according to the median risk score of each risk
signature. The KM curve, time-dependent ROC curve, and
Concordance index (C-index) were used to assess the efficiency of
each risk signature by using the “survivalROC” package and the
“survcomp” package (26, 27).

Development and Validation of
the Nomogram
To explore the prognostic value of the combinative signature
with clinical factors, we took the radiomic signature and
meaningful clinical parameters into the Cox regression model
to generate a combined clinical–radiomic model. In order to
TABLE 1 | Summary of parameters of CT models and scanning protocols.

CT Instruments Tube Voltage Tube Current Slice Thickness Matrix

Training cohort GE, SIEMENS 100–120 KV 76–659 mA 1–5 mm 512 × 512 matrix
Validation cohort GE, SIEMENS, Philips 120–140 KV 72–620 mA 1.25–5 mm 512 × 512 matrix
July 2021 | Volume 11
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visualize model efficiency, the trained cohort was applied to
develop the easy-to-use nomogram of the clinical prognostic
prediction model using the “rms” package, and the validated
cohort was used for external verification. Similarly, high- and
low-risk groups were determined based on the median risk score
from the clinical–radiomic prediction model, and KM curves
were drawn to assess differences in PFI between the two groups
of patients. C-index and ROC curve analysis were used to
measure nomogram performance. A calibration curve was
utilized to assess the predictive accuracy of the nomogram, and
model fitness was assessed by the Hosmer and Lemeshow
goodness-of-fit test.

WGCNA and Functional Analysis
In order to investigate the molecular microcosmic meaning of
radiomic features and reveal the underlying association of
radiomic features and transcriptome molecular function,
unsigned WGCNA was performed to determine genes that
were correlated to prognostic radiomic features using the
“WGCNA” package (28). WGCNA is a systematic biology
approach illustrating patterns of gene relevance of different
phenotypes and seeking clusters (modules) of highly relevant
genes and correlative modules with external sample traits.
Transcriptomics data of KIRC were acquired from TCGA. In
this study, only the protein-encoding messenger RNAs (mRNAs)
were selected to investigate the molecular functional
characteristics of KIRC; low-abundance protein-coding genes
with average log2 (count + 1) values <0.5 were discarded. The
gene modules that correlated with radiomic features most
significantly were selected as the key modules, which were used
for subsequent function enrichment and signaling pathways
analysis. The “clusterProfiler” package was used for performing
Frontiers in Oncology | www.frontiersin.org 4
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis. As a conventional method, GO
enrichment analysis was applied to assess biological process
(BP), molecular functions (MF), and cellular components (CC)
involved in the genes of interest. KEGG pathway analysis was
aimed at identifying the underlying functional and signaling
pathways connected to modules genes.
RESULTS

Patient Clinical Parameters
The flowchart of our research was displayed in Figure 1, and the
flowchart of patients selected and included from TCIA was shown
in Supplementary Figure 1. There were 78 KIRC patients from
TCGA who satisfied the entry criteria for enrolling in the study.
The schematic diagram of the complete 3D geometric image
obtained by manually drawing and segmenting the VOI was
shown in Figure 2. Detailed clinical baseline characteristics of
patients were presented in Supplementary Table 2. In the training
cohort, there were 97 cases in males and 39 cases in females, with a
median age of 53 years and an age range of 20–81 years. The
median follow-up time for PFI was 1,470 days. In the validation
cohort, there were 44 cases in males and 34 cases in females, with a
median age of 59 years and an age range of 26–85 years. The
median follow-up time for PFI was 1,227 days.

Intraclass Correlation Coefficient Analysis
and Feature Preprocessing
A total of 2,944 features were extracted from the CT images. The
average and median values of the inter-observer ICC of radiomic
features were 0.814 and 0.974. The ICC result showed good
FIGURE 1 | Technology roadmap of this study.
July 2021 | Volume 11 | Article 613668
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consistency between groups. After the ICC analysis, there were
2,244 (76.22%) radiomic features with ICC≥0.75, which indicated
that these radiomic features had good reproducibility. Z-score
standardization of radiomic features was done as described in the
Materials and Methods section. A total of 1,901 radiomic features
were used for subsequent prognostic analysis.

Radiomic Features and Clinical
Variable Selection
In the univariate Cox regression analyses, 43 radiomic features,
age, cTNM, and grade were significantly correlated with the PFI
of KIRC patients (P < 0.1) and were used for subsequent
investigation. In multivariate analysis, double feature-
dimension reduction methods (LASSO and stepwise regression
analysis) were used to identify the 10 radiomic features and
clinical variable (cTNM) (P < 0.05) that were independent
prognostic markers for PFI (Figure 3). Although age (P =
0.051) and pathological grade (P = 0.059) did not show
significant significance in multivariate Cox regression analysis,
both of them are clinically important factors affecting the
prognosis of KIRC, so we also included them in our clinical
prediction signature (Table 2).

Development and Validation of the
Prognostic Signatures
The radiomic prognostic signature, consisting of ten features,
and the clinical prognostic signature, consisting of three clinical
variables, were constructed by multivariate Cox analysis (Table 3
and Supplementary Table 2). The correlation analysis heat maps
of the modeling radiomic features in the training cohort and the
validation cohort were shown in Figure 4. In terms of prediction
accuracy, we found that our prediction signatures performed
well. For radiomic signature, the AUC for the training cohort was
Frontiers in Oncology | www.frontiersin.org 5
0.897, and the AUC for the validation cohort was 0.712
(Figures 5A, B). The AUC of the training cohort in the
clinical signature was 0.827, and the AUC of the validation
cohort was 0.822 (Figures 5C, D). The C-index values of the
radiomic signature and the clinical signature were 0.861 (95% CI
0.789–0.927) and 0.784 (95% CI 0.696–0.872), respectively. The
KM survival curve analysis of both the radiomic signature and
the clinical signature revealed that the PFI of the high-risk group
was dramatically shorter than that of the low-risk group (P <
0.05) (Supplementary Figures 2 and 3). These results mean that
the above-risk signatures performed well in predicting the
clinical outcome of KIRC patients.

Nomogram Construction and Evaluation
Because clinical characteristics are also important factors in cancer
outcome, they were added to the comprehensive multivariate Cox
regression model. A comprehensive nomogram including
radiomic score and clinical pathological parameters was
developed and visualized for intuitively predicting the PFI of
KIRC patients (Figure 6A). The comprehensive risk model in
the training cohort had an AUC of 0.896 in predicting PFI of
KIRC, and the AUC was 0.768 in the validation cohort
(Figures 6B, C). The C-index was 0.846. The calibration curves
exhibited good agreement between the forecast by the nomogram
and actual 1-, 3- and 5-year PFI in both the training cohort and the
validation cohort (Figures 7A, B). Determination coefficient (R2)
was used to test the goodness fit of the model. In the present
design, the value of the determination coefficient was R2 = 0.381.
The survival analysis showed that the PFI time of the high-risk
group was significantly shorter than that of the low-risk group
(Figure 8). Collectively, these consequences indicated that the
clinical–radiomic signature was a valuable prognostic index for
KIRC patients’ stratification and a good indicator for outcome.
FIGURE 2 | Schematic diagram of the complete 3D geometric image obtained by manually drawing and segmenting the VOI from the CECT examination. 3D, three
dimensions; VOI, volumes of interest; CECT, contrast-enhanced computed tomography.
July 2021 | Volume 11 | Article 613668
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Molecular Characteristics of the
Radiomic Features
WGCNA was applied to seek highly co-expressed gene modules
and to investigate the correlation between modules and biological
traits. WGCNA networks are superior to correlation networks
because genes could be zoned into various modules, probably
with similar biological function within each individual module
(29). To investigate the underlying molecular function of radiomic
features, WGCNA was used to find gene modules of highly
correlated radiomic signature risk scores (Figures 9A, B). Eight
modules of covariant gene sets were identified to be correlated with
radiomic risk score (Figure 10A). Correlation analysis between
each module was performed and visualized as a correlation heat
map (Figure 10B). Among these eight modules, the most relevant
Frontiers in Oncology | www.frontiersin.org 6
module is the turquoise module (R = 0.46, P = 8.3e-23, Figure 11),
which was selected for functional enrichment analysis. The
functional analysis showed that genes in the turquoise module
were most enriched in T cell activation in BP. For CC, genes were
most strongly related to immunological synapse. For MF, genes of
modules were mainly enriched in chemokine activity. KEGG
analysis of those genes showed their enrichment in T cell receptor
signaling pathway. The tenmostmeaningful pathways of these four
enrichment analyses were shown in Figure 12 and Table 4.

DISCUSSION

As we expected, it has been a focus that a combination of
radiomic and clinical markers would help predict survival
BA

FIGURE 3 | LASSO was utilized to identify the radiomic features that highly correlated with the PFI of KIRC patients. (A) LASSO path map, radiomic features
corresponding to different alpha features. (B) Optimal lambda resulted in 16 non-zero coefficients for the radiomic signature. PFI, progression-free interval; LASSO,
least absolute shrinkage and selection operator; KIRC, Kidney Renal Clear Cell Carcinoma.
TABLE 2 | Univariate and multivariate Cox regression analyses of clinicopathological parameters.

Univariate Cox Regression Multivariate Cox Regression

Variable B P HR (95% CI) B P HR (95% CI)

Gender −0.267 0.517 0.766 (0.341–1.718)
Age 0.030 0.060 1.030 (0.999–1.063) 0.033 0.051 1.033 (1.000–1.068)
cTNM 1.883 <0.001* 6.576 (3.014–14.347) 1.593 <0.001* 4.916 (2.151–11.237)
Grade 1.062 0.009* 2.891(1.310–6.378) 0.810 0.059 2.249 -(0.969–5.218)
July 2021 | Volum
HR, hazard ratio; *p < 0.05.
TABLE 3 | Univariate and multivariate Cox regression analysis of radiomic normogram.

Univariate logistic regression analysis Multivariate logistic regression analysis

Variable B P HR (95% CI) B P HR (95% CI)

Gender -0.267 0.517 0.766 (0.341-1.718)
Age 0.030 0.060 1.030 (0.999-1.063) 0.036 0.055 1.036 (0.999-1.075)
cTNM 1.883 <0.001* 6.576 (3.014-14.347) 1.131 0.019* 3.099 (1.203-7.984)
Grade 1.062 0.009* 2.891 (1.310-6.378) 0.869 0.047* 2.384 (1.013-5.610)
Radiomic signature 0.014 <0.001* 1.014 (1.009-1.020) 0.012 <0.001* 1.012 (1.006-1.017)
HR, hazard ratio; *p < 0.05.
e 11 | Article 613668
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A B

FIGURE 4 | Co-expression heat maps of radiomic features used to build the radiomic signature. (A, B) co-expression heat maps of the radiomic modeling features
in the training cohort and validation cohort. Positive correlation represents co-expression relationships between radiomic features; and negative correlation represents
negative co-expression relationships between features. Red indicates a positive correlation; blue indicates a negative correlation.
A B

C D

FIGURE 5 | The ROC curve of the radiomic and clinical signature. (A, B) The ROC of the radiomic signature in the training cohort and the validation cohort.
(C, D) The ROC of the clinical signature in the training cohort and the validation cohort. ROC, relative operating characteristic curve.
Frontiers in Oncology | www.frontiersin.org July 2021 | Volume 11 | Article 6136687
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outcome non-invasively and guide clinical decisions for
clinicians. Our study is innovative because this is the first time
3D radiomic signature and clinicopathological characteristics of
KIRC patients have been comprehensively integrated with CECT
to confirm radiomic indicators for predicting the PFI of patients,
and it is the first time a nomogram that can visually display
numerical quantization of each factor to predict survival of KIRC
patients has been developed. We investigated the correlation
between radiomic features andmolecular biological characteristics,
which might be conducive to a deeper understanding of biological
processes and molecular mechanisms in KIRC. The excellent
performance of our radiomic signature, clinical signature, and
predictive nomogram was observed based on our results, and it
suggests that ourmodels can be used to efficiently predict prognosis
Frontiers in Oncology | www.frontiersin.org 8
of KIRC patients and create a robust clinical decision framework
for clinicians.

As the most common subtype, which comprised almost 90% of
RCC patients in clinic, KIRC has strong potential to metastasize,
resulting in theworst prognosis (30). Patients diagnosedwithKIRC
with lymph node involvement or distant metastasis have low five-
year survival rates (31). Additionally, KIRC patients with the same
type of tumor might have different prognoses due to the complex
internal structure and high heterogeneity within tumors. Complete
resection or percutaneous core histopathology biopsy is still a
traditional invasive method to assess prognostic indicators (i.e.
histological classification, grades, and stages) of KIRC for guiding
further treatment (30, 32). An objective and non-invasive approach
is needed to evaluate and predict clinical outcome of patients with
A

B C

FIGURE 6 | Development and validation of the nomogram. (A) The nomogram for predicting 1, 3, and 5 years PFI of KIRC patients. An example of how to use the
nomogram was presented below: a patient that has a radiomic score of 150 and is 60 years old; the pathological grade is high and the cTNM stage is IV. According
to the point scale on the nomogram, the points for the four indicators are 25, 10, 12.5 and 0, then the points of these four factors are added up to a total score of
47.5. The next step is to find 47.5 points on the total points scale below, and draw a line perpendicular to the following three axes. Then the probability of one-year
PFI of this patient is between 0.8 and 0.9, which is about 0.82, indicating that the probability of one-year PFI of this patient is 82%, and the remaining probability
values can be obtained in the same way. (B, C) ROC curve of the nomogram for predicting PFI in the training and the validation cohorts. PFI, progression-free
interval; KIRC, Kidney Renal Clear Cell Carcinoma; ROC, relative operating characteristic curve.
July 2021 | Volume 11 | Article 613668
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A B

FIGURE 7 | Calibration curves of the predictive nomogram. (A, B) Calibration curves of the nomogram to predict the probability of PFI at 1, 3, and 5 years in the
training cohort and the validation cohort. PFI, progression-free interval.
A

B

FIGURE 8 | KM survival analyses of the predictive nomogram. (A, B) KM analysis of the predictive nomogram indicated that the high-risk group had a shorter PFI
compared with that of the low-risk group. KM, Kaplan-Meier; PFI, progression-free interval.
Frontiers in Oncology | www.frontiersin.org July 2021 | Volume 11 | Article 6136689
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KIRC. CECT performs a vital part in the diagnosis and prognosis
monitoring of renal disease because it is non-invasive and
convenient, especially when compared to biopsy, surgery, and
immunohistochemistry. Biopsy is not always necessary, because
imaging is a highly accurate way of characterizing renalmalignancy
(33). Radiomics, which has been a popular way to extract
characteristics in mass data from each medical image, could
provide the characteristics and functions of tumors at the
macroscopic even at micromolecular level (7). Recently, several
studies of immense value in exploring the biological progress of
KIRC via the construction of radiomic models by CT images have
been published. Zhan Feng and Burak Kocak B et al., respectively
proved that CT radiomic has the potential to predict BRCA1-
associated protein 1 (BAP1) mutation status in KIRC patients (34,
35). Payel Ghosh et al. provided a radiomic–genetics pipeline that
can extract 3D intra-tumor heterogeneity features from CECT
images and explore associations between features and gene
mutation status (36). A proposed integrative radiogenomics
method could evaluate risk of postoperative metastasis in KIRC
with pathological stage T1, which would be beneficial for
postsurgical metastasis treatment of KIRC patients (37). Burak
Kocak et al. provided a radiomic model to predict histopathologic
nuclear grade by using the radiomic features extracted from
unenhanced CT texture analysis of KIRC tumors (13). Other
researches constructed classification models that preoperatively
Frontiers in Oncology | www.frontiersin.org 10
identified pathological grades of KIRC patients by using machine-
learning-based CT radiomic with non-invasion (38–43). Certain
studies also showed the significance of CT radiomic in
distinguishing KIRC from other renal mass diseases. Ruimeng
Yang et al. developed various machine-learning-based
classification models to differentiate renal angiomyolipoma and
KIRC with favorable performance (44). Heidi Coy et al. illustrated
the utility of machine learning in differentiating KIRC from
oncocytoma on routine CT images by using their models, which
had the ability to accurately predict renal lesion histology on
imaging (45). Xiaoli Meng et al. proposed a CT-based radiomic
method to distinguish sarcoma and KIRC with good diagnostic
performance (46). However, no published studies explore and
predict the PFI of KIRC patients via construction of CT radiomic.
3D analysis has shown that 3D structures of targeted lesion ismore
representative of tumor heterogeneity than two-dimension analysis
(47). Our study is the first to predict the PFI of KIRC patients by
developing CT radiomic models based on 3D CECT images, and
ourmodel achieves good predictive efficacy. In the area of radiomic
signature, the radiomic features thatwere selected as relative factors
of prognosis in our study might reflect the degree of tumor
progression and assist in the evaluation of postoperative disease
progression, treatment effect, and prognosis prediction of KIRC
patients. In the area of genomic analysis, identification of specific
molecular biological characteristics and regulatory mechanism
A

B

FIGURE 9 | Gene modules associated with radiomic risk scores were determined by WGCNA. (A) The association between diversified samples. (B) Cluster
dendrogram and module assignment for modules from network analysis. WGCNA, weighted correlation network analysis.
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could not only assist in management and surveillance for KIRC
patients but also improve the diagnosis, prognosis, and therapeutic
strategy choices for KIRCpatients (48–51). In this study, we are the
first to provide a predictive nomogram that integrates radiomic and
clinicopathological characteristics for predicting the PFI of KIRC
patients. The results indicate that ourmodels could be a pivotal tool
for prognostic surveillance of KIRC.

The highlight of this study was to explore the relationship
between biological information analysis and radiomic features in
KIRC, which would provide further information to help us
understand the underlying mechanisms and lay the foundation
for accurate diagnosis, prognostic judgment, and optimal
strategy choice of KIRC for clinicians. Interestingly, the
radiomic risk score we performed was closely bound up with
various cells of the immune system, especially T cell activation in
biological processes. For all we know, at the molecular level, the
tumor often involves various cells of the immune-system
participation, and it is a complex interplay that has many
stages and steps related to the tumor microenvironment. The
role of regulatory T cells in cancer has gained concern, and
regulatory T cells play a vital role in the progression of KIRC in
internal and peripheral tissues (52–54). The high percentages of
regulatory T cell activation in peripheral blood or tumorous
Frontiers in Oncology | www.frontiersin.org 11
tissues were correlated to low survival rates in kidney cancer
(55–57). Hence, timely and appropriate anticancer treatment,
especially immunotherapy, should take the dynamics of the
immune response in KIRC patients into account. Several
recent studies had investigated the relationship between the
cellular immunity-activating system and radiomic signatures in
cancer management. For instance, Roger Sun et al. used radiomic
to evaluate tumor-infiltrating CD8 cells and response to anti-PD-
1 or anti-PD-L1 immunotherapy, which offered a novel method
for predicting the immune phenotype and inferring clinical
results for cancer patients (6). Xujie Gao et al. proposed a CT
radiomic feature to assess tumor-infiltrating T cells and predict
prognosis of gastric carcinoma (58). These findings possibly
reflected the close relationship among radiomic features and
cells of the immunity-activating system. The radiomic features
could serve as non-invasive predictors of immuno-oncological
characteristics, and they may aid in treatment and outcome
management of cancer patients. However, assessment of the
crucial relationship between the radiomic score we developed
and immune-system cell response, especially T cell activation,
needs further exploration and verification in future studies.

There were some inevitable limitations to our study. First of all,
the sample size was insufficient. Our study contained only 214
A

B

FIGURE 10 | Gene co-expression module identification and correlation analysis. (A) Distribution of average gene significance in the modules related with radiomic
risk scores. The y-axis represents the significance values. (B) The heat map of the correlation between gene modules.
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FIGURE 11 | The relationships between the radiomic signature and genes in eight modules. The turquoise modules was highly associated with radiomic risk score
and the genes that were selected for further analysis.
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KIRC patients, and the performance and efficiency of the predictive
signatures were limited. A prospective cohort study with larger
sample sets is recommended. Moreover, our conclusion depended
on two center institutions, which might limit the scope of its
generalizability. A multi-center prospective study is required to
validate this predictive model in a larger population in the future.
Additionally, our model only explored the tumor regions with
imaging and clinicopathological characteristics. To the best of our
knowledge, the peripheral tumor also provided the biological
information related to prognosis monitoring. We recommend
further exploration of this aspect in the future.

Summarily, our results show satisfactory performance of
CECT radiomic and clinical signatures in predicting clinical
prognosis. Risk stratification with specific risk scores by
radiomic signature has been accurately performed, and the
Frontiers in Oncology | www.frontiersin.org 13
predictive nomogram, which comprehensively integrates
radiomic and clinical signature, has the capability to effectively
predict outcomes for KIRC patients and to facilitate clinical
decision-making for clinicians. Multi-center studies with larger
samples are needed to validate our models for clinical practice.
CONTRIBUTION

Kidney renal clear cell carcinoma (KIRC) has a poor overall
survival and prognosis especially in advanced stage due to high
invasiveness, high mortality, and insensitivity to chemoradiotherapy.
Radiomics, as a rapidly developing field of transforming medical
images into available data in radiology, has the capability to
investigate efficacy monitoring, prognosis surveillance, and
A B

C D

FIGURE 12 | Functional enrichment analysis and signaling pathway analyses of genes associated with radiomic signature. (A) Biological process. (B) Cellular
components. (C) Molecular functions. (D) KEGG pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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biological behavior assessment via quantitatively extracting features
and excavating in-depth characterization of tumor phenotypes
beyond imaging interpretation. Radiomics is expected to become
an intelligent tool for clinical diagnosis, efficacy evaluation, and
prognosis prediction of cancer. Contrast-enhanced computed
tomography (CECT), as an imaging exam way, was commonly
used in clinic to perform a vital part in the diagnosis and prognosis
monitoring of renal disease. The present study aims to explore the
relationship between radiomic features, clinical parameters, and
progression-free interval (PFI) of KIRC. We further developed and
validated a radiomic nomogram that integrates CECT radiomic
signature and clinical–pathological parameters for predicting the
clinical outcome of KIRC. Meanwhile, we also conducted the
molecular functional enrichment analysis to reveal the potential
molecular mechanism. In our results, our radiomic signature,
clinical signature, and radiomic nomogram were proved robust for
prognostic prediction in KIRC patients. To some extent, this study
may reveal the underlying molecular mechanism in the development
Frontiers in Oncology | www.frontiersin.org 14
and progression of KIRC andmay contribute to clinical management
and prognostic evaluation of patients with KIRC.
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TABLE 4 | GO and KEGG pathway enrichment analysis of radiomic-related genes.

Categories ID Description P. adjust

BP GO:0042110 T cell activation 2.75E-53
GO:0051249 regulation of lymphocyte activation 2.71E-41
GO:0050863 regulation of T cell activation 2.71E-41
GO:1903037 regulation of leukocyte cell–cell adhesion 8.27E-38
GO:0050870 positive regulation of T cell activation 5.66E-30
GO:0050867 positive regulation of cell activation 1.54E-29
GO:0032943 mononuclear cell proliferation 1.56E-29
GO:0030217 T cell differentiation 4.41E-28
GO:0042098 T cell proliferation 3.43E-25
GO:0001819 positive regulation of cytokine production 3.48E-25

CC GO:0009897 external side of plasma membrane 1.50E-19
GO:0070821 tertiary granule membrane 1.60E-08
GO:0042611 MHC protein complex 1.16E-06
GO:0001772 immunological synapse 1.42E-06
GO:0098802 plasma membrane receptor complex 5.60E-06
GO:0030666 endocytic vesicle membrane 9.12E-06
GO:0042613 MHC class II protein complex 1.23E-05
GO:0045335 phagocytic vesicle 1.23E-05
GO:0098636 protein complex involved in cell adhesion 7.35E-05
GO:0042101 T cell receptor complex 0.00291

MF GO:0008009 chemokine activity 2.17E-06
GO:0004896 cytokine receptor activity 3.23E-06
GO:0005126 cytokine receptor binding 5.49E-06
GO:0005125 cytokine activity 5.49E-06
GO:0042287 MHC protein binding 9.69E-06
GO:0042379 chemokine receptor binding 9.69E-06
GO:0015026 coreceptor activity 1.92E-05
GO:0032395 MHC class II receptor activity 5.76E-05
GO:0019864 IgG binding 9.22E-05
GO:0042288 MHC class I protein binding 0.000125

KEGG hsa04060 Cytokine-cytokine receptor interaction 3.24E-12
hsa04061 Viral protein interaction with cytokine and cytokine receptor 1.81E-10
hsa04658 Th1 and Th2 cell differentiation 2.44E-10
hsa04514 Cell adhesion molecules 5.32E-10
hsa04062 Chemokine signaling pathway 1.79E-09
hsa04650 Natural killer cell mediated cytotoxicity 5.78E-09
hsa04660 T cell receptor signaling pathway 1.52E-06
hsa04612 Antigen processing and presentation 1.17E-05
hsa04662 B cell receptor signaling pathway 1.85E-05
hsa04064 Cytokine-cytokine receptor interaction 3.21E-09
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GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular components; MF, molecular functions.
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