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Objective: The aim of this study is to develop a model using Deep Neural Network (DNN)
to diagnose thyroid nodules in patients with Hashimoto’s Thyroiditis.

Methods: In this retrospective study, we included 2,932 patients with thyroid nodules
who underwent thyroid ultrasonogram in our hospital from January 2017 to August 2019.
80% of them were included as training set and 20% as test set. Nodules suspected for
malignancy underwent FNA or surgery for pathological results. Two DNN models were
trained to diagnose thyroid nodules, and we chose the one with better performance. The
features of nodules as well as parenchyma around nodules will be learned by the model to
achieve better performance under diffused parenchyma. 10-fold cross-validation and an
independent test set were used to evaluate the performance of the algorithm. The
performance of the model was compared with that of the three groups of radiologists
with clinical experience of <5 years, 5–10 years, >10 years respectively.

Results: In total, 9,127 images were collected from 2,932 patients with 7,301 images for
the training set and 1,806 for the test set. 56% of the patients enrolled had Hashimoto’s
Thyroiditis. The model achieved an AUC of 0.924 for distinguishing malignant and benign
nodules in the test set. It showed similar performance under diffused thyroid parenchyma
and normal parenchyma with sensitivity of 0.881 versus 0.871 (p = 0.938) and specificity
of 0.846 versus 0.822 (p = 0.178). In patients with HT, the model achieved an AUC of
0.924 to differentiate malignant and benign nodules which was significantly higher than
that of the three groups of radiologists (AUC = 0.824, 0.857, 0.863 respectively, p < 0.05).

Conclusion: The model showed high performance in diagnosing thyroid nodules under
both normal and diffused parenchyma. In patients with Hashimoto’s Thyroiditis, the model
showed a better performance compared to radiologists with various years of experience.
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INTRODUCTION

Thyroid cancer has gained much attention because of its rapidly
increasing incidence since the last decades though the increase in
incidence is partially due to the improvements in diagnosis. It
has become the 11th most common cancer in the world and the
5th most common cancer among female worldwide (1–3).
Among all thyroid cancer, papillary thyroid cancer (PTC) is
the most common histologic type, accounting for 80–90% of all
thyroid cancer (4, 5). Hashimoto’s thyroiditis (HT) is the most
common auto-immune thyroiditis. The worldwide incidence was
reported to range from eight to 46 cases per 1,000 each year
depending on different inclusion criteria in various studies. It was
at least eight times more prevalent in female, and its incidence is
still increasing over time due to social and physical risk factors
such as pressure, hormone disorder, and smoking (6, 7). It is
considered a risk factor of PTC with an incidence of 0.5–30% in
HT patients which is higher than the reported 14.2 per 100,000
person in the general population (4, 8).

Ultrasonography is the most common tool to diagnose
thyroid disease, but the accuracy of the diagnosis usually
depends on the experience of radiologists. Despite a higher
incidence of PTC in patients with HT, it’s more difficult to
distinguish between benign and malignant nodules in these
patients because they often present a coarse and heterogeneous
thyroid parenchyma caused by the repetitive damage of chronic
inflammation (9). It was reported that the underlying
heterogeneous echogenicity can affect the ultrasound
characteristics of thyroid nodule, especially the margin.
Microlobulated or irregular margins were more frequently
observed among benign nodules under heterogeneous thyroid
parenchyma. Since these two features were considered as typical
malignant features (10), benign nodules under heterogeneous
parenchyma would more likely to be misdiagnosed as malignant
nodules, thereby reducing the diagnostic performance of doctors,
especially those with less experience. Park et al. (11) reported that
in patients with heterogeneous thyroid parenchyma, the
accuracy, specificity, and positive predictive rate for diagnosing
malignancy were 77.6, 76.3, and 48.7% which were significantly
lower than 84.4, 83.7, and 60.9% for patients with homogeneous
parenchyma. That means more benign nodules will be
misdiagnosed as thyroid cancer. Thus, overdiagnosis and
overtreatment are more likely to occur in this part of the
population because differential diagnosis between malignant
and benign nodules is more challenging in patients with HT.

Computer aided diagnosis (CAD) system has made
remarkable progress during these years. From the classic
machine learning method (12) to the now prevailing deep
learning model, the performance of the CAD system has
greatly improved over time. In the traditional machine
learning method (13), the explicit features such as size, shape,
margin, echogenicity, microcalcification, and macrocalcification
were extracted by algorithms or labeled by radiologists, and then
sent into the classifiers for training. This kind of expert-
knowledge-based system failed to meet the increasing demand
for precision, generalization, and efficiency. Recently, deep
neural network showed its competency in various tasks for
Frontiers in Oncology | www.frontiersin.org 2
medical image analysis, such as lesion detection and lesion
pattern recognition (14, 15). DNN can extract more complex
and implicit features and train classifiers synchronously in one
unified framework. It can achieve better accuracy and ability of
generalization not only because of its huge model capacity but
also its deeper and more complex structure. In a recent study
with a large training set containing 312,399 images (16), the
DNN-based CAD system outperformed most of the radiologists.
For these reasons, CAD was considered as a possible solution to
reduce overdiagnosis of thyroid cancer. It can overcome the
heterogeneity of human radiologists and has shown similar
diagnostic performance to human radiologists in many
studies (17).

However, no previous studies have been performed to
develop a computer aided diagnosis (CAD) system in
identifying PTC in HT patients which is believed to be a more
challenging task. In this study, we aim to establish a CAD system
using deep learning model and test its ability to differentiate
malignant and benign thyroid nodules underlying diffused
background of HT. Considering the complex heterogeneous
echogenicity of thyroid parenchyma in HT patients, we trained
and compared two DNN models, one focused only on the
interior region of the nodule while another focused not only
on the nodule area but also the parenchyma around the nodule.
These two models are both pretrained with ImageNet Database.
MATERIALS AND METHODS

Study Design and Inclusion Criteria
This study was a retrospective study approved by the Institutional
Review Board, with waiver of informed consent. We
retrospectively included 2,932 patients who underwent thyroid
ultrasonography from January 2017 to August 2019. 1,666 patients
had HT and 1,266 patients had normal thyroid parenchyma.
Among all patients, 80% were included as the training set and
the rest 20% as the test set so that images in the training set do not
appear in the test set.

All selected patients meet the following criteria for image
quality control: (1) each nodule should have at least one image
from at least two orthogonal planes, (2) the position and size
match the ultrasound report and pathological report if
pathological result is needed.

The requirement for pathological results depended on the
grading of nodules. All nodules were graded using K-TIRADS in
this study. Nodules with TIRADS 4A or above need to have
definitive pathological results to be included in this study, while
nodules graded TIRADS 2 or 3 were recognized as benign nodules
and did not necessarily need pathological results.

The inclusion criteria for benign nodules are: (1) nodules
graded TIRADS 2 or 3 with or without negative pathological
results, (2) nodules graded TIRADS 4A or above with a negative
cytological pathology result and Braf mutation verified by repeated
FNA, (3) nodules graded TIRADS 4A or above with histological
pathology proved to be benign. The inclusion criteria for
March 2021 | Volume 11 | Article 614172
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malignant nodules are malignancy proved by cytological or
histological pathology.

The inclusion criteria for HT were as follows: (1) thyroid
parenchyma showed heterogeneous echogenicity under
ultrasound; (2) serum TPOAb >5.61 IU/ml and/or TGAb >4.11
IU/ml; (3) TRAb within normal range(0–1.75 IU/L).

Image Acquisition and Evaluation
Ultrasound images were collected by radiologists with at least 3
years’ clinical experience to ensure the quality of images. The
ultrasound examinations were performed using MyLab 90,
Esaote; iU22, Philips; Resona 7, Mindray; RS 80A Samsung;
and Logic E9, GE Healthcare equipped with 7–12 MHz linear-
array transducer. The original settings of thyroid mode were used
to perform the examination. The region of interest (ROI) of the
lesions was annotated using four crossed calipers.

All images included were graded according to K-TIRADS
(18). Images in the test set were evaluated by three groups of
doctors with clinical experience <5 years, 5–10 years and >10
years respectively. Each group consists of two doctors, and they
were asked to give a consensus for whether a nodule was benign
or malignant.

Development of Deep Learning Model
Our proposed model is illustrated in Figure 1. We chose
DenseNet-161 pretrained with the ImageNet (19, 20) as our
model backbone. DenseNet architecture explicitly differentiates
between information that is added to the network and
information that is preserved. Dense connections with feature
maps being concatenated together are used, which are effective
for feature exploration, thus DenseNets have made nearly the
best performance on the general image classification tasks while
substantially reducing the number of model parameters. We used
one DenseNet structure with four dense blocks, which extracted
features and gradually down-sampled the feature maps, and then
input to the full connection layer. Finally, the model outputs the
benign probability and the malignant probability of the input
Frontiers in Oncology | www.frontiersin.org 3
image. Then the pathology prediction result, benign or
malignant, would be computed according to the probabilities
and the threshold value,

We trained a baseline DNN model using only the region of
nodule and a modified DNNmodel using features of both nodule
and parenchyma. We expand the annotated nodule ROI
according to the rules defined in Table 1, letting the model
capture more features around the nodule edge and context
information. Each ROI was padded with 0 if it reached the
image boundary while expanding, and was rescaled without
altering the original aspect ratio. To fit the input size of the
pre-trained DenseNet-161 model, all training and testing images
were resized to 224 × 224.

To avoid overfitting, data augmentation is also implemented.
We adopted random horizontal flipping, random cropping and
rotation within a small range for augmentation because excessive
randomization cannot mimic the speckle noise in the ultrasound
image. In specific, the range of random translation is not larger
than 10% of the longer side length of ROI; the range of random
rotation is not bigger than 12.5 angle degrees.

The diffused change information and pathology information
on training data were given by the radiologists. Guided by the
cross-entropy loss, we can learn the neural network end to end
using deep learning framework.

In the training set, we used 10-fold cross validation for the
identification of the optimal model, which was then used for the
test set classification. We acquired the average classification
performance for the test set, plotted in the receiver operating
FIGURE 1 | Architecture of our proposed model. DenseNet-161(k = 48) used as the backbone. Different ROI expansions adopted for annotated nodule images of
different sizes.
TABLE 1 | Rules of expanding nodule ROI.

Longer side length of nodule ROI Expanded square ROI size

0 < len < 65 len +256
65 < len < 150 len +128
150 < len < 256 len +64
len>= 256 len +32
March 2021
Different ROI expansions adopted for nodule images of different sizes in pixels.
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characteristic (ROC) curve. As usually recommended, the
optimal threshold value was set at the highest Youden Index,
or equivalently, the highest Sensitivity + Specificity (21).
Accuracy, sensitivity, specificity, precision, and area under
curve (AUC) of ROC curve were extracted from the 10 folds
and presented as means ± SD.

Our proposed model was implemented using Python and DL
toolkit Pytorch (22). We trained the network with stochastic
gradient descent using Adam optimizer with a weight decay rate
of 0•0005. All experiments were conducted on two workstations
equipped with a 16-core 2.10 GHz Intel Core Processor (Skylake)
and two NVIDIA Tesla V100 GPUs.

Statistical Analysis
General information such as the distribution of sex, age, and
percentage of malignancy between training set and test set was
calculated and compared between HT and normal groups. The
group difference for age was calculated using t test. The group
differences for qualitative data such as sex ratio and percentage of
malignancy were analyzed using chi-square test.

Accuracy, sensitivity, specificity, precision, and AUC were
exploited to evaluate the performance of our model versus
radiologists. Statistical differences of AUCs between various
diagnostic methods were compared using Delong test (23).
Mann–Whitney U test was used for the comparison of the
model’s specificity, sensitivity, accuracy, and precision between
HT subset and normal subset. Chi-square test was used for the
comparison between model and radiologists in terms of
specificity, sensitivity, accuracy, and precision.

Python was used to perform the Delong test and plot the ROC
curve. The rest statistical analysis was performed by SPSS 24.0. p
<0.05 was considered statistically significant.
RESULTS

Study Population
In total, 2,932 patients with 3,634 nodules and 9,106 images were
included in this study. The images were split into training set and
test set. All sets were partitioned strictly according to the criteria:
images that belonged to the same patient were assigned to the
same set. Test set contained 568 patients (710 nodules, 1,805
images) with 332 HT patients (58%). The training set had a total
of 2,364 patients (2,924 nodules, 7,301 images), with 1,334
patients (56%) having HT. The baseline characteristics of the
training set and test set were listed in Table 2.
Threshold Value and Comparison of Two
Deep Neural Network Models
The ROC curve was plotted in Figure 2 and the corresponding
AUC demonstrated the diagnostic performance of our baseline
and modified DNN model across all threshold values. The
sensitivity, specificity, and Youden Index curve for modified
DNN model were mapped in Figure 3 to show the optimal
threshold value. The maximum of Youden Index was 0.729, the
corresponding threshold was 0.358. The performance metrics at
Frontiers in Oncology | www.frontiersin.org 4
TABLE 2 | Baseline characteristics.

Training Set Test Set

Number of patients, n (%) 2,364 568
Patients with HT 1,334 (56.4%) 332 (58.5%)
Patients without HT 1,030 (43.6%) 236 (41.5%)

Number of images, n (%) 7,301 1,805
Images from patietns with HT 4,128 (56.5%) 1,086 (60.2%)
Images from patietns without HT 3,173 (43.5%) 722 (39.8%)

Number of nodules, n (%) 2,924 710
Benign nodules 1,920 (65.7%) 476 (67%)
malignant nodules 1,004 (34.3%) 234 (33%)

Nodule sizes (cm)
Benign nodules 1.09 (0.86) 1.08 (0.89)
malignant nodules 1.08 (0.63) 1.06 (0.61)

Patient gender, n (%)
Male 539 (22.8%) 136 (23.9%)

Female 1825 (77.2%) 432 (76.1%)
Mean age (years) 45.29 ± 12.45 45.09 ± 12.41
Marc
h 2021 | Volume 11 |
FIGURE 2 | Comparison of ROC curves and AUC of two DNN models.
Baseline DNN model learned only the nodule area. Modified DNN model
learned the nodule area as well as the surrounding parenchyma.
FIGURE 3 | Youden Index and threshold for modified DNN model.
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the optimal threshold were compared between the two models.
The AUC, sensitivity, and specificity for the baseline DNNmodel
was 0.918, 0.874, 0.820 compared to 0.924, 0.881, 0.839 for the
modified DNN model. The modified model showed a slightly
better performance, and therefore we chose the modified DNN
model as our CAD model in the following experiments.

Performance of Deep Neural Network
Model on Test Sets
The performance metrics of our DNN model in distinguishing
malignant and benign nodules on test set and the two subsets
were listed in Table 3. It achieved similar AUC under the test set,
HT subset and normal subset (AUC = 0.924, 0.924,
0.906 respectively).

When comparing the performance between HT subset and
normal subset, the model showed similar accuracy, sensitivity,
and specificity (p all >0.05). Only precision showed a significant
difference (0.540 vs 0.784, p < 0.01). When stratified by nodule
sizes, listed in Table 4, precision showed a notable decrease in the
HT subset compared to normal subset among all nodule sizes,
and it is more pronounced in nodules <5 mm.

The influence of nodule size on DNN model was
demonstrated in Table 4 and Figure 4. It was evaluated in
normal subset and HT subset respectively. In both subsets, AUC
values among nodules <5, 5–10, and 10–20 mm were similar
while that for nodules >20 mm was slightly lower. However the
ROC curves for nodules with different sizes were quite close as
illustrated in Figure 4. For both HT subset and normal subset,
the accuracy and specificity were similar among different nodule
sizes while sensitivity for nodules >20 mm and precision for
nodules <5 mm were greatly reduced. What’s more, the precision
for nodules >20 mm was also greatly reduced.
Performance of Deep Neural Network
Model Compared to Radiologists Under
Diffused Background
For HT subset, the DNNmodel achieved a higher AUC than that
of the three groups of radiologists which showed significant
difference as listed in Table 5. However, in the ROC curve
(Figure 5), the operation points of the radiologists are close to
the DNN model’s ROC curve. For the other performance
metrics, no significant difference was found for accuracy and
precision between DNN model and radiologists. The model
showed a higher sensitivity and a lower specificity but
significant difference only exist between the DNN model and
radiologists with <5 years of experience.
Frontiers in Oncology | www.frontiersin.org 5
Besides, in the test set and normal subset, the model also
showed higher AUC but close operation point on the ROC curve
compared to radiologists, as shown in Table 5 and Figure 5. The
difference of other metrics between model and radiologists was
similar to that under HT subset.
DISCUSSION

Many studies have achieved satisfied results in nodule diagnosis
by using DNN. Buda et al. reported the sensitivity and specificity
of a DNN model trained under 1,230 cases (1377 nodules) to be
87 and 52% respectively, which were higher than those of the
radiologists with experience ranging from 3 to 32 years and were
similar to the consensus of three ACR experts (24). Li et al.
included a training set with a total of 42,952 cases which
contained the largest sample size so far. The trained DNN
model was tested on one internal test set and two external test
sets. The AUC of model under three test sets were 0.947, 0.912,
and 0.908 respectively, which were significantly higher than
those of the six experienced radiologists (16). On the contrary,
Gao et al. found that the DNN model performed significantly
lower than the radiologists (25). However, they chose AlexNet as
their backbone which was different from ours. In our research,
TABLE 3 | Performance of model in diagnosing malignant nodules on test set and its subsets.

AUC Accuracy Sensitivity Specificity Precision

Test set 0.924 (0.006) 0.851 (0.018) 0.881 (0.027) 0.839 (0.031) 0.673 (0.038)
HT subset 0.924 (0.010) 0.852 (0.026) 0.881 (0.035) 0.846 (0.036) 0.540 (0.053)
Normal subset 0.906 (0.010) 0.843 (0.011) 0.871 (0.033) 0.822 (0.029) 0.784 (0.024)
P-Value 0.587 0.938 0.178 <0.01
March 2021 | Volume 11 | A
P-Value is that of diagnostic performance on HT subset versus normal subset; AUC, Areas under the ROC curve. All metrics were the average of 10-fold, presented as Mean (SD).
TABLE 4 | Performance metrics of DNN model in diagnosing malignant nodules
of different sizes, evaluated on normal subset versus HT subset.

HT Subset Normal subset

Average size (SD) 0.975 (0.51) 1.25 (0.77)
<5 mm AUC 0.915 0.895

Accuracy 0.83 0.825
Sensitivity 0.859 0.82
Specificity 0.828 0.826
Precision 0.327 0.651

5–10 mm AUC 0.909 0.895
Accuracy 0.82 0.846
Sensitivity 0.902 0.868
Specificity 0.794 0.822
Precision 0.577 0.841

10–20 mm AUC 0.883 0.907
Accuracy 0.832 0.837
Sensitivity 0.854 0.878
Specificity 0.824 0.792
Precision 0.652 0.827

>20 mm AUC 0.871 0.845
Accuracy 0.836 0.801
Sensitivity 0.722 0.724
Specificity 0.864 0.837
Precision 0.594 0.688
AUC, Areas under the ROC curve. All metrics were the average of 10-folds.
rticle 614172
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DenseNet was chosen as the backbone for its higher performance
on the general image classification tasks while substantially
reducing the number of model parameters (19, 20).

It is worth mentioning that there was no research revealing
the performance of DNN model under diffused thyroid
background, and our research filled in this gap. We designed a
Frontiers in Oncology | www.frontiersin.org 6
modified DNN model for diffused background, which learned
nodule features as well as background features using border
extension. We compared the baseline model which analyzed only
the nodule area with our modified DNN model to see how
learning thyroid parenchyma helped nodule diagnosis. It turned
out that the baseline DNN model showed a slightly lower AUC
A B

C D

FIGURE 4 | Comparison of ROC curves and performance metrics of DNN model under different nodule sizes. (A, C) ROC curves and performance metrics for
different nodule sizes under HT subset. (B, D) ROC curves and performance metrics for different nodule sizes under normal subset.
TABLE 5 | Performance of model versus radiologists of clinical experience <5 years, 5–10 years, and >10 years in diagnosing malignant nodules on the test set and its subsets.

Diagnostic method AUC Accuracy Sensitivity Specificity Precision

Test set Model 0.924 0.851 0.881 0.839 0.673
Radiologist <5 yr 0.818 0.868 0.707 0.928 0.784
Radiologist 5–10 yr 0.843 0.864 0.798 0.888 0.726
Radiologist >10 yr 0.848 0.858 0.826 0.87 0.701
P-Value* <0.01 0.781 <0.01 <0.01 0.016
P-Value** <0.01 1.000 0.001 0.04 0.346
P-Value*** <0.01 0.733 0.777 0.3 0.752

HT subset Model 0.924 0.852 0.881 0.846 0.540
Radiologist <5 yr 0.824 0.897 0.723 0.924 0.588
Radiologist 5–10 yr 0.857 0.875 0.831 0.882 0.514
Radiologist >10 yr 0.863 0.863 0.862 0.863 0.487
P-Value* <0.01 0.401 0.001 0.003 0.226
P-Value** <0.01 0.928 0.060 0.312 0.811
P-Value*** <0.01 0.787 0.486 1.000 0.874

Normal subset Model 0.906 0.843 0.871 0.822 0.784
Radiologist <5 yr 0.825 0.842 0.712 0.938 0.893
Radiologist 5–10 yr 0.846 0.853 0.797 0.894 0.847
Radiologist >10 yr 0.844 0.85 0.804 0.885 0.837
P-Value* <0.01 0.603 0 0 0.017
P-Value** <0.01 0.916 0.01 0.035 0.179
P-Value*** <0.01 0.833 0.015 0.072 0.272
March
 2021 | Volume 11 | Arti
P-Value* is that of model versus radiologist with <5 years’ clinical experience; P-Value** is that of model versus radiologist with 5–10 years’ clinical experience; P-Value*** is that of model
versus radiologist with >10 years’ clinical experience; AUC, Areas under the ROC curve.
All metrics were the average of 10-folds.
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compared to the modified DNNmodel. In Figure 2, there was an
obvious separation between the two ROC curves in the upper left
area of the figure which means the modified DNN model had
higher sensitivity as well as specificity. This result further
supported our hypothesis that learning thyroid parenchyma
can help improve the diagnostic accuracy of CNN under
heterogeneous background.

The border extension design of the modified DNNmodel was
enlightened by our clinical experience that heterogeneous
thyroid parenchyma may affect nodules’ sonographic features.
This idea was supported by a series of literatures. Park et al.
found that benign nodules in this background are more likely to
show vague boundaries (11) which contribute to decrease of
accuracy and specificity in differentiating malignant and benign
nodules in HT patients. Malignant nodules could also have a
more obscure boundary and irregular margin under diffused
thyroid parenchyma (26). It could be concluded from the
literature that diffused parenchyma affects the nodule’s feature
mainly by its border. Therefore, it is reasonable to include
parenchyma features around the border using boundary
extension so that the influence of parenchyma on nodule
border can be considered when diagnosing nodules ’
malignancy under diffused background. The rule of ROI
expansion we proposed in Table 1 was based on the fact that a
small nodule usually contains less features inside the nodule due
Frontiers in Oncology | www.frontiersin.org 7
to a limited nodule area. Therefore, more border and background
information should be taken into consideration during the
diagnosis process. For large nodules, there were sufficient
features within the nodule area so border information can be
less emphasized. What’s more, all images would undergo size
normalization process after border expansion before given to the
model. For a large nodule, whose image size was already larger
than the required input size, the details inside the nodule area
would be compressed as image being zoomed out during size
normalization. To keep the original sonographic features as
unchanged as possible, we should not expand ROI of large
nodules too much for it would aggravate the loss of detail.

During the data collection process, our research included HT
patients as well as non-HT patients. There are two reasons for this
design. First, containing non-HT cases can make our model more
generalized. Second, patients with normal parenchyma can serve
as a comparison to the HT patients in the test set. Furthermore,
the images used in this study were scanned by ultrasound
machines from six different companies, which further increased
the diversity of data and were closer to the clinical reality.

In patients with HT, the trained DNN model showed a
significantly higher AUC value than human but as shown in
the ROC curve, dots of radiologists are not too far from the DNN
model’s ROC curve. Also, the model showed a higher sensitivity
but a lower specificity compared to human radiologists. This
A

B C

FIGURE 5 | Performance of DNN model and three groups of radiologists in diagnosing malignant nodules under test set (A), normal subset (B), and HT subset (C).
March 2021 | Volume 11 | Article 614172
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indicates that the DNN model outperformed humans in
distinguishing malignant and benign nodules mainly due to a
higher sensitivity. However in a real-world setting, the overall
performance should be considered according to different clinical
tasks. Therefore, the model would be more suitable than human
radiologists for screening malignancy in a large population
especially in HT patients. But in other clinical scenario it may
not have that much remarkable advantage compared to human
radiologists. Another advantage of DNN model is its diagnostic
homogeneity. Ultrasound diagnosis is subjective, and it greatly
depends on clinical experience. In patients with HT, the
heterogeneous background could affect the margin of nodule
and thus further decrease inter-observer and intra-observer
agreement, especially between less experienced radiologists
(11). On the contrary, DNN model can extract image features
quantitatively and output a consistent conclusion through
standardized processing methods. Therefore, DNN has a
higher reproducibility compared to human radiologists.

However, the precision of our model in the HT subset is lower
than in the normal subset which means the trained DNN model is
less confident about predicting malignancy within HT subsets. One
possible explanation is that the sonograms of benign nodules under
HT parenchyma were more suspicious, and thus the model had a
higher chance to misdiagnose benign nodules as malignant ones.
This hypothesis was supported by a clinical research by Park M.
et al. (11) who discovered that benign nodules under HT
parenchyma showed more malignant features resulting in a lower
positive predictive rate in diagnosing malignancy. Another possible
reason is that the nodules in the HT subset are smaller than those in
the normal subset. We analyzed the average diameter of nodules
under each subset, and we found that the average size of nodules in
the HT subset was smaller than that in the normal subset, although
not significant. Smaller nodules tend to have less features than big
nodules which can cause the model to be less confident in the HT
subset. There was also literature supporting the negative effect of
nodule size on the performance of model (27) which further
supports this hypothesis. It was also notable that the difference of
precision between two subsets is more obvious for smaller nodules.
This could also be explained by the influence of nodule sizes. Since
larger nodules had sufficient features for the model to make reliable
predictions, they would be less affected by the heterogeneous
parenchyma than the smaller nodules.

The parenchyma had little influence on the performance for
our modified DNN model, while the size of the nodules had
certain impact on its diagnostic ability. The precision of nodules
<5 mm was significantly reduced, while the diagnostic sensitivity
of nodules >20 mm was also significantly reduced. As previously
reported, Wang et al. also discovered a similar trend (27). One
possible reason was that the ROI of small nodules contained less
features than big nodules. Therefore, the model was not as
confident in the diagnosis of small nodules as in the big ones.
The decrease in sensitivity for large nodules might be due to the
fact that follicular carcinoma accounts for a greater proportion in
nodules >20 mm than in the other three groups. The ultrasound
features of follicular carcinoma were similar to benign nodules.
However, follicular lesions account for a very low proportion in
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our training and test sets, and therefore the models didn’t get
enough training on identifying this kind of nodule.

Studies have shown that diagnostic accuracy and specificity of
doctors in diffused background were reduced (11). In our study,
the performance of radiologists didn’t seem to decrease in the
HT subset which is contrary to what was reported before. We
speculated that one possible reason for this paradoxical situation
is that the HT subset may contain slightly more TIRADS 2 and
TIRADS 5 nodules due to selection bias when collecting images,
which unfortunately made the HT subset relatively easier to
diagnose. This was a limitation of our study and could be avoided
by stratified sampling according to TIRADS grades in the future
study. Another possible reason is that coexisting HT may
increase the false negative rate of FNA for subcentimeter
thyroid nodules (26). In our study, to avoid false negative cases
as much as possible, nodules graded TIRADS 4A or above with a
negative cytological results without repeated FNA were
eliminated. As a result, there would be a higher chance that
subcentimeter nodules graded TIRADS 4A or above in HT
patients were excluded. However those nodules are rather
difficult to distinguish between malignant and benign. This
could also explain why radiologists did better in the HT subset.

This study had several limitations. First, the training set and
test set of this study were from the same hospital, lacking external
test set. The performance of our model needed to be verified
further more by external trials. Second, the data set contained
slightly more benign nodules. However, due to the large amount
of data used in this study, it should not be considered as a
significant deviation. Third, PTC is the main pathological type
for malignancy in this study. Only a small portion was follicular
carcinoma. The model couldn’t get enough training samples on
identifying follicular lesions. Therefore, the model cannot
accurately distinguish follicular carcinoma from benign
nodules. Another limitation is that the nodules graded as
TIRADS 2 and 3 do not necessarily have pathological results.
There may be inter-observer variation in nodules with lower
TIRADS grading, so it is possible to include very few malignant
nodules as benign nodules.
CONCLUSION

In conclusion, our modified DNN model performed slightly
better than the radiologists with different years of experience in
diagnosing thyroid nodules underlying Hashimoto Thyroiditis.
It showed higher sensitivity compared to the radiologists. It was
also capable of diagnosing malignant nodules in normal patients.
Thus, the DNN model might be a possible solution for screening
malignant thyroid nodules in the large population.
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