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Ovarian cancer (OC) is one of the most lethal gynecologic malignant tumors. The
interaction between autophagy and the tumor immune microenvironment has clinical
importance. Hence, it is necessary to explore reliable biomarkers associated with
autophagy-related genes (ARGs) for risk stratification in OC. Here, we obtained ARGs
from the MSigDB database and downloaded the expression profile of OC from TCGA
database. The k-means unsupervised clustering method was used for clustering, and two
subclasses of OC (cluster A and cluster B) were identified. SsGSEA method was used to
quantify the levels of infiltration of 24 subtypes of immune cells. Metascape and GSEA
were performed to reveal the differential gene enrichment in signaling pathways and
cellular processes of the subtypes. We found that patients in cluster A were significantly
associated with higher immune infiltration and immune-associated signaling pathways.
Then, we established a risk model by LASSO Cox regression. ROC analysis and Kaplan-
Meier analysis were applied for evaluating the efficiency of the risk signature, patients with
low-risk got better outcomes than those with high-risk in overall survival. Finally, ULK2 and
GABARAPL1 expression was further validated in clinical samples. In conclusion, Our
study constructed an autophagy-related prognostic indicator, and identified two
promising targets in OC.

Keywords: ovarian cancer, prognostic risk signature, autophagy-related genes, tumor immune micro
environment, immunotherapy
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INTRODUCTION

Ovarian cancer (OC) is one of the most lethal gynecologic
malignant tumors (1). Due to the nonspecific symptoms in the
early stage and the lack of effective screening techniques of the
disease, a large number of patients are diagnosed at an advanced
stage, of which the 5-year survival rate was less than 30%.
Cytoreductive surgery and platinum- and paclitaxel-based
chemotherapy are still the basic treatments for OC. Despite
advances in combination chemotherapy, targeted therapy and
intraperitoneal chemotherapy, 80% of OC patients initially
respond to treatment, but most eventually relapse and
ultimately develop into a chemotherapy-resistant disease; thus,
no significant improvement in the prognosis of OC has been
achieved (2–4).

The clinicopathological features of OC are predicted by the
WHO classification and TNM staging system of tumor lymph
node metastasis, which is also the key for selecting appropriate
treatment. However, because of the heterogeneity of OC, there
are obvious stratifications into histological or molecular
subtypes, and the results may be significantly different even for
patients with similar clinical features and treatment regimens.
These observations showed that the clinicopathological features
and current classification are not sufficient for prediction and
risk stratification. Consequently, it is difficult to meet the needs
of clinicians (5, 6). Therefore, it is of great significance for
improving the prognosis of OC to search for specific
prognostic biomarkers and therapeutic targets with higher
predictive value.

Tumor immunotherapy has become a promising treatment
strategy, which aims to restore the immune response to fight
against tumors. Immunotherapies such as immune checkpoint
therapy (ICT), tumor vaccines, immune adoptive therapy and
immunomodulators have been applied in many cancers. Many
immunosuppressive receptors have been identified and studied
in tumors; these studies have led to the development of therapies
including, but not limited to, FDA-approved monoclonal
antibodies that mediate clinically relevant immunostimulatory
effects by suppressing immunosuppressive receptors, such as
PD-L1, PD-1, CTLA-4, LAG3, TIGIT and BTLA (7–9). The
application of immunotherapy has significantly changed the
strategies and modes of treating OC and greatly improved the
quality of life in some patients with OC. Pembrolizumab,
Abbreviations: OC, Ovarian cancer; OS, Overall survival; DFS, Disease-free
survival; ARGs, autophagy-related genes; TCGA, The cancer genome atlas;
LASSO, The least absolute shrinkage and selection operator; GSEA, Gene set
enrichment analysis; ROC, The receiver operating characteristic; SsGSEA, The
single-sample gene set enrichment analysis; TIM, Tumor immune
microenvironment; TME, The tumor microenvironment; ICT, The immune
checkpoint therapy; CTLA-4, Cytotoxic lymphocyte antigen-4; PD-1,
Programmed cell death protein 1; PD-L1, Programmed-death ligand 1; FDA,
Food and drug administration; LAG3, Lymphocyte Activating 3; TIGIT, T cell
Immunoreceptor with Ig and ITIM domains; BTLA, B and T lymphocyte
associated; VEGF, Vascular endothelial growth factor; TLRs, Toll-like receptor;
NLRs, Nucleotide oligomeric domain (NOD)-like receptor; MHCI, Major
histocompatibility complex class I; MHCII, Major histocompatibility complex
class II; APCs, Activate antigen presenting cells; DEGs, Differentially expressed
genes; NES, Normalized Enrichment Score.
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nivolumab and avirumumab are anti-PD-1 or anti-PD-L1
monoclonal antibodies, and bevacizumab is a monoclonal
antibody that binds to vascular endothelial growth factor
(VEGF). These drugs have been successfully used to treat
recurrent or drug-resistant OC (10–12). However, only some
patients benefit from immune treatment, and some patients still
show poor responses or resistance to immunotherapy. How to
successfully identify which patients may benefit from
immunotherapy and which patients may exhibit poor
responses or resistance to immunotherapy is a clinically
difficult problem. Therefore, screening subjects suitable for
immunotherapy would help increase the success rate of
treatment and benefit more patients.

Autophagy is an important immunomodulatory process in
the tumor microenvironment that can maintain the homeostasis,
activation and biological function of immune cells. Innate
immune-mediated autophagy can be upregulated by activating
innate immune receptors, including Toll-like receptors (TLRs)
and nucleotide oligomeric domain (NOD)-like receptors (NLRs)
(13). The adaptive immune response depends on the recognition
of extracellular or intracellular peptide epitopes provided by
major histocompatibility complex II (MHCII) and MHCI
molecules and recognized by CD4+ T and CD8+ T cells,
respectively. Autophagy provides ATP molecules for antitumor
T cells to activate antigen-presenting cells (APCs) (14).
Autophagy also plays a role in protecting cells and tissues from
stress in normal physiological processes. However, inappropriate
autophagy may lead to low antitumor immunity, affect
infiltrating of immune cells, and inhibit the immune response
to weaken immunotherapy (15). Recent studies have shown that
autophagy is closely related to tumor immunotherapy and
clinical prognosis of OC (16). Targeted autophagy may be a
promising therapeutic strategy for improving the efficacy of
immunotherapy and enhancing the immune response.
However, it is still difficult to find effective and appropriate
autophagy-related gene biomarkers to identify and evaluate
tumor-specific cellular immune responses in tumor patients
and to predict patient responses to immunotherapy.

In our study, we downloaded the expression profile of OC
patients from the TCGA database and obtained autophagy-
related genes (ARGs) from the MsigDB database. Based on the
ARGs, OC patients were successfully classified into two subtypes,
and a risk model was established to assess the prognosis of OC.
The system comprehensively evaluated the correlation among
classification, risk model and TIM and explored the effect of
autophagy on the regulation of the OC TIM. ARGs may be
potential biomarkers and provide new ideas for immunotherapy.
MATERIALS AND METHODS

Datasets and Samples
The gene expression profile was experimentally measured using
the Illumina HiSeq 2000 RNA Sequencing platform by the
University of North Carolina The Cancer Genome Atlas
(TCGA , h t t p s : / / p o r t a l . g d c . c a n c e r . g o v / ) g enome
characterization center. Level 3 data were downloaded from
May 2021 | Volume 11 | Article 616133
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the TCGA data coordination center,307 ovarian cancer samples
were included. This dataset shows the gene-level transcription
estimates, as in log2(x+1) transformed RSEM normalized count.
The genes are mapped onto the human genome coordinates
using HUGO probeMap, refering to method description from
University of North Carolina TCGA genome characterization
center. For all the cohorts, only patients with available expression
profiles, clinicopathological (including age, status, lympho
vascular invasion, stage) data and survival data were included
in the analyses. The eight OC samples and paired adjacent tissue
samples were obtained from Third Xiangya Hospital of Central
South University.

Identification of OC Subtypes
We obtained the autophagy gene set from the MSigDB (https://
www.gsea-msigdb.org/gsea/msigdb/search.jsp) KEGG_
REGULATION of AUTOPHAGY of molecular signatures; we
obtained a total of 35 autophagy-related genes. Compared with
the expression data of the genes in the TCGA, candidate genes
whose expression level was too low (log2(x+1) <1) were
excluded, and 19 ARGs were obtained. We performed k-means
clustering based on the mRNA expression data of 19 autophagy-
related genes (17). Before performing k-means, a filtering
procedure was conducted. We performed k-means (“kmeans”
function in R) clustering and used the “NbClust”, “cluster” and
“factoextra” packages in R to determine the optimal number of
OC subtypes. The values of k where the magnitude of the
cophenetic correlation coefficient began to fall were chosen as
the optimal number of clusters.

Estimation of Immune Infiltration
The inference of infiltrating cells in the tumor microenvironment
(TME) was used to quantify the level of immune cell infiltration
in the OC samples. Based on the immune cell marker genes
provided by Bindea G, et al (18), we used the R language GSVA
package and then used single-sample gene set enrichment
analysis (ssGSEA) to quantify the levels of infiltration of 24
immune cells, including T lymphocytes, dendritic cells, natural
killer cells, etc., into the sample based on the immune cell marker
gene expression profile data in the TCGA-OV. According to the
level of immune cell infiltration, we divided patients into a high-
infiltration group and a low-infiltration group, observed the
relationship between age, stage, grade, lymphatic metastasis
and immune infiltration, and used a heat map display to
observe various immune cells in the high- and low-risk groups.
Finally, the Pearson correlation coefficient was used to calculate
the correlation coefficient among immune cells, risk genes and
immune cells.

Screening of Differentially Expressed
Genes (DEGs) and Bioinformatics Analysis
To obtain the DEGs between cluster A and cluster B in the
TCGA–OV cohort, the R package “limma” was used in
the standard comparison mode. The DEG threshold was set to
| logFC | > 1, and the significance criteria for identifying DEGs
was set as an adjusted P value <0.05. Metascape (http://
Frontiers in Oncology | www.frontiersin.org 3
metascape.org) is an online interactive website that helps
biologists perform functional enrichment analyses on specific
gene sets (19). We first introduced the 19 ARGs into Metascape
and identified all the statistically enriched terms. The remaining
significant terms were then hierarchically clustered into a tree
based on k-statistical similarities among their gene memberships.
Then, we analyzed all the transcripts based on the fold change
(log2) obtained by difference analysis of the two different OC
subtypes using Gene Set Enrichment Analysis (20) (GSEA, http://
software.Broadstitute.org/GSEA/) to evaluate the skewness of the
two distributions of the selected genes in the list of ranked genes.
Then we set the GSEA threshold for significantly enriched
functional annotations to P value<0.05 and | Normalized
Enrichment Score (NES) |≥1.

Identification and Validation of the
Prognostic Gene Signature
The “glmnet” R package was utilized to carry out the LASSO
COX regression. The “glmnet” R package was utilized to carry
out the univariate Cox regression to screen 19 ARGs. Using the
“glmnet” software package of R for LASSO Cox regression
analysis, seven autophagy-related genes were screened to
determine the best predictive model, and these genes were
selected to further calculate the risk score of each patient (21, 22):

riskscore = ExpressionmRNA1 � CoefficientmRNA1

+ ExpressionmRNA2 � CoefficientmRNA2

+…ExpressionmRNAn � CoefficientmRNAn

According to the median risk coefficient, the patients are
divided into a high-risk group and a low-risk group. The Cox
proportional hazard regression model includes risk score, age,
grade, lymphatic invasion, and staging. The hazard ratio (HR)
value distinguishes the prognostic predictors of risk genes and
protective genes (HR>1 is a risk gene, HR<1 is a protective gene,
p<0.05). Subsequently, Kaplan-Meier survival analysis was
performed, and the sensitivity and specificity of the ROC curve
were used to evaluate the prognostic performance of the
signature. Circos is a visualization tool that can be used to
identify and analyze the similarities and differences generated
by genome comparisons, effectively display changes in genome
structures, and generally display any other types of positional
relationships between genome intervals (23, 24). The mutations
of 7 ARGs in the TCGA-OV cohort were downloaded from the
cbioportal website (https://www.cbioportal.org/). We used
Pearson correlation analysis to analyze the correlation between
the risk score and common immune checkpoints and tried to use
the risk score to accurately predict the effect of treatment.

Quantitative Real-Time PCR (qRT-PCR)
Total RNA was isolated from the OC samples using TRIzol
reagent (Invitrogen). The PrimeScript RT (reverse transcription)
Kit (TaKaRa Bio) was used to obtain cDNA. qRT-PCR was
conducted using the AceQ qPCR SYBR Green Master Mix
(Vazyme). b-actin was used as internal control.
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Primer Sequence (5′–3′)

ULK2-F TTTGGTGCCACACAACATCT
ULK2-R GGAACTGGAATTGGTGCTGT
GABARAPL1-F ATGAAGTTCCAGTACAAGGAGGA
GABARAPL1-R GCTTTTGGAGCCTTCTCTACAAT
b-actin-F ACCCTGAAGTACCCCATCGAG
b-actin-R AGCACAGCCTGGATAGCAAC
Frontiers in Oncology | www.frontiersin.org
Western Blotting (WB)
Tissue samples were lysed using RIPA buffer in the presence of
Protease Inhibitor Mixture and PhoSTOP (Roche Applied
Science). The protein concentration was quantified using a
bicinchoninic acid protein assay kit (Thermo Fisher Scientific).
Subsequently, the protein (30 mg) was separated by 10% SDS-
PAGE and transferred onto polyvinylidene fluoride membranes
(Millipore). The membranes were then blocked with 5% nonfat
milk in TBS and incubated at 4°C overnight with the following
primary antibodies: anti-ULK2 (dilution 1:4000, Omnimabs,
OM294638); anti-GABARAPL1 (dilution 1:4000, Abcam,
ab86497) and b-actin (dilution 1:4000, Ptgcn, 66009-1-Ig).
Then, the membranes were incubated with goat anti-rabbit
IgG/HRP secondary antibodies and washed. Finally, the bands
were visualized using enhanced chemiluminescence.

Immunohistochemistry (IHC)
Tissues were derived from clinical specimens. The tissue sections
were deparaffinized, hydrated, repaired and blocked with citric
acid antigen. Subsequently, the tissue sections were probed with
an ULK2 antibody (1:50, Omnimabs, OM294638) and
GABARAPL1 antibody (1:200, Abcam, ab86497) at 4°C
overnight. The sections were washed with PBS for 5 times, and
then a secondary antibody was added and incubated at room
temperature for 10 minutes. DAB and hematoxylin were added
for visualization.

Statistical Analysis
All of the analyses were performed with R software (version
3.6.1, http://www.R-project.org). Univariate and multivariate
Cox proportional hazard regression analyses were used to
evaluate the relationship between the risk scores and OS. The
area under the ROC curve (AUC) (“timeROC” package in R) was
used to analyze the sensitivity and specificity of genotyping and
gene signature risk scores in predicting survival rate. AUC can be
used as an accuracy indicator of prognosis. All statistical P values
were bilateral in all the analyses, and P < 0.05 was statistically
significant. The primary prognosis endpoint was overall survival,
and survival curves were estimated using the Kaplan–Meier
method. The log-rank test was used to determine the
significance of the difference. The “Surv-cut point” function
that repeatedly tests all possible cut-off points to obtain the
largest rank statistic was used to dichotomize the differential
genes, and then, the largest log-rank statistic was selected to
divide the patients into high and low subgroups to reduce the
calculated batch effect. The Paired t-test was performed to
analyze statistical significance of qRT-PCR data.
4

RESULTS

Overall Design of This Study
We have developed a flow chart to systematically describe our
research (Figure 1). The clinical data and corresponding gene
expression profiles of OC patients were downloaded from the
TCGA database. One patient without prognostic data was
excluded. The ARG sets were downloaded from the MsigDB
for follow-up analysis. The subtypes of OC were classified by k-
means unsupervised clustering and were divided into cluster A
and cluster B. Then, the biological functions, metabolic pathways
and signal transduction pathways with significant enrichment of
differential genes were analyzed by the Metascape database, and
the signaling pathways enriched in cluster A and cluster B were
analyzed by GSEA. Seven ARGs were obtained through LASSO
Cox regression analysis, and the risk prediction model of these
ARGs was established and evaluated. The correlation between
risk genes and immune cells was analyzed, and the expression of
the ARGs in OC tissues and paracancerous tissues was verified
by experiments.

Identification of Two Subtypes of OC
The 307 patients with OC clustered by k-means based on the
mRNA expression of 19 ARGs. It was found that 2 was the
optimal and stable number of clusters (Figures 2A, B). Most of
the patients were enriched in cluster B, which correlated with a
poor prognosis of OC (Figure 2C). Cluster A tended to have
better survival than cluster B. 535 differentially expressed genes
(DEGs) between cluster A and cluster B were identified, as shown
by a volcano map these genes included 108 upregulated genes
(log2 fold change ≥ 1) and 427 downregulated genes (log2 fold
change ≤ -1) (Figure 2D). We analyzed the association among
the 19 ARGs from the TCGA RNA-seq data and the
clinicopathological features, including grade, stage, lymph node
metastasis, survival status and overall survival time, of 307 OC
patients (Figure 2E).

Estimation of Cell Infiltration Into the TME
We quantified the level of immune cell infiltration to evaluate the
immune landscape of cluster A and cluster B. First, we explored
the relationship among cluster A, cluster B and gene expression
of seven common immune checkpoints, including CD274,
PDCD1LG2, CTLA4, LAG3, PDCD1, HAVCR2 and TIGIT.
These genes were selected based on drug inhibitors that are
currently in clinical trials or have been specifically approved in
different tumor types. The results showed that the overall
expression of the common immune checkpoints in cluster A
was significantly higher than that in cluster B (Figure 3A). Next,
we analyzed the difference in the expression of common CD8+ T
marker genes (CD8A, GZMB, CXCL9, CXCL10, PRF1, TBX21,
and CD8B) in cluster A and cluster B and found that the
expression of CD8+ T marker genes in cluster A was
significantly higher than that in cluster B (Figure 3B). In
addition, ssGSEA was used to identify the abundance of
tumor-infiltrating immune cells in cluster A and cluster B. We
found that the levels of B cells, T cells, Treg cells, TFH cells,
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FIGURE 1 | Flow chart of the study. *P < 0.05.
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A B

C

E

D

FIGURE 2 | Identification of OC subtypes using k-means consensus clustering of the metadata set. (A, B) k-means clustering of OC based on the estimated
abundance of 19 ARGs. (C) Kaplan‐Meier curves of the overall survival of the different gene subtypes. (D) Volcano plot of the identified differentially expressed genes
(| logFC> 1, adjusted P <0.05). Red and blue dots indicate upregulated (N=108) and downregulated genes (N=427) in OC, respectively. (E) The heatmap shows the
associations between the ARGs and the clinical characteristics (age, grade, lymphovascular invasion indicator, primary site and clinical stage) in the TCGA database.
(Lymph = lymphovascular invasion indicator).
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macrophages, aDCs, iDCs, CD56dim cells, Th1 cells, and Tgd
cells in cluster A were significantly higher than those in cluster B,
while the level of infiltrating NK cells in cluster A was
significantly lower than that in cluster B (Figure 3C). We
quantified 24 kinds of immune cells, such as B cells, T cells,
NK cells and macrophages, and drew a heatmap that included
the relationship among age, stage, grade, lymphatic metastasis
and immune infiltration. Through analyzing the heatmap, we
observed that cluster A showed high immune infiltration, while
cluster B, on the contrary, showed low immune infiltration
(Figure 3D). This result indicates that the immune response of
cluster A is active, while that of cluster B is suppressed; thus, we
speculate that OC patients in cluster A may have a better
response to immunotherapy.

Identification of the Involved Signaling
Pathways
DEGs were analyzed using Metascape to better understand their
functional and pathway enrichment. First, all the statistical
enrichment items were determined, the cumulative hypergeometric
p-value and enrichment factor were calculated, and filtering was
performed. Then, the remaining important terms were clustered into
a tree in a hierarchical structure according to the Kappa statistical
similarity between its gene members. The 0.3 kappa score was then
used as a threshold to coerce the tree into term clusters. Next, we
selected a subset of representative terms from this cluster and
converted it into a network layout. The nodes of the same
enrichment network are colored according to their p-values
(Figures 4A, B). From the bar graphs and network graphs, we
found that the terms related to immune function were the most
abundant; among these terms, lymphocyte activation, adaptive
immune response and cytokine-mediated signaling pathway were
the 3 terms with the highest significance levels. GSEA was used to
execute gene ontology functioinf and pathway enrichment analysis.
GSEA analysis showed that signaling pathways such as interferon
gamma, interferon alpha, IL-6 JAK STAT3, Inflammatory, P53
pathway, and hypoxia were significantly enriched in the cluster A
group (Figure 4C and Table 1). Most of these pathways have been
confirmed to be related to immunotherapy (25, 26), suggesting that
ARGs may affect tumor immune regulation and providing a certain
experimental direction for further research on immunotherapy in
the future.

Autophagy-Related Prognosis Classifier
and Clinicopathological Characteristics
of OC
We performed LASSO Cox regression analysis on 19 ARGs and
further obtained 7 ARGs (ATG12, ATG4A, ATG4C, ATG5,
GABARAPL1, IFNG, and ULK2) (Figures 5A, B). A risk score to
predict the prognostic value of these genes was calculated, and
patients with OC were separated into the low-risk or high-risk
groups. We found that with the risk score increased, the number of
deaths increased (Figure 5C). The ROC curve shows that the
classifier has strong predictive ability, with an AUC of 0.63 in 3
years and 0.718 in 5 years (Figure 5D). Univariate Cox regression
showed that the risk core was a risk factor for DFS (HR>1, p<0.05),
Frontiers in Oncology | www.frontiersin.org 7
and it had a better prognostic effect than other clinical indicators
(Figure 5E). Kaplan-Meier analysis indicated that high-risk patients
had significantly worse overall survival than low-risk patients
(Figure 5F). This result indicates that the risk model may serve as
a promising indicator for evaluating the prognosis of OC patients
and may be a powerful prognostic indicator.

Use of 7 ARGs in Survival Analysis of OC
We evaluated the prognostic values of the 7 ARGs in OC. As
shown in Figure 6A, 4 of the 7 ARGs played significant
prognostic roles in OC: ATG12 [P= 0.018; Hazard Ratio (95%
CI)=1.41(1.05-1.9)]; GABARAPL1 [P=0.025; Hazard Ratio (95%
CI)=1.41(1.02-1.94)]; ULK2 [P=0.002; Hazard Ratio (95% CI)
=0.61 (0.45-0.82)]; and IFNG [P=0.008; Hazard Ratio (95% CI)
=0.68(0.51-0.9)]. However, ATG4A, ATG4C and ATG5 were not
statistically significant. The coefficients of these genes are shown in
Table 2. By analyzing the relationship between the 7 ARGs and
OS, it was found that the group showing higher expression of the
ATG12 and GABARAPL1 mRNAs had a lower survival time
(P<0.05). The group showing higher expression of the ULK2 and
IFNG had a significantly longer survival time than the group
showing lower expression (P<0.05). We found that among the 7
genes, IFNG and ULK2 were protective factors (HR<1), while
ATG12 and GABARAPL1 were risk factors (HR > 1).

Predicting the Effectiveness of ARGs and
Correlation With Our Risk Score
The results of Pearson’s correlation analysis indicated that our risk
score was significantly correlated with the mRNA expression level of
ARGs, namely, ATG12 (R =0.26, p =7.5e-07), GABARAPL1 (R =0.5,
p <2.2e-16), ULK2 (R =0.34, p =6.6e-10), IFNG (R =-0.43, p =2.8e-
15), ATG4A (R =-0.21, p =0.00015), ATG4C (R =0.24, p =2.1e-05)
and ATG5 (R =-0.15, p =0.0075). It was shown that GABARAPL1
had the highest degree of correlation with the risk score.
Additionally, the risk score was also markedly related to the
mRNA expression level of the immune checkpoints, which are
HAVCR2 (R =-0.18, p =0.0014), LAG3 (R=-0.31, p=3.3e-08),
PDCD1LG2 (R=-0.27, p=9.6e-07), PDCD1 (R=-0.28, p =3.8e-07),
CD274 (R=-0.21, p =0.0002) and TIGIT (R =-0.32, p=1.3e-08). The
results are visualized in Figures 6B, C. The results reveal that
patients might respond to therapies that target immune
checkpoint inhibitors.

Prognostic Signature Is Related to the TIM
The mutations in the 7 ARGs in the TCGA-OV cohort were
downloaded from the cbioportal website (https://www.cbioportal.
org/). The gene of highest mutation frequency is GABARAPL1,
reaching 5%, of which the main type of mutation was amplification
mutations. Following genes were ATG5, IFNG, and ATG4C, which
were 3, 3, and 2.5%, respectively (Figure 7A). We also found that
the expression of IFNG in OC was more scattered and lower, while
the expression of ATG12, ATG4A, ATG4C, ATG5, GABARAPL1,
and ULK2 was relatively concentrated and higher (Figure 7B). A
correlation analysis of the 7 ARGs was performed to obtain Circos
plots (Figure 7C).We explored the correlation between 7 ARGs and
immune cells (Table 3).
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Correlation analysis was also performed to analyze the 24
immune cells. The immune cell proportions were weakly to
strongly correlated. T cells and cytotoxic cells showed the
strongest positive correlation; macrophages also indicated a
strongly positive correlation with iDCs. Eosinophils and Th17
cells showed a moderate negative correlation (Figure 7D).
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Additionally, we analyzed the correlation between 7 immune
genes and immune cells and found that ATG5, ATG4C, ATG12,
ULK2, and GABARAPL1 were positively correlated with NK cells,
T helper cells, Tcm cells and other immune infiltrating cells and
negatively correlated with NK CD56dim cells, eosinophils and NK
CD56bright cells. IFNG was positively correlated with B cells, CD8
A

C

D

B

FIGURE 3 | Immune characteristics of cluster A and cluster B (A) Expression pattern of immune checkpoints in cluster A and cluster B (****p<0.0001, **p<0.01;
*p<0.05; ns<1). (B) Expression pattern of CD8+ T signature genes in cluster A and cluster B (****p<0.0001, ***p<0.001; **p<0.01; *p<0.05; ns<1). (C) The ssGSEA
method quantifies the level of infiltration of the 24 immune cells in the TIM. Differences in the levels of infiltration of the 24 immune cells in cluster A and cluster B
(****p<0.0001, ***p<0.001; ns<1). (D) The composite heat map shows the relationship between the risk score, age, grade, lymphovascular invasion indicator, primary
site and clinical stage and infiltration of the 24 immune cells.
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A

B

C

FIGURE 4 | Signal pathway enrichment analysis was performed on the differentially expressed mRNAs in cluster (A) and cluster (B) For enrichment analysis in the
Metascape database, each term is represented by a circular node, and its size is proportional to the number of input genes in the term. Nodes of the same color
belong to the same cluster. Terms with similarity scores > 0.3 are linked by edges, and nodes in the same condensed network are colored with p-values. (A, B) The
functions of 19 ARGs were mainly enriched in lymphocyte activation, adaptive immune response and cytokine-mediated signaling pathway. (C) Partial display of the
GSEA analysis results.
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T cells, macrophages, iDCs, DCs, Th1 cells, cytotoxic cells, aDCs,
Treg cells, and TFH cells but negatively correlated with NK cells and
NK CD56dim cells. ATG4A was positively correlated with
macrophages, T cells, pDCs, Tcm cells, NK cells, and T helper
cells and negatively correlated with eosinophils and NK CD56dim
cells (Figure 7E).

Validation of the Gene Signature in Clinical
Tissue Samples
To confirm the reliability of the identified gene signature, we examined
the ULK2 and GABARAPL1 expression levels by qRT-PCR, WB, and
IHC using 8 pairs of OC tumor tissues and paracancerous tissues. The
results showed that the ULK2 and GABARAPL1 mRNA in the tumor
tissues were significantly downregulated compared with those in the
paracancerous tissues (p<0.05) (Figure 8A).Moreover, the protein level
of ULK2 and GABARAPL1 were detected using IHC in 8 OC clinical
tissues that underwent cytoreductive surgery. The IHC analysis showed
that ULK2 and GABARAPL1 were lowly expressed in the OC tissues
(Figures 8B, C).
DISCUSSION

The early symptoms of patients with OC can’t be easily
detectable. Due to difficulty in diagnosis at early stage, tumor
recurrence, chemoresistance, and poor prognosis, improving
clinical treatment is very challenging. Therefore, it is urgent to
Frontiers in Oncology | www.frontiersin.org 10
identify reliable biomarkers for early prognosis to facilitate the
diagnosis and treatment of OC. Induction of autophagy has
shown promise in the management of a wide range of illnesses,
including neurodegenerative disorders, cardiovascular diseases,
and rheumatic diseases (27–29). Accumulating evidence suggests
that autophagy plays important roles in tumor chemotherapy
and radiotherapy. In addition, autophagy affects TIM and tumor
immunotherapy. Proper regulation of autophagy could enhance
the immune response, leading to immunotherapy potentiation.

Recently, a medical breakthrough wasmade in the field of cancer
immunotherapy. However, how the immune system uses immune
cells to eradicate tumors in a complex environment remains to be
further investigated. Unfortunately, only a small proportion of
cancer patients and only some cancers currently respond to
immunotherapy (30). How to make more patients benefit from
personalized immunotherapy and improve the efficacy of
immunotherapy is the focus of tumor immunology. Immune cells
play a protective role in the tumor microenvironment, which can
lead to immune checkpoint inhibition and immune cell infiltration
(31). Therapeutic strategies that target the immune
microenvironment, such as immunosuppressive cells and
immunosuppressive factors, can effectively prevent tumor cells
from escaping immune surveillance. Therapies that block immune
checkpoints show longer-lasting responses than traditional
chemotherapy and have been approved by the FDA for the
treatment of multiple cancer types, such as melanoma,
nonsquamous cell carcinoma, OC, etc. (32–34). However,
TABLE 1 | GSEA analysis of the differential genes in cluster A and cluster B groups.

Description setSize enrichmentScore NES pvalue p.adjust qvalues

HALLMARK_KRAS_SIGNALING_UP 193 -0.62895 -2.05197 0.001188 0.005142 0.002815
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 194 -0.64791 -2.11158 0.001189 0.005142 0.002815
HALLMARK_IL2_STAT5_SIGNALING 194 -0.68451 -2.23087 0.001189 0.005142 0.002815
HALLMARK_ALLOGRAFT_REJECTION 195 -0.85979 -2.8003 0.001192 0.005142 0.002815
HALLMARK_COMPLEMENT 195 -0.70364 -2.29173 0.001192 0.005142 0.002815
HALLMARK_P53_PATHWAY 191 -0.48831 -1.59174 0.001195 0.005142 0.002815
HALLMARK_INTERFERON_GAMMA_RESPONSE 196 -0.83292 -2.71133 0.001196 0.005142 0.002815
HALLMARK_INFLAMMATORY_RESPONSE 197 -0.78473 -2.55049 0.0012 0.005142 0.002815
HALLMARK_TNFA_SIGNALING_VIA_NFKB 197 -0.73492 -2.38861 0.0012 0.005142 0.002815
HALLMARK_APOPTOSIS 158 -0.60641 -1.93204 0.001239 0.005142 0.002815
HALLMARK_COAGULATION 136 -0.57384 -1.79503 0.001267 0.005142 0.002815
HALLMARK_INTERFERON_ALPHA_RESPONSE 92 -0.82712 -2.47088 0.001332 0.005142 0.002815
HALLMARK_IL6_JAK_STAT3_SIGNALING 87 -0.7752 -2.30111 0.001337 0.005142 0.002815
HALLMARK_MTORC1_SIGNALING 192 -0.45225 -1.47348 0.00479 0.017109 0.009365
HALLMARK_ADIPOGENESIS 189 -0.42693 -1.39053 0.014337 0.04779 0.026159
HALLMARK_HYPOXIA 190 -0.42317 -1.37802 0.01555 0.048594 0.026599
May 2021 | V
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TABLE 2 | Univariate and multivariate COX regression analysis results of 7 immune genes.

Gene_symbol Enxemble ID Univariate Cox regression analysis Multivariate Cox regression analysis

HR HR.95L HR.95H pvalue HR HR.95L HR.95H pvalue

ATG12 ENSG00000145782.12 1.180578 0.875524 1.59192 0.27642 1.329719 0.964576 1.833089 0.081899
ATG4A ENSG00000101844.17 0.864882 0.687113 1.088644 0.216272 0.81017 0.634949 1.033746 0.090447
ATG4C ENSG00000125703.14 1.221694 0.90893 1.642081 0.184473 1.404834 1.028324 1.9192 0.032726
ATG5 ENSG00000057663.12 0.896569 0.711928 1.129098 0.353424 0.822211 0.647758 1.043649 0.107651
GABARAPL1 ENSG00000139112.10 1.237474 1.039371 1.473335 0.016675 1.364937 1.13734 1.638079 0.00083
IFNG ENSG00000111537.4 0.891084 0.801327 0.990896 0.03327 0.875218 0.784645 0.976245 0.016788
ULK2 ENSG00000083290.19 0.835348 0.684796 1.018998 0.076005 0.766131 0.625682 0.938107 0.009928
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therapies that block immune checkpoints have low response rates in
approximately 10%-30% cancers, which may be related to tumor
mutational burden, PD-L1 expression level, IFN signaling and
MHC-I loss. However, the current understanding of the low
response rate of immunotherapy is still limited, and the
regulatory mechanism is not clear.
Frontiers in Oncology | www.frontiersin.org 11
Targeting the tumor microenvironment by immunotherapy
may be a promising therapeutic strategy. Autophagy regulates
innate and adaptive immune responses by regulating immune
components, such as NK cells, T lymphocytes, B cells and DC
cells (35). It was reported that autophagy could promote antigen
presentation by MHCII and MHCI molecules on APCs.
A B

C
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F

D

FIGURE 5 | Construction of the ARG prognostic classifier. (A, B) Determination of the number of factors by LASSO analysis. (C) The distribution of risk score,
survival duration and status of patients and a heatmap of the ARGs in the classifier. (D) The signature was evaluated by using the sensitivity and specificity of the
ROC curve. (E) Univariate Cox proportional hazards regression analysis and the correlation between the risk score, age, grade, lymphovascular invasion indicator,
primary site and clinical stage. (F) Kaplan-Meier analysis of TCGA OC patients stratified by median risk score.
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Autophagy provides an important antigen source for the loading
of MHCII, thus activating antigen-specific CD8+ T cells (36). In
addition, autophagy not only regulates cytokines to affect
immunity but also increases the response of MHCI molecules
to IFN-g to enhance cross-presentation (37). The defection of
autophagy causes the accumulation of intracellular fat droplets,
Frontiers in Oncology | www.frontiersin.org 12
promotes the release of linoleic acid, and leads to the exhaustion
of liver CD411 cells, thereby inducing an immunosuppressive
tumor microenvironment and promoting tumor progression (38,
39). Antibody-mediated responses to both T cell-dependent and
T cell-independent antigens also require autophagy. Otherwise,
these responses will cause endoplasmic reticulum stress and
A

B

C

FIGURE 6 | Correlation of risk score with 7 ARG signatures and important immune checkpoints. (A) Kaplan-Meier survival analysis of the 7 ARGs in the TCGA-OV
cohort. (B) Correlation between risk score and 7 ARGs. (C) Correlation between risk score and immune checkpoints.
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T cell death. Autophagy-related gene suppression in human
pancreatic ductal adenocarcinoma 8988T cells can promote the
expression of PD-L1, which is conducive to the establishment of
an immunosuppressive tumor microenvironment (40).
Frontiers in Oncology | www.frontiersin.org 13
There have been no comprehensive and systematic studies on
the relationship among autophagy, the immune microenvironment
and immunotherapy in OC. This study aims to identify suitable
immunotherapy targets and effective prognostic biomarkers and to
A

B C

D E

FIGURE 7 | ARG signature characteristics. (A) The waterfall plot of OC mutations established by 7 ARGs in the TCGA-OV cohort. (B) The height of the mountain
represents the discrete situation between a set of data. The steeper the mountain is, the more concentrated the distribution of this group of data is, and there are
few discrete values between the data; the gentler the mountain is, the more dispersed the group of data is. (C) Circos plot shows the correlations between the 7
ARGs. (D) Correlations between the 24 immune cells. (E) Heat map of the correlation between the 7 ARGs and the 24 immune cells.
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predict the response and prognosis of OC. Using k-means
clustering, we successfully divided OC samples into two groups,
cluster A and cluster B. Significant differences were found between
cluster A and cluster B. Cluster A had a better prognosis for OS and
had a higher immune infiltration level than cluster B. Next, we use
Metascape to analyze the differential mRNA (FDR<0.05) of cluster
A and cluster B for signal pathway enrichment analysis.
Lymphocyte activation, adaptive immune response and cytokine-
mediated signaling pathway were the top three signaling pathways,
and all of these pathways were closely related to the function of the
immune system. We then used GESA for pathway enrichment and
found that IFN-g, IFN-a, IL-6 JAK STAT3, inflammatory, P53
pathway, and hypoxia were significantly enriched in cluster A. Most
of these pathways are closely related to tumorigenesis and the TME.
For example, interferon plays a vital role in the immune response
and has been studied in a variety of malignant tumors (41, 42). IFN-
g signal transduction can promote Treg function in autoimmunity,
and activation of the IFN-a signaling pathway leads to a more
effective antiviral response and enhanced antitumor immunity (43).
The JAK/STAT3 pathway is aberrantly activated in various cancers,
including OC, and is involved in functional regulation of the tumor
microenvironment (44). Inflammatory factors could induce
immune suppression and mediate immune escape (45). The P53
tumor suppressor pathway plays a key role in tumor immunology
and the homeostatic regulation of immune responses (46). Our
classification is of great significance in guiding clinical work.
Patients in cluster A have a better prognosis and significantly
higher immune infiltration than those in cluster B, and the
enriched signaling pathways are mainly related to the TIM. Thus,
cluster A may obtain better clinical outcomes with immunotherapy
and have a certain clinical reference value for OC.
Frontiers in Oncology | www.frontiersin.org 14
Gene markers are widely used in modern clinical diagnosis.
Traditional markers, such as CA125, CA199 and alpha-fetoprotein
(AFP), are frequently used to diagnose OC, gastric cancer and liver
cancer, predicting prognosis, and monitoring postoperative
recurrence, respectively (47–49). Additional searches for more
sensitive and specific markers are needed to improve clinical
diagnosis and treatment. We established a 7 ARG prognostic risk
signature by LASSO Cox regression and then divided patients into
high-risk and low-risk groups. ROC curve and Kaplan-Meier
survival analyses showed that the model was reliable and helpful
to identify high-risk and low-risk patients. Univariate Cox
regression analyses showed that the risk score was a more reliable
indicator of DFS than other factors. The risk score was also closely
related to risk genes and immune checkpoint molecules. Some risk
genes have been confirmed to be closely related to the formation
and development of OC. IFNG expression is related to the
upregulation of XBP1, and lacking XBP1 selectively in T
cells could promote antitumor immunity (50). P53 and RAS
mutants regulate apoptosis and autophagy through the
dysregulation of ATG12 and affect chemotherapy resistance (51).
It was reported that ATG5 could promote the growth of OC cells in
the peritoneal microenvironment, and inhibition of ATG5-induced
autophagy sensitizes OC cells to olaparib and other PARP inhibitors
(52, 53). However, GABARAPL1 and ULK2 have not been reported
in OC. Experimental verification found that ULK2 and
GABARAPL1 are downregulated in OC, combined with OS
analysis, the results show the higher expression of ULK2
indicated a better prognosis whereas the higher expression of
GABARAPL1 showed a worse prognosis in OC. ULK2 may be a
protective prognostic factor. Unexpectedly, GABARAPL1 may be a
risk prognostic factor, the reason may be that the sample size was
A

C

B

FIGURE 8 | Expression of ULK2 and GABARAPL1 in OC. (A, B) ULK2 and GABARAPL1 expression decreased in OC tissues, compared to the paired
paracancerous tissues specimens from 8 patients, determined by qRT-PCR analysis and western blot analysis. (C) Representative immunohistochemical images of
ULK2 and GABARAPL1 expression in OC tissues and paracancerous tissues analyzed by IHC (400×). T, tumor; N, paracancerous tissues. **P < 0.01.
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TABLE 3 | Correlation between 7 ARGs and immune cells.

Immune cells Gene markers IFNG ATG12 ATG4A ATG4C ATG5 GABARAPL1 ULK2

Cor P Cor P Cor P Cor P Cor P Cor P Cor P

CD8+Tcell CD8A 0.783 **** 0.125 * 0.308 **** 0.145 * 0.005 NS 0.140 * -0.064 NS
CD8B 0.624 **** 0.062 NS 0.349 **** 0.164 ** 0.049 NS 0.092 NS -0.051 NS

T CD3D 0.771 **** 0.144 * 0.277 **** 0.096 NS -0.014 NS 0.049 NS -0.075 NS
CD3E 0.755 **** 0.102 NS 0.280 **** 0.075 NS -0.103 NS 0.067 NS -0.062 NS
CD2 0.762 **** 0.134 * 0.293 **** 0.097 NS -0.055 NS 0.048 NS -0.044 NS

Bcell CD19 0.302 **** 0.014 NS 0.122 * 0.121 * 0.034 NS -0.070 NS 0.039 NS
CD79A 0.573 **** -0.035 NS 0.195 *** 0.038 NS 0.050 NS 0.059 NS -0.055 NS

Monocyte CD86 0.559 **** 0.101 NS 0.305 **** 0.226 **** -0.072 NS 0.078 NS 0.014 NS
CSF1R 0.375 **** 0.019 NS 0.187 *** 0.144 * -0.196 *** 0.090 NS 0.042 NS

TAM CCL2 0.401 **** 0.231 **** 0.197 *** 0.079 NS -0.074 NS 0.048 NS -0.016 NS
CD68 0.521 **** 0.116 * 0.337 **** 0.177 ** -0.081 NS 0.053 NS -0.024 NS
IL10 0.314 **** 0.235 **** 0.236 **** 0.137 * 0.037 NS 0.080 NS 0.007 NS

M 1Macrophage NOS2 -0.083 NS -0.006 NS 0.049 NS -0.048 NS 0.029 NS 0.143 * 0.180 **
IRF5 0.323 **** 0.047 NS 0.199 *** -0.009 NS -0.094 NS 0.010 NS 0.117 *
PTGS2 0.082 NS 0.157 ** 0.092 NS 0.069 NS -0.006 NS 0.165 ** 0.052 NS

M2 Macrophage CD163 0.399 **** 0.094 NS 0.248 **** 0.143 * -0.165 ** 0.091 NS 0.025 NS
VSIG4 0.345 **** 0.161 ** 0.312 **** 0.183 ** -0.063 NS 0.096 NS -0.018 NS
MS4A4A 0.468 **** 0.156 ** 0.337 **** 0.185 ** -0.042 NS 0.120 * 0.031 NS

Neutrophils ITGAM 0.415 **** 0.032 NS 0.195 *** 0.146 * -0.199 *** 0.047 NS 0.033 NS
CCR7 0.591 **** 0.072 NS 0.234 **** 0.084 NS -0.070 NS 0.071 NS 0.036 NS

Natural killer cell KIR2DL1 0.263 **** 0.063 NS 0.021 NS -0.028 NS -0.088 NS 0.087 NS 0.003 NS
KIR2DL3 0.270 **** 0.149 ** 0.052 NS -0.023 NS -0.045 NS 0.018 NS -0.017 NS
KIR2DL4 0.586 **** 0.162 ** 0.154 ** 0.027 NS -0.027 NS -0.028 NS -0.026 NS
KIR3DL1 0.364 **** 0.081 NS 0.011 NS 0.008 NS 0.008 NS -0.026 NS 0.032 NS
KIR3DL2 0.335 **** 0.074 NS 0.095 NS 0.030 NS -0.058 NS 0.027 NS 0.061 NS
KIR3DL3 0.129 * 0.049 NS -0.001 NS -0.020 NS -0.007 NS 0.050 NS 0.010 NS
KIR2DS4 0.277 **** 0.099 NS 0.073 NS -0.023 NS -0.067 NS 0.015 NS 0.030 NS

Dendritic cell HLA-DPB1 0.576 **** 0.090 NS 0.252 **** 0.146 * -0.034 NS -0.011 NS -0.134 *
HLA-DQB1 0.432 **** 0.062 NS 0.278 **** 0.121 * -0.025 NS 0.062 NS -0.117 *
HLA-DRA 0.540 **** 0.139 * 0.300 **** 0.190 *** -0.012 NS 0.015 NS -0.129 *
HLA-DPA1 0.560 **** 0.085 NS 0.237 **** 0.172 ** -0.024 NS 0.021 NS -0.094 NS
CD1C 0.313 **** 0.053 NS 0.039 NS 0.020 NS -0.072 NS 0.075 NS 0.030 NS
NRP1 0.172 **** 0.091 NS 0.158 ** 0.035 NS -0.130 * 0.060 NS 0.071 NS
ITGAX 0.509 **** 0.069 NS 0.205 *** 0.091 NS -0.220 **** 0.022 NS 0.026 NS

Th1 TBX21 0.777 **** 0.076 NS 0.243 **** 0.074 NS -0.120 * 0.029 NS -0.022 NS
STAT4 0.668 **** 0.120 * 0.250 **** 0.056 NS -0.054 NS 0.095 NS 0.078 NS
STAT1 0.455 **** -0.050 NS 0.165 ** 0.096 NS -0.040 NS 0.012 NS 0.062 NS
IFNG 1.000 NS 0.113 * 0.275 **** 0.061 NS 0.010 NS -0.001 NS -0.054 NS
TNF 0.259 **** 0.014 NS 0.098 NS -0.049 NS -0.161 ** -0.102 NS -0.052 NS

Th2 GATA3 0.412 **** 0.102 NS 0.115 * -0.029 NS -0.144 * 0.105 NS -0.121 *
STAT6 0.144 * -0.091 NS -0.026 NS -0.050 NS 0.057 NS 0.072 NS -0.070 NS
STAT5A 0.202 **** -0.016 NS 0.047 NS 0.070 NS -0.046 NS 0.096 NS 0.075 NS
IL13 0.251 **** 0.111 NS 0.059 NS -0.081 NS -0.044 NS 0.051 NS 0.066 NS

Tfh BCL6 -0.043 NS -0.074 NS -0.016 NS -0.086 NS -0.229 **** -0.096 NS -0.139 *
IL21 0.397 **** -0.008 NS 0.165 ** 0.059 NS 0.029 NS 0.016 NS -0.083 NS

Th17 STAT3 0.187 **** -0.011 NS 0.179 ** 0.045 NS 0.025 NS 0.152 ** 0.060 NS
IL17A 0.288 **** 0.026 NS 0.007 NS -0.054 NS -0.095 NS -0.072 NS -0.042 NS

Treg FOXP3 0.670 **** 0.046 NS 0.253 **** 0.033 NS -0.118 * 0.009 NS 0.022 NS
CCR8 0.427 **** -0.003 NS 0.162 ** 0.101 NS -0.020 NS 0.056 NS 0.005 NS
STAT5B -0.016 NS 0.001 NS -0.086 NS 0.006 NS -0.005 NS 0.015 NS 0.242 ***
TGFB1 0.358 **** 0.076 NS 0.310 **** 0.079 NS -0.126 * 0.070 NS 0.017 NS

T cell exhaustion PDCD1 0.725 **** 0.077 NS 0.279 **** 0.056 NS -0.060 NS 0.009 NS -0.082 NS
CTLA4 0.737 **** 0.117 * 0.267 **** 0.101 NS -0.017 NS 0.047 NS -0.011 NS
LAG3 0.668 **** 0.079 NS 0.199 *** 0.075 NS 0.018 NS 0.041 NS 0.051 NS
HAVCR2 0.545 **** 0.129 * 0.326 **** 0.229 **** -0.057 NS 0.052 NS -0.011 NS
GZMB 0.712 **** 0.211 *** 0.274 **** -0.020 NS 0.003 NS -0.010 NS -0.162 **
ATG12 0.113 * 1.000 NS 0.156 ** 0.100 NS 0.119 * 0.062 NS -0.020 NS
ATG4A 0.275 **** 0.156 ** 1.000 NS 0.205 *** 0.135 * 0.156 ** -0.123 *
ATG4C 0.061 NS 0.100 NS 0.205 *** 1.000 NS 0.139 * 0.025 NS 0.066 NS
ATG5 0.010 NS 0.119 * 0.135 * 0.139 * 1.000 NS 0.156 ** 0.074 NS
GABARAPL1 -0.001 NS 0.062 NS 0.156 ** 0.025 NS 0.156 ** 1.000 NS 0.084 NS
ULK2 -0.054 NS -0.020 NS -0.123 * 0.066 NS 0.074 NS 0.084 NS 1.000 NS
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, NS, no significance (P>0.05).
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too small for inferential statistics or that the characteristics of the
autophagy gene itself caused this result, but the specific reasons need
to be further explored. ULK2 and GABARAPL1 may be potential
therapeutic targets for OC.

The successful classification of OC in this study is conducive
to screening patients suitable for immunotherapy, and 7 marker
genes can be used as strong biological markers for the prognosis
of OC. The research, however, has some limitations. Firstly, the
number of ARG sets studied is relatively small, and there is no
validation set. In addition, we verified the expression of some
ARGs in tissues, but the biological functions of the ARGs need
further experimental research.

In summary, the autophagy-immune-based gene risk signature
might be helpful to guide the clinical treatment, evaluate the
prognosis and predict the efficacy of immunotherapy. ARGs might
be potential markers for the prognosis of OC immunotherapy.
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